Skip to main content

Development and Developmental Disorders of the Brain Stem

  • Chapter
  • First Online:

Abstract

The brain stem is composed of the midbrain (the mesencephalon) and the hindbrain (the rhombencephalon), and is, at least during development, segmentally organized. The midbrain is composed of two temporarily present segments known as mesomeres, whereas the hindbrain is composed of 8, and more recently of 12, rhombomeres. The cerebellum largely arises from the first rhombomere. The brain stem also contributes 10 of the 12 cranial nerves, III -XII. A great number of genes are involved in the proper development of the brain stem. The isthmus organizer regulates the early development of the mesencephalon and of the rostral part of the rhombencephalon. Each rhombomere is characterized by a unique combination of Hox genes, its Hox code. In mice, spontaneous and targeted (knockout) mutations in these genes result in specific, rhombomere-restricted disruptions in the development of motor nuclei of cranial nerves. Such a ‘rhombomeropathy’ has recently been described for the HOXA1 gene.

In this chapter, patterning of the brain stem and its segmentation are discussed in Sect. 7.2, followed by an overview of the development and developmental disorders of the cranial nerves (Sect. 7.3). In Sect. 7.4, the development of the auditory system and some of its disorders are discussed. Clinical cases illustrate some major malformations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C et al (1997) A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15:157–164

    CAS  PubMed  Google Scholar 

  • Acampora D, Gulisano M, Broccoli V, Simeone A (2001) Otx genes in brain morphogenesis. Prog Neurobiol 64:69–95

    CAS  PubMed  Google Scholar 

  • Aicardi J (1998) Diseases of the nervous system in childhood, 2nd edn. Mac Keith, London

    Google Scholar 

  • Alasti F, Sadeghi A, Sanati MH, Farhadi M, Stollar E, Somers T, Van Camp G (2008) A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family. Am J Hum Genet 82:982–991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandre P, Wassef M (2003) The isthmic organizer links anteroposterior and dorsoventral patterning in the mid/hindbrain by generating roof plate structures. Development 130:5331–5338

    CAS  PubMed  Google Scholar 

  • Allanson J (2004) Genetic hearing loss associated with external ear anomalies. In: Toriello HV, Reardon W, Gorlin RJ (eds) Hereditary hearing loss and its syndromes, 2nd edn. Oxford University Press, Oxford, pp 83–125

    Google Scholar 

  • Altman J, Bayer SA (1982) Development of the cranial nerve ganglia and related nuclei in the rat. Adv Anat Embryol Cell Biol 74:1–90

    CAS  PubMed  Google Scholar 

  • Altmann F (1951) Malformations of the auricle and the external auditory meatus. Arch Otolaryngol 54:115–139

    CAS  Google Scholar 

  • Altmann F (1955) Congenital atresia of the ear in man and animals. Ann Otol Rhinol Laryngol 64:824–858

    CAS  PubMed  Google Scholar 

  • Anson BJ, Davies J (1980) Embryology of the ear: developmental anatomy of the ear. In: Paparella MM, Shumrick DA, Meyerhoff WL, Seid AB (eds) Otolaryngology, 2nd edn. Saunders, Philadelphia, pp 3–25

    Google Scholar 

  • Anson BJ, Bast TH, Cauldwell EW (1948) The development of the auditory ossicles, the otic capsule and the extracapsular tissues. Ann Otol Rhinol Laryngol 57:603–632

    CAS  PubMed  Google Scholar 

  • Anson BJ, Hanson JS, Richany SF (1960) Early embryology of the auditory ossicles and associated structures in relation to certain anomalies observed clinically. Ann Otol Rhinol Laryngol 69:427–447

    CAS  PubMed  Google Scholar 

  • Ashwell KW, Watson CR (1983) The development of facial motoneurones in the mouse – neuronal death and the innervation of the facial muscles. J Embryol Exp Morphol 77:117–141

    CAS  PubMed  Google Scholar 

  • Auclair F, Valdes N, Marchand R (1996) Rhombomere-specific origin of the branchial and visceral motoneurons of the facial nerve in the rat embryo. J Comp Neurol 369:451–461

    CAS  PubMed  Google Scholar 

  • Baker CV, Bronner-Fraser M (2001) Vertebrate cranial placodes. I. Embryonic induction. Dev Biol 232:1–61

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Millen KJ, Dobyns WB (2007) A developmental classification of malformations of the brainstem. Ann Neurol 62:625–639

    PubMed  Google Scholar 

  • Barkovich AJ, Millen KJ, Dobyns WB (2009) A developmental and genetic classification for midbrain-hindbrain malformations. Brain 132:3199–3230

    PubMed  PubMed Central  Google Scholar 

  • Barrow JR, Stadler HS, Capecchi MR (2000) Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 127:933–944

    CAS  PubMed  Google Scholar 

  • Barth PG, Majoie CB, Caan MWA, Weterman MAJ, Kyllerman M, Smit LME et al (2007) Pontine tegmental cap dysplasia: a novel brain malformation with a defect in axonal guidance. Brain 130:2258–2266

    PubMed  Google Scholar 

  • Barth PG, de Vries LS, Nikkels PGJ, Troost D (2008) Congenital brainstem disconnection associated with a syrinx of the brainstem. Neuropediatrics 39:1–7

    CAS  PubMed  Google Scholar 

  • Baxter A (1971) Dehiscence of the Fallopian canal. J Laryngol Otol 85:587–594

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Zhang X (1995) Embryology. In: Duckett S (ed) Pediatric neuropathology. Williams & Wilkins, Baltimore, pp 54–107

    Google Scholar 

  • Beck C (1970) Duplication of the external auditory ear. HNO 18:307–308

    CAS  PubMed  Google Scholar 

  • Birnholtz JC, Benacerraf BR (1983) The development of fetal hearing. Science 222:516–518

    Google Scholar 

  • Bitner-Glindzicz M (2002) Hereditary deafness and phenotyping in humans. Br Med Bull 63:73–94

    CAS  PubMed  Google Scholar 

  • Bonnet C, El-Amraoui A (2012) Usher syndrome (sensorineural deafness and retinitis pigmentosa): pathogenesis, molecular diagnosis and therapeutic approaches. Curr Opin Neurol 25:42–49

    CAS  PubMed  Google Scholar 

  • Bordley JE (1973) The effect of viral infection on hearing. A state-of-the-art report with special emphasis on congenital rubella. Arch Otolaryngol 98:217

    CAS  PubMed  Google Scholar 

  • Bosley TM, Salih MA, Alorainy IA, Oystreck DT, Nester M, Abu-Amero KK et al (2007) Clinical characterization of the HOXA1 syndrome BSAS variant. Neurology 69:1245–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosley TM, Alorainy IA, Salih MA, Aldhalaan HM, Abu-Amero KK, Oystreck DT et al (2008) The clinical spectrum of homozygous HOXA1 mutations. Am J Med Genet A 146A:1235–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwes Bavinck JN, Weaver DD (1986) Subclavian artery supply disruption sequence: hypothesis of a vascular etiology of Poland, Klippel-Feil, and Möbius anomalies. Am J Med Genet 23:903–918

    Google Scholar 

  • Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubinstein JLR, Ericson J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398:622–627

    CAS  PubMed  Google Scholar 

  • Brookhouser PE, Bordley JE (1973) Congenital rubella deafness. Pathology and pathogenesis. Arch Otolaryngol 98:252–257

    CAS  PubMed  Google Scholar 

  • Brown SDM, Hardisty-Hughes RE, Mbura P (2008) Quiet as a mouse: dissecting the molecular and genetic basis of hearing. Nat Rev Genet 9:277–290

    CAS  PubMed  Google Scholar 

  • Brunet J-F, Pattyn A (2002) Phox2 genes – from patterning to connectivity. Curr Opin Genet Dev 12:435–440

    CAS  PubMed  Google Scholar 

  • Büttner-Ennever JA, Akert K (1981) Medial rectus subgroups of the oculomotor nucleus and their abducens internuclear input in monkey. J Comp Neurol 197:17–27

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE (2004) Reticular formation: eye movements, gaze and blink. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 479–510

    Google Scholar 

  • Calabrese G, Stuppia L, Morizio E, Guanciali Franchi P, Pompetti F, Mingarelli T et al (1998) Detection of an insertion deletion of region 8q13-q21.2 in a patient with Duane syndrome: Implications for mapping and cloning a Duane gene. Eur J Hum Genet 6:187–193

    CAS  PubMed  Google Scholar 

  • Calabrese G, Telvi L, Capodiferro F, Morizio E, Pizzuti A, Stuppi R et al (2000) Narrowing the Duane syndrome critical region at chromosome 8q13 down to 40 kb. Eur J Hum Genet 8:319–324

    CAS  PubMed  Google Scholar 

  • Canning CA, Lee L, Irving C, Mason I, Jones CM (2007) Sustained interactive Wnt and FGF signaling is required to maintain isthmic identity. Dev Biol 305:276–286

    CAS  PubMed  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR (1993) Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118:1063–1075

    CAS  PubMed  Google Scholar 

  • Ceruti S, Stinckens C, Cremers C, Casselman JW (2002) Temporal bone anomalies in the branchio-oto-renal syndrome: detailed computer tomographic and magnetic resonance imaging findings. Otol Neurotol 23:200–207

    CAS  PubMed  Google Scholar 

  • Chen J, Nathans J (2007) Estrogen-related receptor beta/NR3B2 controls epithelial cell fate and endolymph production by the stria vascularis. Dev Cell 13:325–337

    PubMed  Google Scholar 

  • Chen W, Kahrizi K, Meyer NC, Riazalhosseini Y, Van Camp G, Najmabadi H, Smith RJ (2005) Mutation of COL11A2 causes autosomal recessive non-syndromic hearing loss at the DFNB53 locus. J Med Genet 42:e61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chi CL, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130:2633–2644

    CAS  PubMed  Google Scholar 

  • Cioffi JA, Yue WY, Mendolia-Loffredo S, Hansen KR, Wackym PA, Hansen MR (2010) MicroRNA-21 overexpression contributes to vestibular schwannoma cell proliferation and survival. Otol Neurotol 31:1455–1462

    PubMed  PubMed Central  Google Scholar 

  • Collin RW, Kalay E, Tariq M, Peters T, van der Zwaag B, Venselaar H et al (2008a) Mutations of ESRRB encoding estrogen-related receptor beta cause autosomal-recessive nonsyndromic hearing impairment. Am J Hum Genet 82:125–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collin RW, Chellapa R, Pauw RJ, Vriend G, Oostrik J, van Drunen W et al (2008b) Missense mutations in POU4F3 cause autosomal dominant hearing impairment DFNA15 and affect subcellular localization and DNA binding. Hum Mutat 29:545–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2:611–623

    CAS  PubMed  Google Scholar 

  • Counter SA (2002) Fetal and neonatal development of the auditory system. In: Lagercrantz H, Hanson M, Evrard P, Rodeck C (eds) The newborn brain. Neuroscience and clinical applications. Cambridge University Press, Cambridge, pp 226–251

    Google Scholar 

  • Coyle B, Coffey R, Armour JA, Gausden E, Hochberg Z, Grossman A et al (1996) Pendred syndrome (goitre and sensorineural hearing loss) maps to chromosome 7 in the region containing the nonsyndromic deafness gene DFNB4. Nat Genet 12:421–423

    CAS  PubMed  Google Scholar 

  • Cremers CWRJ, Delleman WJW (1988) Usher’s syndrome, temporal lobe pathology. Int J Pediatr Otorhinolaryngol 16:23–30

    CAS  PubMed  Google Scholar 

  • Cremers CWRJ, Teunissen E (1991) A classification of minor congenital ear anomalies and short- and long-term results of surgery in 104 ears. In: Charachon R, Garcia-Ibanes E (eds) Long-term results and indications in otology and otoneurosurgery. Kugler, Amsterdam, pp 11–12

    Google Scholar 

  • Cremers CWRJ, Teunissen E, Marres EH (1988) Classification of congenital aural atresia and results of constructive surgery. Adv Otorhinolaryngol 40:9–14

    CAS  PubMed  Google Scholar 

  • Cruysberg JRM, Huygen PLM (1990) Congenital monocular adduction palsy with synergistic divergence diagnosed in a young infant. Neuro-ophthalmol 10:253–256

    Google Scholar 

  • Cruysberg JRM, Mtanda AT, Duinkerke-Eerola KU, Stoelinga GBA (1986) Bilateral Duane’s retraction syndrome associated with congenital panhypopituitarism. Neuro-ophthalmol 6:165–168

    Google Scholar 

  • Cruysberg JRM, Mtanda AT, Duinkerke-Eerola KU, Huygen PLM (1989) Congenital adduction palsy and synergistic divergence; a clinical and electro-oculographic study. Br J Ophthalmol 73:68–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruysberg JRM, Draaijer RW, Pinckers A, Brunner HG (1998) Congenital corneal anesthesia in children with the VACTERL association. Am J Ophthalmol 125:96–98

    CAS  PubMed  Google Scholar 

  • Dallos P (2008) Cochlear amplification, outer hair cells and presrin. Curr Opin Neurobiol 18:370–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Kok YG, van der Marel SM, Bitner-Glindzicz M, Huber I, Monaco AP, Malcolm S et al (1995) Association between X-linked deafness and mutations in the POU domain gene POU3F4. Science 267:685–688

    PubMed  Google Scholar 

  • De Leenheer EM, Bosman AJ, Kunst HP, Huygen PL, Cremers CW (2004) Audiological characteristics of some affected members of a Dutch DFNA13/COL11A2 family. Ann Otol Rhinol Laryngol 113:922–929

    PubMed  Google Scholar 

  • del Castillo FJ, del Castillo I (2011) The DFNB1 subtype of autosomal recessive non-syndromic hearing impairment. Front Biosci 16:3252–3274

    Google Scholar 

  • Deol MS (1964) The abnormalities of the inner ear in Kreisler mice. J Embryol Exp Morphol 12:475–490

    CAS  PubMed  Google Scholar 

  • deSa DJ (1997) The ear. In: Gilbert-Barness E (ed) Potter’s pathology of the fetus and infant. Mosby, St.Louis, pp 1522–1540

    Google Scholar 

  • Dietzel K (1961) Über die Dehiszenzen des Facialiskanals. Z Laryngol Rhinol Otol 40:366–376

    CAS  PubMed  Google Scholar 

  • Doherty E, Macy M, Wang S, Dykeman C, Melanson M, Engle E (1999) CFEOM3: a new extraocular congenital fibrosis syndrome that maps to 16q24.2-q24.3. Invest Ophthalmol Vis Sci 40:1687–1694

    CAS  PubMed  Google Scholar 

  • Dror AA, Avraham KB (2009) Hearing loss: mechanisms revealed by genetics and cell biology. Annu Rev Genet 43:411–457

    CAS  PubMed  Google Scholar 

  • Dror AA, Avraham KB (2010) Hearing impairment: a panoply of genes and function. Neuron 68:293–308

    CAS  PubMed  Google Scholar 

  • Drummond MC, Belyantseva IA, Friderici KH, Friedman TB (2012) Actin in hair cells and hearing loss. Hear Res 288:89–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duane A (1905) Congenital deficiency of abduction associated with impairment of abduction, retraction movements, contractions of the palpebral fissure and oblique movements of the eye. Arch Ophthalmol 34:133–159

    Google Scholar 

  • Eisen MD, Ryugo DK (2007) Hearing molecules: contributions from genetic deafness. Cell Mol Life Sci 64:566–580

    CAS  PubMed  Google Scholar 

  • Engle EC (2002) Applications of molecular genetics to the understanding of congenital ocular motility disorders. Ann N Y Acad Sci 956:55–63

    CAS  PubMed  Google Scholar 

  • Engle EC (2006) The genetic basis of complex strabismus. Pediatr Res 59:343–348

    PubMed  Google Scholar 

  • Engle EC (2007) Oculomotility disorders arising from disruptions in brainstem motor neuron development. Arch Neurol 64:633–637

    PubMed  Google Scholar 

  • Engle EC, Leigh RJ (2002) Genes, brainstem development, and eye movements. Neurology 59:304–305

    PubMed  Google Scholar 

  • Engle EC, Castro AE, Macy ME, Knoll JHM, Beggs AH (1997) A gene for isolated congenital ptosis maps to a 3 cM region within 1p32-p34.1. Am J Hum Genet 60:1150–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ensfors P, Vandewater T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164

    Google Scholar 

  • Erickson SL, O’Shea KS, Ghaboosi N, Loterro L, Frantz G, Bauer M et al (1997) ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2- and neuregulin-deficient mice. Development 124:4999–5011

    CAS  PubMed  Google Scholar 

  • Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    CAS  PubMed  Google Scholar 

  • Feenstra I, Vissers LE, Pennings RJ, Nillessen W, Pfundt R, Kunst HP et al (2011) Disruption of teashirt zinc finger homeobox 1 is associated with congenital aural atresia in humans. Am J Hum Genet 89:813–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fekete DM (1999) Development of the vertebrate ear: Insights from knockouts and mutants. Trends Neurosci 22:263–269

    CAS  PubMed  Google Scholar 

  • Fettiplace R, Hackney CM (2006) The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 7:19–29

    CAS  PubMed  Google Scholar 

  • Filiano JJ, Kinney HC (1992) Arcuate nucleus hypoplasia in the sudden infant death syndrome. J Neuropathol Exp Neurol 51:394–405

    CAS  PubMed  Google Scholar 

  • Filiano JJ, Kinney HC (1994) A perspective on neuropathological findings in victims of the sudden infant death syndrome: The triple-risk model. Biol Neonate 65:194–197

    CAS  PubMed  Google Scholar 

  • Filiano JJ, Choi JC, Kinney HC (1990) Candidate cell populations for respiratory chemosensitive fields in the human infant medulla. J Comp Neurol 293:448–465

    CAS  PubMed  Google Scholar 

  • Fitch N, Lindsay JR, Srolovitz H (1976) The temporal bone in the preauricular pit, cervical fistula, hearing loss syndrome. Ann Otol Rhinol Laryngol 85:268–275

    CAS  PubMed  Google Scholar 

  • Flock Å (1980) Contractile proteins in hair cells. Hear Res 2:411–412

    CAS  PubMed  Google Scholar 

  • Flock Å, Bretscher A, Weber K (1982) Immunohistochemical localization of several cytoskeletal proteins in inner ear sensory and supporting cells. Hear Res 7:75–89

    CAS  PubMed  Google Scholar 

  • Fode C, Gradwohl G, Morin X, Dierich A, LeMeur M, Goridis C, Guillemot F (1998) The bHLH protein NEUROGENIN 2 is determination factor for epibranchial placode-derived sensory neurons. Neuron 20:483–494

    CAS  PubMed  Google Scholar 

  • Folgering H, Kuyper F, Kille JF (1979) Primary alveolar hypoventilation (Ondine’s curse syndrome) in an infant without external arcuate nucleus: case report. Bull Eur Physiopathol Respir 15:659–665

    CAS  PubMed  Google Scholar 

  • Fowler EP (1961) Variations in the temporal bone course of the facial nerve. Laryngoscope 71:937–946

    PubMed  Google Scholar 

  • Franz H (1959) Über Gehörorgansduplikaturen. Z Laryngol Rhinol 38:16–22

    CAS  Google Scholar 

  • Friedland DR, Eernisse R, Erbe C, Gupta N, Cioffi JA (2009) Cholesteatoma growth and proliferation: posttranscriptional regulation by microRNA-21. Otol Neurotol 30:998–1005

    PubMed  PubMed Central  Google Scholar 

  • Friedman TB, Griffith AJ (2003) Human nonsyndromic sensorineural deafness. Annu Rev Genomics Hum Genet 4:341–402

    CAS  PubMed  Google Scholar 

  • Friedmann I, Arnold W (1993) Pathology of the ear. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Fritzsch B, Silos-Santiago I, Bianchi LM, Farinas I (1997) The role of neurotrophic factors in regulating the development of inner ear development. Trends Neurosci 20:159–164

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Pauley S, Beisel KW (2006) Cells, molecules and morphogenesis: the making of the vertebrate ear. Brain Res 1091:151–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fritzsch B, Beisel KW, Pauley S, Soukup G (2007) Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51:663–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fritzsch B, Jahan I, Pan N, Kersigo J, Duncan J, Kopecky B (2011) Dissecting the molecular basis of organ of Corti development: where are we now? Hear Res 276:16–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser RF (1967) The development of the facial nerve in man. Ann Otol Rhinol Laryngol 76:37–56

    CAS  PubMed  Google Scholar 

  • Gasser RF, May M (2000) Embryonic development. In: May M, Schaitkin BM (eds) The facial nerve, May’s 2nd edn. Thieme, New York, pp 1–17

    Google Scholar 

  • Gavalas A, Studer M, Lumsden A, Rijli FM, Krumlauf R, Chambon P (1998) Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125:1123–1136

    CAS  PubMed  Google Scholar 

  • Gavalas A, Ruhrberg C, Livet J, Henderson CE, Krumlauf R (2003) Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development 130:5663–5679

    CAS  PubMed  Google Scholar 

  • Gerhardt HJ, Otto HD (1970) Steigbügelmissbildungen. Acta Otolaryngol (Stockholm) 70:35–44

    CAS  Google Scholar 

  • Gillespie PG, Müller U (2009) Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139:33–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goddard JM, Rossel M, Manley NR, Capecchi MR (1996) Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 122:3217–3228

    CAS  PubMed  Google Scholar 

  • Gorlin RJ, Cohen MM Jr, Levin LS (1990) Syndromes of the head and neck, 3rd edn. Oxford University Press, New York, pp 666–671

    Google Scholar 

  • Gorlin RJ, Cohen MM Jr, Hennekam RCM (eds) (2001) Syndromes of the head and neck, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Govaerts PJ, Cremers CWRJ, Marquet TF, Offeciers FE (1993) The persistent stapedial artery: does it prevent successful surgery? Ann Otol Rhinol Laryngol 102:724–728

    CAS  PubMed  Google Scholar 

  • Groves AK, Bronner-Fraser M (2000) Competence, specification and commitment in otic placode induction. Development 127:3489–3499

    CAS  PubMed  Google Scholar 

  • Groves AK, Fekete DM (2012) Shaping sound in space: the regulation of inner ear patterning. Development 139:245–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guthrie S (1996) Patterning the hindbrain. Curr Opin Neurobiol 6:41–48

    CAS  PubMed  Google Scholar 

  • Guthrie S (2007) Patterning and axon guidance of cranial motor neurons. Nat Rev Neurosci 8:859–871

    CAS  PubMed  Google Scholar 

  • Gutowski NJ, Bosley TM, Engle E (2003) Workshop Report 110th ENMC International Workshop: the congenital cranial dysinnervation disorders (CCDDs). Neuromusc Disord 13:573–578

    CAS  PubMed  Google Scholar 

  • Hamilton WJ, Mossman HW (1972) Hamilton, Boyd and Mossman’s human embryology. Prenatal development of form and function, 4th edn. Heffer, Cambridge

    Google Scholar 

  • Hanson JR, Anson BJ, Strickland EM (1962) Branchial sources of the auditory ossicles in man. Arch Otolaryngol 76:100–122, and 200–215

    PubMed  Google Scholar 

  • Hardy JB (1973) Fetal consequences of maternal viral infections in pregnancy. Arch Otolaryngol 98:218–227

    CAS  PubMed  Google Scholar 

  • Heidary G, Traboulsi EI, Engle EC (2012) The genetics of strabismus and associated disorders. In: Traboulsi EI (ed) Genetic diseases of the eye. Oxford University Press, Oxford/New York, pp 657–686

    Google Scholar 

  • Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A et al (1998) Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci U S A 95:5161–5165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinrichsen KV (1990) Peripheres nervensystem. In: Hinrichsen KV (ed) Humanembryologie. Springer, Berlin/Heidelberg/New York, pp 449–475

    Google Scholar 

  • His W Jr (1889) Zur Entwicklungsgeschichte des Acustico-Facialisgebietes beim Menschen. Arch Anat Physiol Anat Abt Suppl:1–28

    Google Scholar 

  • Hochstetter F (1948) Entwicklungsgeschichte der Ohrmuschel und des äusseren Gehörganges des Menschen. Denkschr Akad Wiss Wien Math-Naturwiss Kl 108:1–50

    Google Scholar 

  • Holme RH, Steel KP (1999) Genes involved in deafness. Curr Opin Genet Dev 9:309–314

    CAS  PubMed  Google Scholar 

  • Holzschuh J, Hauptmann G, Driever W (2003) Genetic analysis of the roles of Hh, FGF8, and nodal signaling during catecholaminergic system development in the zebrafish brain. J Neurosci 23:5507–5519

    CAS  PubMed  Google Scholar 

  • Honings J, Pennings RJE, Hoefsloot LH, Joosten FPM, Cremers CWRJ (2008) Head trauma of eliciting event in transient deterioration of sensorineural hearing loss and vertigo in Pendred/EVA syndrome. Int J Med Otorhinolaryngol 3:177–181

    Google Scholar 

  • Hotchkiss MG, Miller NR, Clark AW, Green WR (1980) Bilateral Duane’s retraction syndrome: a clinico-pathologic case report. Arch Ophthalmol 98:870–874

    CAS  PubMed  Google Scholar 

  • Hoth CF, Milunsky A, Lipsky N, Sheffer R, Clarren SK, Baldwin CT (1993) Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet 53:455–462

    Google Scholar 

  • House HP, Patterson ME (1964) Persistent stapedial artery: report of two cases. Trans Am Acad Ophthalmol Otolaryngol 68:644–646

    CAS  PubMed  Google Scholar 

  • Hunter AGW, Yotsuyanagi T (2005) The external ear: more attention to detail may aid syndrome diagnosis and contribute answers to embryological questions. Am J Med Genet 135A:237–250

    Google Scholar 

  • Igarashi Y, Ishii T (1980) Embryonic development of the human organ of Corti: electron microscopic study. Int J Paediatr Otorhinolaryngol 2:51–62

    CAS  Google Scholar 

  • Irving C, Mason I (2000) Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127:177–188

    CAS  PubMed  Google Scholar 

  • Ito T, Choi BY, King KA, Zalewski CK, Mushett J, Chattaraj P et al (2011) SLC26A4 genotypes and phenotypes associated with enlargement of the vestibular aqueduct. Cell Physiol Biochem 28:545–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova A, Yuasa S (1998) Neuronal migration and differentiation in the development of the mouse dorsal cochlear nucleus. Dev Neurosci 20:495–511

    CAS  PubMed  Google Scholar 

  • Jackler RK, Luxford WM, House WF (1987) Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope 97(Suppl 40):2–14

    CAS  PubMed  Google Scholar 

  • Jacobs MJ (1970) The development of the human motor trigeminal complex and accessory facial nucleus and their topographic relations with the facial and abducens nuclei. J Comp Neurol 138:161–194

    CAS  PubMed  Google Scholar 

  • Jacobs J, Guthrie S (2000) Facial visceral motor neurons display specific rhombomere origin and axon pathfinding behavior in the chick. J Neurosci 20:7664–7671

    Google Scholar 

  • Jen J, Coulin C, Bosley TM, Salih MAM, Sabatti C, Nelson SF, Baloh RW (2002) Familial horizontal gaze with progressive scoliosis (HGPS) maps to chromosome 11q23-25. Neurology 59:432–435

    PubMed  Google Scholar 

  • Jen J, Chan W-M, Bosley TM, Wan J, Carr JR, Rüb U et al (2004) Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304:1509–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jissendi-Tchofo P, Doherty D, McGillivray G, Hevner R, Shaw D, Ishak G et al (2009) Pontine tegmental cap dysplasia: MR imaging and diffusion tensor imaging features of impaired navigation. AJNR Am J Neuroradiol 30:113–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson B, Wedenberg E, Weston B (1964) Measurement of tone response by the human fetus. Acta Otolaryngol 57:188–192

    CAS  PubMed  Google Scholar 

  • Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet 12:15–20

    CAS  PubMed  Google Scholar 

  • Joyner AL (2002) Establishment of anterior-posterior and dorsal-ventral pattern in the early central nervous system. In: Rossant J, Tam PPL (eds) Mouse development. Patterning, morphogenesis, and organogenesis. Academic, San Diego, pp 107–126

    Google Scholar 

  • Kalatzis V, Sahly I, El-Amraoui A, Petit C (1998) Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn 213:486–499

    CAS  PubMed  Google Scholar 

  • Kanagasuntheram R (1967) A note on the development of the tubotympanic recess in the human embryo. J Anat 101:731–741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karmody CS, Annino DJ Jr (1995) Embryology and anomalies of the external ear. Facial Plast Surg 11:251–256

    CAS  PubMed  Google Scholar 

  • Keats BJB, Corey DP (1999) The Usher syndromes. Am J Med Genet 89:158–166

    CAS  PubMed  Google Scholar 

  • Kemperman MH, Stinckens C, Kumar S, Huygen PLM, Joosten FBM, Cremers CWRJ (2001) Progressive, fluctuant hearing loss, an enlarged vestibular aqueduct and cochlear hypoplasia in the BOR syndrome. Otol Neurotol 22:637–643

    CAS  PubMed  Google Scholar 

  • Kemperman MH, Stinckens C, Kumar S, Joosten FBM, Huygen PLM, Cremers CWRJ (2002a) The branchio-oto-renal syndrome. Adv Otorhinolaryngol 61:192–200

    CAS  PubMed  Google Scholar 

  • Kemperman MH, Koch SMP, Joosten FBM, Kumar S, Huygen PLM, Cremers CWRJ (2002b) Inner ear anomalies are frequent but non-obligatory features of the branchio-oto-renal syndrome. Arch Otolaryngol Head Neck Surg 128:1033–1038

    PubMed  Google Scholar 

  • Kemperman MH, Hoefsloot LH, Cremers CWRJ (2002c) Hearing loss and connexin 26. J R Soc Med 95:171–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiernan AE, Steel KP, Fekete DM (2002) Development of the mouse inner ear. In: Rossant J, Tam PPL (eds) Mouse development. Patterning, morphogenesis, and organogenesis. Academic, San Diego, pp 539–566

    Google Scholar 

  • Kikkawa Y, Seki Y, Okumura K, Ohshiba Y, Miyasaki Y, Suzuki S et al (2012) Advantages of a mouse model for human hearing impairment. Exp Anim 61:85–98

    CAS  PubMed  Google Scholar 

  • Kimberling WJ (2004) Genetic hearing loss associated with eye disorders. In: Toriello HV, Reardon W, Gorlin RJ (eds) Hereditary hearing loss and its syndromes, 2nd edn. Oxford University Press, Oxford, pp 126–165

    Google Scholar 

  • Kimberling WJ, Möller C (1995) Clinical and molecular genetics of Usher syndrome. J Am Acad Audiol 6:63–72

    CAS  PubMed  Google Scholar 

  • Kremer H, Kuyt LP, van den Helm B, van Reen M, Leunissen JAM, Hamel BC et al (1996) Localization of a gene for Möbius syndrome to chromosome 3q by linkage analysis in a Dutch family. Hum Mol Genet 5:1367–1371

    CAS  PubMed  Google Scholar 

  • Kremer H, van Wijk E, Märker T, Wolfrum U, Roepman R (2006) Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 15(Spec No 2):R262–R270

    CAS  PubMed  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201

    CAS  PubMed  Google Scholar 

  • Kuemerle B, Zanjani H, Joyner A, Herrup K (1997) Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J Neurosci 17:7881–7889

    CAS  PubMed  Google Scholar 

  • Kuhlman KA, Burns KA, Depp R, Sabbagha RE (1988) Ultrasound imaging of normal fetal response to external vibratory acoustic stimulation. Am J Obstet Gynecol 158:47–51

    CAS  PubMed  Google Scholar 

  • Kumar D (1990) Moebius syndrome. J Med Genet 27:122–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lammens M, Moerman P, Fryns JP, Schröder JM, Spinnewyn D, Casaer P, Dom R (1998) Neuropathological findings in Moebius syndrome. Clin Genet 54:136–141

    CAS  PubMed  Google Scholar 

  • Lavezzi AM, Matturi L (2008) Functional neuroanatomy of the human pre-Bötzinger complex with particular reference to sudden unexplained perinatal and infant death. Neuropathology 28:10–16

    PubMed  Google Scholar 

  • Lecanuet J-P, Schaal B (1996) Fetal sensory competencies. Eur J Obstet Gynecol 68:1–23

    CAS  Google Scholar 

  • Lee K-F, Simon H, Chen H, Bates B, Hung M-C, Hauser C (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398

    CAS  PubMed  Google Scholar 

  • Leigh R, Zee D (1999) The neurology of eye movements, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Lemire RJ, Loeser JD, Leech RW, Alvord EC Jr (1975) Normal and abnormal development of the human nervous system. Harper & Row, Hagerstown

    Google Scholar 

  • Lemire RJ, Beckwith JB, Warkany J (1978) Anencephaly. Raven, New York

    Google Scholar 

  • Lengyel D, Zaunbauer W, Keller E, Gottlob I (2000) Möbius syndrome: MRI findings in three cases. J Pediatr Ophthalmol Strabismus 37:305–308

    CAS  PubMed  Google Scholar 

  • Leong S, Ashwell KW (1997) Is there a zone of vascular vulnerability in the fetal brainstem? Neurotoxicol Teratol 19:265–275

    CAS  PubMed  Google Scholar 

  • Libby RT, Steel KP (2000) The roles of unconventional myosins in hearing and deafness. Essays Biochem 35:159–174

    CAS  PubMed  Google Scholar 

  • Liebreich R (1861) Abkunft und Ehen unter Blutsverwandten als Grund von Retinitis pigmentosa. Dtsch Klin 13:53–55

    Google Scholar 

  • Liu A, Joyner AL (2001) Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 24:869–896

    CAS  PubMed  Google Scholar 

  • Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 13:329–335

    CAS  PubMed  Google Scholar 

  • Lumsden A (2004) Segmentation and compartition in the early avian hindbrain. Mech Dev 121:1081–1088

    CAS  PubMed  Google Scholar 

  • Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337:424–428

    CAS  PubMed  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    CAS  PubMed  Google Scholar 

  • Ma Q, Chen ZF, Del Braco BI, De la Pompe JL, Anderson DJ (1998) neurogenin 1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

    CAS  PubMed  Google Scholar 

  • Mamourian A, Miller G (1994) Neonatal pontomedullary disconnection with aplasia or destruction of the lower brain stem: a case of pontoneocerebellar hypoplasia? AJNR Am J Neuroradiol 15:1483–1485

    CAS  PubMed  Google Scholar 

  • Mann IC (1927) The developing third nerve nucleus in human embryos. J Anat 61:424–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marín F, Puelles L (1994) Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev Biol 163:19–37

    PubMed  Google Scholar 

  • Marquet JF, Declau FR, De Cock M (1988) Congenital middle ear malformations. Acta Otorhinolaryngol Belg 42:117–302

    CAS  PubMed  Google Scholar 

  • Martínez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene En. Neuron 6:971–981

    PubMed  Google Scholar 

  • Martínez S, Puelles E, Puelles L, Echevarria D (2012) Molecular regionalization of the developing neural tube. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 2–18

    Google Scholar 

  • Mastick GS, Fan C-M, Tessier-Lavigne M, Serbedzija GN, McMahon AP, Easter SS Jr (1996) Early detection of neuromeres in Wnt-1−/− mutant mice: evaluation by morphological and molecular markers. J Comp Neurol 374:246–258

    CAS  PubMed  Google Scholar 

  • Matturi L, Biondo B, Mercurio P, Rossi L (2000) Severe hypoplasia of medullary arcuate nucleus. Quantitative analysis in sudden infant death syndrome. Acta Neuropathol (Berl) 99:371–375

    Google Scholar 

  • Matturi L, Biondo B, Suárez-Mier MP, Rossi L (2002) Brain stem lesions in the sudden infant death syndrome: variability in the hypoplasia of the arcuate nucleus. Acta Neuropathol (Berl) 104:12–20

    Google Scholar 

  • May M, Schaitkin BM (eds) (2000) The facial nerve, May’s 2nd edn. Thieme, New York

    Google Scholar 

  • McGuirt WT, Prasad SD, Griffith AJ, Kunst HP, Green GE, Shpargel KB, Runge C et al (1999) Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet 23:413–419

    CAS  PubMed  Google Scholar 

  • McKay IJ, Lewis J, Lumsden A (1997) Organization and development of facial motor neurons in the Kreisler mutant mouse. Eur J Neurosci 9:1499–1506

    CAS  PubMed  Google Scholar 

  • McMahon AP, Joyner AL, Bradley A, McMahan JA (1992) The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69:581–595

    CAS  PubMed  Google Scholar 

  • Mellinger JF, Gomez MR (1987) Agenesis of the cranial nerves. Handb Clin Neurol 50:211–223

    Google Scholar 

  • Mencía A, Modamio-Høybjør S, Redshaw N, Morín N, Mayo-Merino F, Olavarrieto L et al (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 41:609–613

    PubMed  Google Scholar 

  • Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390

    CAS  PubMed  Google Scholar 

  • Michel EM (1863) Mémoire sur les anomalies congénitales de l’oreille interne. Gaz Méd Strasb 3:55–58

    Google Scholar 

  • Millen KJ, Wurst W, Herrup K, Joyner AL (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120:695–706

    CAS  PubMed  Google Scholar 

  • Miller NR, Kiel SM, Green WR, Clark AW (1982) Unilateral Duane’s retraction syndrome (type 1). Arch Ophthalmol 100:1468–1472

    CAS  PubMed  Google Scholar 

  • Möbius PJ (1888) Über angeborene doppelseitige Abducens-Facialis-Lähmung. Munch Med Wochenschr 35:91–94

    Google Scholar 

  • Moens CB, Prince VE (2002) Constructing the hindbrain: insights from the zebrafish. Dev Dyn 224:1–17

    PubMed  Google Scholar 

  • Mondini C (1791) Anatomia surdi nedi sectio. De Bononiensii Scientarum et Artium Instituto Atque Academi Commentarii. Bologna, pp 419–431

    Google Scholar 

  • Moore JK, Linthicum FH Jr (2004) Auditory system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1241–1279

    Google Scholar 

  • Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154:393–418

    CAS  PubMed  Google Scholar 

  • Moore JK, Perazzo LM, Braun A (1995) Time course of axonal myelination in the human brainstem auditory pathway. Hear Res 87:21–31

    CAS  PubMed  Google Scholar 

  • Moore JK, Guan Y-L, Shi S-R (1997) Axogenesis in the human fetal auditory system, demonstrated by neurofilament immunohistochemistry. Anat Embryol (Berl) 195:15–30

    CAS  Google Scholar 

  • Moore JK, Simmons DD, Guan Y-L (1999) The human olivocerebellar system: organization and development. Audiol Neurootol 4:311–325

    CAS  PubMed  Google Scholar 

  • Morin X, Cremer H, Hirsch M-R, Kapur RP, Gotidis C, Brunet J-F (1997) Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18:411–423

    CAS  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1983) The first appearance of the major divisions of the human brain at stage 9. Anat Embryol (Berl) 168:419–432

    Google Scholar 

  • Müller F, O’Rahilly R (1990) The human rhombencephalon at the end of the embryonic period proper. Am J Anat 189:127–145

    PubMed  Google Scholar 

  • Müller M, Jabs N, Lorke DE, Fritzsch B, Sander M (2003) Nkx6.1 controls migration and axon pathfinding of cranial branchio-motoneurons. Development 130:5815–5826

    PubMed  Google Scholar 

  • Mustapha M, Weil D, Chardemour S, Elias S, El-Zir E, Beckmann JS et al (1999) An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness DFNB21. Hum Mol Genet 8:409–412

    CAS  PubMed  Google Scholar 

  • Nager FR (1927) Zur Histologie der Taubstummheit bei Retinitis pigmentosa. Beitr Pathol Anat 77:288–303

    Google Scholar 

  • Nager FR (1952) Histologische Ohruntersuchungen bei Kindern nach mütterlicher Rubella. Pract Otorhinolaryngol 14:337–359

    CAS  Google Scholar 

  • Nager GT, Levin LS (1980) Congenital aural atresia: embryology, pathology, classification, genetics, and surgical management. In: Paparella MM, Shumrick DA, Meyerhoff WL, Seid AB (eds) Otolaryngology, 2nd edn. Saunders, Philadelphia, pp 1303–1344

    Google Scholar 

  • Nakamura H (2001) Regionalization of the optic tectum: combinations of gene expression that define the tectum. Trends Neurosci 24:32–39

    CAS  PubMed  Google Scholar 

  • Nakamura H, Watanabe Y (2005) Isthmus organizer and regionalization of the mesencephalon and metencephalon. Int J Dev Biol 49:231–235

    CAS  PubMed  Google Scholar 

  • Nakano M, Yamada K, Fain J, Sener EC, Selleck CJ, Awad AH et al (2001) Homozygous mutations in ARIX (PHOX2A) result in congenital fibrosis of the extraocular muscles type 2. Nat Genet 29:315–320

    CAS  PubMed  Google Scholar 

  • Nara T, Goto N, Nakae Y, Okada A (1993) Morphometric development of the human auditory system: ventral cochlear nucleus. Early Hum Dev 32:93–102

    CAS  PubMed  Google Scholar 

  • Nara T, Goto N, Hamano S-I, Okada A (1996) Morphometric development of the human fetal auditory system: inferior collicular nucleus. Brain Res 18:35–39

    CAS  Google Scholar 

  • Nie L (2008) KCNQ4 mutations associated with nonsyndromic progressive sensorineural hearing loss. Curr Opin Otolaryngol Head Neck Surg 16:441–444

    PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuys R (1984) Anatomy of the auditory pathways, with emphasis on the brain stem. Adv Otorhinolaryngol 34:25–38

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1988) The human central nervous system, 3rd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Nishikori T, Hatta T, Kawauchi H, Otani H (1999) Apoptosis during inner ear development in human and mouse embryos: an analysis by computer-assisted three-dimensional reconstruction. Anat Embryol (Berl) 200:19–26

    CAS  Google Scholar 

  • Nishimura Y, Kumoi T (1992) The embryonic development of the human external auditory meatus. Preliminary report. Acta Otolaryngol 112:496–503

    CAS  PubMed  Google Scholar 

  • Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskitt KJ (1995) Congenital malformations of the brain. Pathologic, embryologic, clinical, radiologoc and genetic aspects. Oxford University Press, New York

    Google Scholar 

  • O’Rahilly R (1983) The timing and sequence of events in the development of the human eye and ear. Anat Embryol (Berl) 168:87–99

    Google Scholar 

  • O’Rahilly R, Müller F (1999) The embryonic human brain. An atlas of developmental stages, 2nd edn. Wiley-Liss, New York

    Google Scholar 

  • O’Rahilly R, Müller F (2001) Human embryology & teratology, 3rd edn. Wiley-Liss, New York

    Google Scholar 

  • Okumura A, Lee T, Shimojima K, Hisata K, Shoji H, Takanashi J et al (2009) Brainstem disconnection associated with nodular heterotopia and proatlantal arteries. Am J Med Genet A 149A:2479–2483

    PubMed  Google Scholar 

  • Oystreck DT, Engle EC, Bosley TM (2011) Recent progress in understanding congenital cranial dysinnervation disorders. J Neuroophthalmol 31:69–77

    PubMed  PubMed Central  Google Scholar 

  • Padget DH (1948) The development of the cranial arteries in the human embryo. Contrib Embryol Carnegie Inst 32:205–261

    Google Scholar 

  • Pan N, Kopecky B, Johan I, Fritzsch B (2012) Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 349:415–432

    PubMed  PubMed Central  Google Scholar 

  • Pappas DG (1983) Hearing impairments and vestibular abnormalities among children with subclinical cytomegalovirus. Ann Otol Rhinol Laryngol 92:552–557

    CAS  PubMed  Google Scholar 

  • Parisi MA, Dobyns WB (2003) Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80:36–53

    CAS  PubMed  Google Scholar 

  • Pascual-Castroviejo I, Pascual-Pascual SI (2002) Congenital vascular malformations in childhood. Semin Pediatr Neurol 9:254–273

    PubMed  Google Scholar 

  • Pasini A, Wilkinson DG (2002) Stabilizing the regionalisation of the developing vertebrate central nervous system. Bioessays 24:4270438

    Google Scholar 

  • Pasman JW (1997) Auditory evoked responses in preterm infants. University of Nijmegen, Thesis

    Google Scholar 

  • Pasqualetti M, Rijli FM (2001) Homeobox gene mutations and brain-stem developmental disorders: learning from knockout mice. Curr Opin Neurol 14:177–184

    CAS  PubMed  Google Scholar 

  • Patel M, Hu BH (2012) MicroRNAs in inner ear biology and pathogenesis. Hear Res 287:6–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet J-F (1999) The homeobox gene Phox2b is essential for development of autonomic neural crest derivatives. Nature 399:366–370

    CAS  PubMed  Google Scholar 

  • Pattyn A, Goridis C, Brunet J-F (2000a) Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci 15:235–243

    CAS  PubMed  Google Scholar 

  • Pattyn A, Hirsch M-R, Goridis C, Brunet J-F (2000b) Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127:1349–1358

    CAS  PubMed  Google Scholar 

  • Pattyn A, Vallstedt A, Dias JM, Sander M, Ericson J (2003) Complementary roles for Nkx6 and Nkx2 class proteins in the establishment of motoneuron identity in the hindbrain. Development 130:4149–4159

    CAS  PubMed  Google Scholar 

  • Pearson AA (1938) The spinal accessory nerve in human embryos. J Comp Neurol 68:243–266

    Google Scholar 

  • Pearson AA (1939) The hypoglossal nerve in human embryos. J Comp Neurol 71:21–39

    Google Scholar 

  • Pearson AA (1943) The trochlear nerve in human fetuses. J Comp Neurol 78:29–43

    Google Scholar 

  • Pearson AA (1944) The oculomotor nucleus in the human fetus. J Comp Neurol 80:47–63

    Google Scholar 

  • Pearson AA (1946) The development of the motor nuclei of the facial nerve in man. J Comp Neurol 85:461–476

    CAS  PubMed  Google Scholar 

  • Peck JE (1994) Development of hearing. Part II. Embryology. J Am Acad Audiol 5:359–365

    CAS  PubMed  Google Scholar 

  • Peck JE (1995) Development of hearing. Part III. Postnatal development. J Am Acad Audiol 6:113–123

    CAS  PubMed  Google Scholar 

  • Pedraza S, Gámez J, Rovira A, Zamora A, Grive E, Raguer N, Ruscolleda J (2000) MRI findings in Möbius syndrome: correlations with clinical features. Neurology 55:1058–1060

    CAS  PubMed  Google Scholar 

  • Pennings RJE (2004) Hereditary deaf-blindness. Clinical and genetic aspects. Thesis, University of Nijmegen

    Google Scholar 

  • Pennings RJE, Huygen PLM, Van Camp G, Cremers CWRJ (2003) A review of progressive phenotypes in nonsyndromic autosomal dominant hearing impairment. Audiol Med 1:47–55

    Google Scholar 

  • Peters LM, Anderson DW, Griffith AJ, Grundfast KM, San Agustin TB, Madeo AC et al (2002) Mutation of a transcription factor, TFCP2L3, causes progressive autosomal dominant hearing loss, DFNA28. Hum Mol Genet 11:2877–2885

    CAS  PubMed  Google Scholar 

  • Petit C, Levilliers J, Hardelin J-P (2001a) Molecular genetics of hearing loss. Annu Rev Genet 35:589–646

    CAS  PubMed  Google Scholar 

  • Petit C, Levilliers J, Marlin S, Hardelin J-P (2001b) Hereditary hearing loss. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease. McGraw-Hill, New York, pp 6281–6328

    Google Scholar 

  • Phippard D, Lu L, Lee D, Saunders JC, Crenshaw EB (1999) Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J Neurosci 19:5980–5989

    CAS  PubMed  Google Scholar 

  • Pieh C, Lengyel D, Neff A, Fretz C, Gottlob I (2002) Brain stem hypoplasia in familial congenital horizontal gaze paralysis (FCGP) and kyphoscoliosis. Neurology 59:462–463

    CAS  PubMed  Google Scholar 

  • Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Preho MO, Puliti A et al (1998) SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 18:171–173

    CAS  PubMed  Google Scholar 

  • Plantinga RF, Cremers CW, Huygen PL, Kunst HP, Bosman AJ (2007) Audiological evaluation of affected members from a Dutch DFNA8/12 (TECTA) family. J Assoc Res Otolaryngol 8:1–7

    PubMed  PubMed Central  Google Scholar 

  • Poretti A, Boltshauser E, Plecko B (2007) Brainstem disconnection: case report and review of the literature. Neuropediatrics 38:210–212

    CAS  PubMed  Google Scholar 

  • Proctor B, Nager GT (1982) The facial canal: normal anatomy, variations and anomalies. Ann Otol Rhinol Laryngol 91:33–61

    Google Scholar 

  • Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 46:319–337

    CAS  PubMed  Google Scholar 

  • Puelles L, Martínez S, Martínez de la Torre M (2008) Neuroanatomía. Edit Med Panamerícana. Buenos Aires, Madrid (in Spanish)

    Google Scholar 

  • Punal JE, Siebert MF, Angueira FB, Lorenzo AV, Castro-Gago M (2001) Three new patterns with congenital unilateral facial nerve palsy due to chromosome 22q11 deletion. J Child Neurol 16:450–452

    CAS  PubMed  Google Scholar 

  • Read AP (2001) Waardenburg syndrome. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease. McGraw-Hill, New York, pp 6097–6116

    Google Scholar 

  • Reynolds JD, Biglan AW, Hiles DA (1984) Congenital superior oblique palsy in infants. Arch Ophthalmol 102:1503–1505

    CAS  PubMed  Google Scholar 

  • Rhinn M, Brand M (2001) The midbrain-hindbrain organizer. Curr Opin Neurobiol 11:34–42

    CAS  PubMed  Google Scholar 

  • Riazuddin S, Ahmad ZM, Fanning AS, Lagziel A, Kitajiri S et al (2006) Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 79:1040–1051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson GP, de Montel JB, Petit C (2011) How the genetics of deafness illuminates auditory physiology. Annu Rev Physiol 73:311–314

    CAS  PubMed  Google Scholar 

  • Rijli FM, Gavalas A, Chambon P (1998) Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int J Dev Biol 42:393–401

    CAS  PubMed  Google Scholar 

  • Rodríguez-Ballesteros M, Reynoso R, Olarte M, Villamar M, Morera C, Santarelli R et al (2008) A multicenter study on the prevalence and spectrum of mutations in the otoferlin gene (OTOF) in subjects with nondyndromic hearing impairment and auditory neuropathy. Hum Mutat 29:823–831

    PubMed  Google Scholar 

  • Rosenberg ML (1984) Congenital trigeminal anesthesia, review and classification. Brain 107:1073–1082

    PubMed  Google Scholar 

  • Rossel M, Capecchi MR (1999) Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126:5027–5040

    CAS  PubMed  Google Scholar 

  • Rouillon I, Marcolla A, Roux I, Marlin S, Feldmann D, Couderc R et al (2006) Results of cochlear implantation in two children with mutations in the OTOF gene. Int J Pediatr Otorhinolaryngol 70:689–696

    CAS  PubMed  Google Scholar 

  • Rudnicki A, Avraham KB (2012) MicroRNAs: the art of silencing in the ear. EMBO Mol Med 4:849–859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rijbroek JM et al (2008) Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Genet 83:278–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadl VS, Sing A, Mar L, Jin F, Cordes SP (2003) Analysis of hindbrain patterning defects caused by the kreisler neu mutation reveals multiple roles of Kreisler in hindbrain segmentation. Dev Dyn 227:134–142

    CAS  PubMed  Google Scholar 

  • Safieddine S, El-Amraoui A, Petit C (2012) The auditory hair cell ribbon synapse: from assembly to function. Annu Rev Neurosci 35:509–528

    CAS  PubMed  Google Scholar 

  • Saihan Z, Webster AR, Luxon L, Bitner-Glindzicz M (2009) Update on Usher syndrome. Curr Opin Neurol 22:19–27

    PubMed  Google Scholar 

  • Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138:2401–2415

    CAS  PubMed  Google Scholar 

  • Sander M, Paydar S, Ericson J, Briscoe J, Berber E, German M, Jessell TM, Rubinstein JLR (2000) Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates. Genes Dev 14:2134–2139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sando I, Wood RF (1971) Congenital middle ear anomalies. Otolaryngol Clin North Am 4:291–318

    CAS  PubMed  Google Scholar 

  • Sarnat HB (2004) Watershed infarcts in the fetal and neonatal brainstem. An aetiology of central hypoventilation, dysphagia, Möbius syndrome and micrognathia. Eur J Paediatr Neurol 8:71–87

    PubMed  Google Scholar 

  • Sarnat HB, Benjamin DR, Siebert JR, Kletter GB, Cheyette SR (2002) Agenesis of the mesencephalon and metencephalon with cerebellar hypoplasia: putative mutation in the EN2 gene – report of two cases in early infancy. Pediatr Dev Pathol 5:54–62

    PubMed  Google Scholar 

  • Saul SM, Brzezinski JA, Altschuler RA, Shore SE, Rudolph DD, Kabara LL et al (2008) Math5 expression and function in the central auditory system. Mol Cell Neurosci 37:153–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schimmang T (2013) Transcription factors that control inner ear development and their potential for transdifferentiation and reprogramming. Hear Res 297:84–90

    CAS  PubMed  Google Scholar 

  • Schneider-Maunoury S, Seitanidou T, Charnay P, Lumsden A (1997) Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124:1215–1226

    CAS  PubMed  Google Scholar 

  • Schuknecht HF (1993) Pathology of the ear. Lea & Febiger, Philadelphia

    Google Scholar 

  • Schuknecht HF, Churchill JA, Doran R (1959) The localization of acetylcholinesterase in the cochlea. Arch Otolaryngol 69:549–559

    CAS  Google Scholar 

  • Sennaroglu L, Saatci I (2002) A new classification for cochleovestibular malformations. Laryngoscope 112:2230–2241

    PubMed  Google Scholar 

  • Sennaroglu L, Sara S, Ergin T (2006) Surgical results of cochlear implantation in malformed cochlea. Otol Neurotol 27:615–623

    PubMed  Google Scholar 

  • Sharma K, Sheng HZ, Lettier K, Li H, Karavanov A, Potter S et al (1998) LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95:817–828

    CAS  PubMed  Google Scholar 

  • Sicotte NL, Salamon G, Shattuck DW, Hageman N, Rüb U, Salamon N et al (2006) Diffusion tensor MRI shows abnormal brainstem crossing fibers associated with ROBO3 mutations. Neurology 67:519–521

    CAS  PubMed  Google Scholar 

  • Siebenmann F, Bing R (1907) Über den Labyrinth- und Hirnbefund bei einem an Retinitis pigmentosa erblindeten angeborenen Taubstummen. Z Ohrenheilkd 54:265–280

    Google Scholar 

  • Smithells R, Sheppard S, Holzel H, Jones G (1990) Congenital rubella in Great Britain 1971–1988. Health Trends 22:73–76

    Google Scholar 

  • Soldà G, Robusto M, Primignani P, Castorina P, Benzoni E, Cesarani A et al (2012) A novel mutation within the MIR96 gene causes non-syndromic hearing loss in an Italian family by altering pre-miRNA processing. Hum Mol Genet 21:577–580

    PubMed  PubMed Central  Google Scholar 

  • Song JJ, Kwon JJ, Park MK, Seo YR (2013) Microarray analysis of microgene expression alteration in human middle ear epithelial cells induced by microparticles. Int J Pediatr Otorhinolaryngol 77:1760–1764

    PubMed  Google Scholar 

  • Spritz RA, Chiang P-W, Oiso N, Alkhateeb A (2003) Human and mouse disorders of pigmentation. Curr Opin Genet Dev 13:284–289

    CAS  PubMed  Google Scholar 

  • St. Charles S, DiMario FJ Jr, Grunnet ML (1993) Möbius sequence: further in vivo support for the subclavian artery supply disruption sequence. Am J Med Genet 47:289–293

    CAS  PubMed  Google Scholar 

  • Steel KP, Barkway C (1989) Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development 107:453–463

    CAS  PubMed  Google Scholar 

  • Steel KP, Kros CJ (2001) A genetic approach to understanding auditory function. Nat Genet 27:143–149

    CAS  PubMed  Google Scholar 

  • Stennert E, Arold R (1973) Der doppelte Gehörgang. Klinische Studie einer seltenen Missbildung mit besonderer Berücksichtigung der anatomischen Beziehung zum extratemporalen Facialisverlauf. HNO 21:293–296

    CAS  PubMed  Google Scholar 

  • Stone JS, Oesterle EC, Rubel EW (1998) Recent insights into regeneration of auditory and vestibular hair cells. Curr Opin Neurol 11:17–24

    CAS  PubMed  Google Scholar 

  • Streeter GL (1904) The development of the cranial and spinal nerves in the occipital region of the human embryo. Am J Anat 4:83–116

    Google Scholar 

  • Streeter GL (1906) On the development of the membranous labyrinth and the acustic and facial nerves in the human embryo. Am J Anat 6:139–165

    Google Scholar 

  • Streeter GL (1911) Die Entwicklung des Nervensystems. In: Keibel F, Mall FP (eds) Handbuch der Entwicklungsgeschichte des Menschen. Zweiter Band, Hirzel/Leipzig, pp 1–156

    Google Scholar 

  • Streeter GL (1912) The development of the nervous system. In: Keibel F, Mall FP (eds) Manual of human embryology, vol 2. Lippincott, Philadelphia, pp 1–156

    Google Scholar 

  • Streeter GL (1918) The histogenesis and growth of the otic capsule and its contained periotic tissue-spaces in the human embryo. Contrib Embryol Carnegie Inst 7:5–54

    Google Scholar 

  • Streeter GL (1922) Development of the auricle in the human embryo. Contrib Embryol Carnegie Inst 14:111–138

    Google Scholar 

  • Studer M (2001) Initiation and growth of facial motoneurone migration is dependent on rhombomeres 5 and 6. Development 128:3707–3716

    CAS  PubMed  Google Scholar 

  • Studer M, Lumsden A, Ariza-McNaughton L, Bradley N, Krumlauf R (1996) Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384:630–634

    CAS  PubMed  Google Scholar 

  • Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, Krumlauf R (1998) Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125:1025–1036

    CAS  PubMed  Google Scholar 

  • Sulik KK, Cotanche DA (2004) Embryology of the ear. In: Toriello HV, Reardon W, Gorlin RJ (eds) Hereditary hearing loss and its syndromes, 2nd edn. Oxford University Press, Oxford, pp 17–36

    Google Scholar 

  • Taber Pierce E (1967) Histogenesis of the dorsal and ventral cochlear nuclei in the mouse. An autoradiographic study. J Comp Neurol 131:27–54

    Google Scholar 

  • Tassabehji M, Read AP, Newton VE, Harris R, Balling R, Gruss P, Strachan T (1992) Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355:635–636

    CAS  PubMed  Google Scholar 

  • Tassabehji M, Newton VE, Read AP (1994) Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet 8:251–255

    CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ, Cruysberg JRM, van der Vliet T, van Domburg P, Renier WO (2011a) The cranial nerves. In: ten Donkelaar HJ (ed) Clinical neuroanatomy: brain circuitry and its disorders. Springer, Berlin/Heidelberg/New York, pp 249–303

    Google Scholar 

  • ten Donkelaar HJ, Němcova V, Lammens M, Overeem S, Keyser A (2011b) The autonomic nervous system. In: ten Donkelaar HJ (ed) Clinical neuroanatomy: brain circuitry and its disorders. Springer, Berlin/Heidelberg/New York, pp 565–602

    Google Scholar 

  • Teunissen E (1992) Major and minor congenital anomalies of the ear. Classification and surgical results. Thesis, University of Nijmegen

    Google Scholar 

  • Tewfik TL, Der Kaloustian VM (eds) (1997) Congenital anomalies of the ear, nose, and throat. Oxford University Press, New York

    Google Scholar 

  • Thakkar N, O’Neil W, Duvally J, Liu C, Ambler M (1977) Möbius syndrome due to brain stem tegmental necrosis. Arch Neurol 34:124–126

    CAS  PubMed  Google Scholar 

  • Thompson H, Tucker AS (2013) Dual origin of the epithelium of the mammalian middle ear. Science 339:1453–1456

    CAS  PubMed  Google Scholar 

  • Thompson H, Ohazama A, Sharpe PT, Tucker AS (2012) The origin of the stapes and relationship to the otic capsule and oval window. Dev Dyn 241:1396–1404

    PubMed  Google Scholar 

  • Tischfield MA, Bosley TM, Salih MA, Alorainy IA, Sener EC, Nester MJ et al (2005) Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet 37:1035–1037

    CAS  PubMed  Google Scholar 

  • Tischfield MA, Baris HN, Wu C, Rudolph G, Van Maldergem L, He W et al (2010) Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140:74–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toriello HV, Reardon W, Gorlin RJ (eds) (2004) Hereditary hearing loss and its syndromes, 2nd edn. Oxford University Press, Oxford/New York

    Google Scholar 

  • Tos M (2000) Surgical solutions for conductive hearing loss. Thieme, Stuttgart

    Google Scholar 

  • Towfighi J, Marcks K, Palmer E, Vannucci R (1979) Möbius syndrome. Neuropathologic observations. Acta Neuropathol (Berl) 48:11–17

    CAS  Google Scholar 

  • Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: Hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 1:116–124

    CAS  PubMed  Google Scholar 

  • Tranebjaerg L, Samson RA, Greene GE (2012) Jervell and Lange-Nielsen syndrome. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP (eds) Gene reviews (Internet). University of Washington, Seattle

    Google Scholar 

  • Tsuchida T, Ensini M, Morton SB, Baldassare M, Edlund T, Jessell TM, Pfaff SL (1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79:957–970

    CAS  PubMed  Google Scholar 

  • Urbanek P, Wang ZQ, Fetka L, Wagner EF, Busslinger M (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79:901–912

    CAS  PubMed  Google Scholar 

  • Usher CH (1914) On the inheritance of retinitis pigmentosa, with notes of a case. Roy Lond Ophthalmol Hosp Rep 19:130–236

    Google Scholar 

  • Usuma S, Abe S, Weston MD, Shinkawa H, Van Camp G, Kimberling WJ (1999) Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum Genet 104:188–192

    Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). Ergebn Anat Entw Gesch 41:1–88

    Google Scholar 

  • Vahava O, Morell R, Lynch ED, Weiss S, Kagan ME, Ahituv N et al (1998) Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 279:1950–1954

    CAS  PubMed  Google Scholar 

  • van Aarem A, Cremers CWRJ, Benraad-van Rens MJL (1995) The Usher syndrome: a temporal bone report. Arch Otolaryngol Head Neck Surg 121:916–921

    PubMed  Google Scholar 

  • Van De Water TR, Noden DM, Maderson PFA (1988) Embryology of the ear: outer, middle and inner. Otol Med Surg 1:3–27

    Google Scholar 

  • van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ, Sadikot AF, Drouin J (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130:2535–2542

    PubMed  Google Scholar 

  • Van Laer L, Van Eijken E, Fransen E, Huyghe JR, Topsakal V, Hendrickx JJ et al (2008) The grainyhead like 2 gene (GRHL2), alias TFCP2L3, is associated with age-related hearing impairment. Hum Mol Genet 17:159–169

    PubMed  Google Scholar 

  • van Wijk E, Krieger E, Kemperman MH, De Leenheer EM, Huygen PL, Cremers CW et al (2003) A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26). J Med Genet 40:879–884

    PubMed  PubMed Central  Google Scholar 

  • Varela-Echeverria A, Pfaff SL, Guthrie S (1996) Differential expression of LIM homeobox genes among motor neuron populations in the developing chick brain stem. Mol Cell Neurosci 8:242–257

    Google Scholar 

  • Verhoeven K, Van Laer L, Kirschhofer K, Legan PK, Hughes DC, Schatteman I et al (1998) Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat Genet 19:60–62

    CAS  PubMed  Google Scholar 

  • Verzijl HTFM, van den Helm B, Veldman B, Hamel BCJ, Kuyt LP, Padberg GW, Kremer H (1999) A second gene for autosomal dominant Möbius syndrome is localized to chromosome 10q in a Dutch family. Am J Hum Genet 65:752–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verzijl HTFM, van der Zwaag B, Cruysberg JRM, Padberg GW (2003) Möbius syndrome redefined. A syndrome of rhombencephalic maldevelopment. Neurology 61:327–333

    PubMed  Google Scholar 

  • Verzijl HTFM, van der Zwaag B, Lammens M, ten Donkelaar HJ, Padberg GW (2005) The neuropathology of hereditary congenital facial palsy versus Möbius syndrome. Neurology 64:649–653

    CAS  PubMed  Google Scholar 

  • Victor DI (1976) The diagnosis of congenital third-nerve palsy. Brain 99:711–718

    CAS  PubMed  Google Scholar 

  • Vieille-Grosjean I, Hunt P, Gulisano M, Boncinelli E, Thorogood P (1997) Branchial HOX gene expression and human craniofacial development. Dev Biol 183:49–60

    CAS  PubMed  Google Scholar 

  • Vikkula M, Mariman EC, Lui VC, Zhidhova NI, Tiller GE, Goldring MB et al (1995) Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell 80:431–437

    CAS  PubMed  Google Scholar 

  • Vlastarakos PV, Nikolopoulos TP, Tavoulari E, Papacharalambous G, Korres S (2008) Auditory neuropathy: endocochlear lesion or temporal processing impairment? Implications for diagnosis and management. Int J Pediatr Otorhinolaryngol 72:1135–1150

    PubMed  Google Scholar 

  • Vollrath MA, Kwan KY, Corey DP (2007) The micromachinery of mechanotransduction in hair cells. Annu Rev Neurosci 30:339–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Graefe A (1858) Vereinzelte Beobachtungen exceptionelles Verhalten des Gesichtsfeldes bei Pigmententartung der Netzhaut. Albrecht von Graefe’s Arch Klin Ophthalmol 4:250–253

    Google Scholar 

  • von Graefe A (1880) In: von Graefe A, Saemisch T (eds) Handbuch der gesamten Augenheilkunde, vol 6. Engelmann, Leipzig, p 60

    Google Scholar 

  • Von Noorden GK, Murray E, Wong SY (1986) Superior oblique paralysis: a review of 270 cases. Arch Ophthalmol 104:1771–1776

    Google Scholar 

  • Waardenburg PJ (1951) A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am J Hum Genet 3:195–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagenaar M, Draaijer P, Meek H, ten Donkelaar HJ, Wesseling P, Kimberling W, Cremers C (1999) The cochlear nuclei in two patients with Usher syndrome type I. Int J Pediatr Otorhinolaryngol 50:185–195

    CAS  PubMed  Google Scholar 

  • Wagenaar M, Schuknecht H, Nadol J Jr, Benraad-van Rens MJL, Kimberling WJ, Cremers CWRJ (2000) Histopathology of the temporal bone in Usher syndrome type I. Arch Otolaryngol Head Neck Surg 126:1018–1023

    CAS  PubMed  Google Scholar 

  • Walsh T, Pierce SB, Lenz DR, Brownstein Z, Dagan-Rosenfeld O, Shahin H et al (2010) Genomic duplication and overexpression of TJP2/ZO-2 leads to altered expression of apoptosis genes in progressive nonsyndromic hearing loss DFNA51. Am J Hum Genet 87:101–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan G, Corfas G, Stone JS (2013) Inner ear supporting cells: rethinking the silent majority. Semin Cell Dev Biol 24(5):448–459, Epub S1084-9521

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Zwaan J, Mullaney P, Jabok MH, Al-Awad A, Beggs AH, Engle EC (1998) Congenital fibrosis of the extraocular muscles type 2 (CFEOM2), an inherited exotropic strabismus fixus, maps to distal 11q13. Am J Hum Genet 63:517–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wangemann P (2002) K+ cycling and its regulation in the cochlea and the vestibular labyrinth. Audiol Neurootol 7:199–205

    CAS  PubMed  Google Scholar 

  • Wassef M, Joyner AL (1997) Early mesencephalon/metencephalon patterning and development of the cerebellum. Perspect Dev Neurobiol 5:3–16

    CAS  PubMed  Google Scholar 

  • Watson C (2012) Hindbrain. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 398–423

    Google Scholar 

  • Wayne S, Robertson NG, De Clau F, Chen N, Verhoeven K, Prased S et al (2001) Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 10:195–200

    CAS  PubMed  Google Scholar 

  • Weerda H (2004) Verletzungen, Defekte und Anomalien. In: Weerda H (ed) Chirurgie der Ohrmuschel. Thieme, Stuttgart, pp 105–226, 253–256

    Google Scholar 

  • Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E et al (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311

    CAS  PubMed  Google Scholar 

  • Wilcox ER, Burton QL, Naiz S, Riazuddin S, Smith TN, Ploplis B et al (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104:165–172

    CAS  PubMed  Google Scholar 

  • Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R (1989) Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 341:405–409

    CAS  PubMed  Google Scholar 

  • Willard FH, Martin GF (1986) The development and migration of large multipolar neurons into the cochlear nucleus of the North American opossum. J Comp Neurol 248:119–132

    CAS  PubMed  Google Scholar 

  • Willinger M, James LS, Catz C (1991) Defining the sudden infant death syndrome (SIDS): Deliberations of an expert panel convened by the National Institute of Child Health and Human Development. Pediatr Pathol 11:677–684

    CAS  PubMed  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    CAS  PubMed  Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075

    CAS  PubMed  Google Scholar 

  • Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117

    CAS  PubMed  Google Scholar 

  • Yamada K, Andrews C, Chan WM et al (2003) Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nat Genet 35:318–321

    CAS  PubMed  Google Scholar 

  • Yasunaga S, Grati M, Cohen-Salmon M, El-Amraoui A, Mustapha M, Salem N et al (1999) A mutation in OTOF, encoding otoferlin, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 21:363–369

    CAS  PubMed  Google Scholar 

  • Zaki MC, Saleem SN, Dobyns WB, Barkovich AJ, Bartsch H, Dale AM et al (2012) Diencephalic-mesencephalic junction dysplasia: a novel recessive brain malformation. Brain 135:2416–2427

    PubMed  PubMed Central  Google Scholar 

  • Zec N, Filiano JJ, Kinney HC (1997) Anatomic relationships of the human arcuate nucleus of the medulla: a DiI-labeling study. J Neuropathol Exp Neurol 56:509–522

    CAS  PubMed  Google Scholar 

  • Zhao HB, Kikuchi T, Ngezahayo A, White TW (2006) Gap junctions and cochlear homeostasis. J Membr Biol 209:177–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Yang T, Wei S, DeWan AT, Morell RJ, Elfenbein JL et al (2003) Mutations in the gamma-actin gene (ACTG1) are associated with dominant progressive deafness (DFNA20/26). Am J Hum Genet 73:1082–1091

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar M.D., Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J., Cruysberg, J.R.M., Pennings, R., Lammens, M. (2014). Development and Developmental Disorders of the Brain Stem. In: Clinical Neuroembryology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54687-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54687-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54686-0

  • Online ISBN: 978-3-642-54687-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics