Skip to main content

Development and Developmental Disorders of the Cerebral Cortex

  • Chapter
  • First Online:
Book cover Clinical Neuroembryology

Abstract

The cerebral cortex can be divided into a large isocortex, a much smaller allocortex (the hippocampal formation and the olfactory cortex) and a transition zone (the mesocortex) in between. Although many individual variations exist in the sulcal pattern and in the extent of the various cortical areas, the remarkable conservation of the pattern of areal divisions within the human brain suggests the existence of a highly conserved and rather rigidly regulated regional specification programme that controls their development. Histogenesis of the cerebral cortex progresses through three major phases: cell production, cell migration, and cortical differentiation and maturation. Migrating cells from the ventricular zone to the cortical plate form ontogenetic radial cell columns. Recently, an important role in neurogenesis for the outer part of the subventricular zone became evident.

During the last decades, analysis of the genetic control of cortical development became possible. Mechanisms for induction and regionalization of the cerebral cortex are being unravelled and genes that are implicated in controlling regionalization, arealization and differentiation have been discovered in the mouse brain. This neurogenetic approach has given a great impetus to the study of neuronal migration disorders (NMDs). Advances in neurogenetics and the increasing application of MRI resulted in the distinction of a growing number of NMDs, of many of which the gene involved has been discovered. In this chapter, after a brief overview of the cerebral cortex (Sect. 10.2) and its main connections (Sect. 10.3), the development of the neocortex (Sect. 10.4), the hippocampus (Sect. 10.5) and their main fibre systems (Sect. 10.6) are discussed, followed by an overview of developmental disorders of the cerebral cortex. Malformations of cortical development (MCDs) include malformations due to abnormal cell production (Sect. 10.7.1), abnormal migration (Sect. 10.7.2), abnormal cortical organization (Sect. 10.7.3) and vascular disorders (Sect. 10.7.5). Many of these result in epilepsy (Sect. 10.7.4) and/or intellectual disability (Sect. 10.7.7). Finally, in Sect. 10.7.8 some neurobehavioural disorders are briefly reviwed. Throughout the chapter Clinical cases are presented illustrated with MRI and autopsy data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham H, Pérez-García CG, Meyer G (2004) p73 and Reelin in Cajal-Retzius cells of the developing human hippocampal formation. Cereb Cortex 14:484–495

    PubMed  Google Scholar 

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abrahams BS, Tentler D, Perederiy JV, Oldham MC, Coppola G, Geschwind DH (2007) Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc Natl Acad Sci U S A 104:17849–17854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abu-Khalil A, Fu L, Grove EA, Zecevic N, Geschwind DH (2004) Wnt genes define distinct boundaries in the developing human brain: implications for human forebrain patterning. J Comp Neurol 474:276–288

    CAS  PubMed  Google Scholar 

  • Adachi Y, Poduri A, Kawaguch A, Yoon G, Salih MA, Yamashita F et al (2011) Congenital microcephaly with a simplified gyral pattern: associated findings and their significance. AJNR Am J Neuroradiol 32:1123–1129

    CAS  PubMed  Google Scholar 

  • Aeby A, Liu Y, De Tiège X, Denolin V, David P, Balériaux D et al (2009) Maturation of thalamic radiations between 34 and 41 weeks’ gestation: a combined voxel-based study and probabilistic tractography with diffusion tensor imaging. AJNR Am J Neuroradiol 30:1780–1786

    CAS  PubMed  Google Scholar 

  • Aicardi J (1996) Aicardi syndrome. In: Guerrini R, Andermann F, Canapicchi R, Roger J, Zifkin BG, Pfanner P (eds) Dysplasias of cerebral cortex and epilepsy. Lippincott-Raven, Philadelphia, pp 211–216

    Google Scholar 

  • Aicardi J (1998) Diseases of the nervous system in childhood, 2nd edn. Mac Keith, London

    Google Scholar 

  • Aicardi J, Lefebvre J, Lerique-Koechlin A (1965) A new syndrome: spasms in flexion, callosal agenesis, ocular abnormalities. Electroencephalogr Clin Neurophysiol 19:609–610

    Google Scholar 

  • Aicardi J, Chevrie JJ, Rousselie F (1969) Le syndrome spasmes en flexion, agénésie calleuse, anomalies choriorétiniennes. Arch Franc Pédiatr 26:1103–1120

    CAS  Google Scholar 

  • Aicardi J, Chevrie J-J, Baraton J (1987) Agenesis of the corpus callosum. Handb Clin Neurol 50:149–173

    Google Scholar 

  • Alcantara S, Ferrer I, Soriano E (1988) Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl) 188:63–73

    Google Scholar 

  • Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: its role in the development of connections between the thalamus and the cortex. Annu Rev Neurosci 17:185–218

    CAS  PubMed  Google Scholar 

  • Amaral DG (1987) Memory: anatomical organization of candidate brain regions. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, vol V, Higher functions of the nervous system. American Physiological Society, Bethesda, MD, pp 211–294

    Google Scholar 

  • Amaral DG, Insausti R (1990) Hippocampal formation. In: Paxinos G (ed) The human nervous system. Academic, San Diego, CA, pp 711–755

    Google Scholar 

  • Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: functional neuroanatomical organization. Prog Brain Res 163:3–22

    PubMed  PubMed Central  Google Scholar 

  • Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145

    CAS  PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    CAS  PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Schultz R, Malicki DM, Tran CQ, Dahle EJ et al (2000) Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol 47:670–679

    CAS  PubMed  Google Scholar 

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s Region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341

    CAS  PubMed  Google Scholar 

  • Anderson SA, Mione M, Yun K, Rubinstein JLR (1999) Differential origins of neocortical projection and local circuit neurons: Role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex 9:646–654

    CAS  PubMed  Google Scholar 

  • Anderson SA, Marín O, Horn C, Jennings K, Rubinstein JLR (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128:353–363

    CAS  PubMed  Google Scholar 

  • Andres C (2002) Molecular genetics and animal models in autistic disorder. Brain Res Bull 57:109–119

    CAS  PubMed  Google Scholar 

  • Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S et al (2006) Robo1 regulates the development of major axontracts and interneuron migration in the forebrain. Development 133:2243–2252

    CAS  PubMed  Google Scholar 

  • Ang ES Jr, Haydar TF, Gluncic V, Rakic P (2003) Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J Neurosci 23:5805–5815

    CAS  PubMed  Google Scholar 

  • Angevine JB Jr (1965) Time of neuron origin in the hippocampal region. Exp Neurol 2(Suppl):1–70

    Google Scholar 

  • Angevine JB Jr, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    PubMed  Google Scholar 

  • Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A (2008) FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet 83:89–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armand J (1982) The origin, course and termination of corticospinal fibers in various mammals. Prog Brain Res 57:329–360

    CAS  PubMed  Google Scholar 

  • Armstrong DD (1992) The neuropathology of the Rett syndrome. Brain Dev 14(Suppl):S89–S98

    PubMed  Google Scholar 

  • Armstrong DD (2001) Rett syndrome neuropathology review 2000. Brain Dev 23(Suppl 1):S72–S76

    PubMed  Google Scholar 

  • Armstrong DD, Dunn JK, Antalffy B, Trivedi R (1995a) Selective dendritic alterations in the cortex of Rett syndrome. J Neuropathol Exp Neurol 54:195–201

    CAS  PubMed  Google Scholar 

  • Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K (1995b) The ontogeny of human gyrification. Cereb Cortex 1:56–63

    Google Scholar 

  • Armstrong DD, Dunn JK, Schultz RJ, Herbert DA, Glaze DG, Motil KJ (1999) Organ growth in Rett syndrome: a postmortem examination analysis. Pediatr Neurol 20:125–129

    CAS  PubMed  Google Scholar 

  • Armstrong DD, Deguchi K, Antalffy B (2003) Survey of MeCP2 in the Rett syndrome and the non-Rett syndrome brain. J Child Neurol 18:683–687

    PubMed  Google Scholar 

  • Arnold SE, Trojanowski JQ (1996a) Human fetal hippocampal development. I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol 367:274–292

    CAS  PubMed  Google Scholar 

  • Arnold SE, Trojanowski JQ (1996b) Human fetal hippocampal development. II. The neuronal cytoskeleton. J Comp Neurol 367:293–30

    CAS  PubMed  Google Scholar 

  • Aronica E, Toering ST, Boer K, de Groot M, Troost D, Heimans JJ et al (2009) Expression patterns of synaptic vesicle protein 2A in focal cortical dysplasia and TSC-cortical tubers. Epilepsia 50:1409–1418

    PubMed  Google Scholar 

  • Aronica E, Becker AJ, Spreafico R (2012) Malformations of cortical development. Brain Pathol 22:380–401

    PubMed  Google Scholar 

  • Bagri A, Marín O, Plump AS, Mak Y, Pleasure SJ, Rubinstein JLR, Tessier-Lavigne M (2002) Slit proteins pevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33:233–248

    CAS  PubMed  Google Scholar 

  • Bahi-Buisson N, Souville I, Fourniol FJ, Toussaint A, Moores CA, Houdusse A et al (2013) New insights into genotype-phenotype correlations for the doublecortin-related lissencephaly spectrum. Brain 136:223–244

    PubMed  PubMed Central  Google Scholar 

  • Bailey P, van Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana, IL

    Google Scholar 

  • Baker K, Northam GB, Chong WK, Banks T, Beales P, Baldeweg T (2010) Neocortical and hippocampal volume loss in a human ciliopathy: a quantitative MRI study in bardet-biedl syndrome. Am J Med Genet A 155:1–8

    Google Scholar 

  • Bar I, Lambert de Rouvroit C, Royaux I, Kritzman DB, Dernoncourt C, Ruelle D et al (1995) A YAC contig containing the reeler locus with preliminary characterization of candidate gene fragments. Genomics 26:543–549

    CAS  PubMed  Google Scholar 

  • Bardoni B, Mandel J-L (2002) Advances in understanding of fragile X pathogenesis and FMRP function, and in identification of X-linked mental retardation genes. Curr Opin Genet Dev 12:284–293

    CAS  PubMed  Google Scholar 

  • Barkovich AJ (1990) Apparent atypical callosal dysgenesis: analysis of MR findings in six cases and their relationship to holoprosencephaly. AJNR Am J Neuroradiol 11:333–340

    CAS  PubMed  Google Scholar 

  • Barkovich AJ (1998) Neuroimaging manifestations and classification of congenital muscular dystrophies. AJNR Am J Neuroradiol 19:1389–1396

    CAS  PubMed  Google Scholar 

  • Barkovich AJ (2000) Pediatric neuroimaging, 3rd edn. Lippincott, Philadelphia, PA

    Google Scholar 

  • Barkovich AJ (2003) Anomalies of the corpus callosum and cortical malformations. In: Barth PG (ed) Disorders of neuronal migration. Mac Keith, London, pp 83–103

    Google Scholar 

  • Barkovich AJ (2010) Current concepts of polymicrogyria. Neuroradiology 52:479–487

    PubMed  PubMed Central  Google Scholar 

  • Barkovich AJ, Kjos BO (1992a) Gray matter heterotopias: MR characteristics and correlation with developmental and neurologic manifestations. Radiology 182:493–499

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Kjos BO (1992b) Schizencephaly: correlation of clinical findings with MR characteristics. AJNR Am J Neuroradiol 13:85–94

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Kuzniecky RI (2000) Gray matter heterotopia. Neurology 55:1603–1608

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Koch TK, Carroll CL (1991) The spectrum of lissencephaly: report of ten cases analyzed by magnetic resonance imaging. Ann Neurol 30:139–146

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Gressens P, Evrard P (1992a) Formation, maturation, and disorders of brain neocortex. AJNR Am J Neuroradiol 13:423–446

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Lyon G, Evrard P (1992b) Formation, maturation, and disorders of white matter. AJNR Am J Neuroradiol 13:447–461

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Rowley H, Boller A (1995) Correlation of prenatal events with the development of polymicrogyria. AJNR Am J Neuroradiol 16:822–827

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Ferreiro DM, Barr RM, Gressens P, Dobyns WB, Truwit CL, Evrard P (1998) Microlissencephaly: a heterogeneous malformation of cortical development. Neuropediatrics 29:113–119

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Hevner R, Guerrini R (1999) Syndromes of bilateral symmetrical polymicrogyria. AJNR Am J Neuroradiol 20:1814–1821

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2001) Classification system for malformations of cortical development. Update 2001. Neurology 57:2168–2178

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135:1348–1369

    PubMed  PubMed Central  Google Scholar 

  • Barth PG (1987) Disorders of neuronal migration. Can J Neurol Sci 14:1–16

    CAS  PubMed  Google Scholar 

  • Battaglia G, Arcelli P, Granata T, Selvaggio M, Andermann F, Dubeau F et al (1996) Neuronal migration disorders and epilepsy: a morphological analysis of three surgically treated patients. Epilepsy Res 26:49–58

    CAS  PubMed  Google Scholar 

  • Bauman ML (1991) Microscopic neuroanatomic abnormalities in autism. Pediatrics 87:791–796

    CAS  PubMed  Google Scholar 

  • Bauman ML, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874

    CAS  PubMed  Google Scholar 

  • Bauman ML, Kemper TL, Arin DM (1995) Pervasive neuroanatomic abnormalities of the brain in three cases of Rett’s syndrome. Neurology 45:1581–1586

    CAS  PubMed  Google Scholar 

  • Bauman ML, Filipek PA, Kemper TL (1997) Early infantile autism. Int Rev Neurobiol 41:367–386

    CAS  PubMed  Google Scholar 

  • Bayatti N, Moss JA, Sun L, Ambrose P, Ward JF, Lindsey S, Clowry GJ (2008) A molecular neuroanatomical study of the developing human neocortex from to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex 18:1536–1548

    PubMed  PubMed Central  Google Scholar 

  • Bayer SA (1980a) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190:87–114

    CAS  PubMed  Google Scholar 

  • Bayer SA (1980b) Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol 190:115–134

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1990) Development of layer I and subplate in the rat neocortex. Exp Neurol 107:48–62

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development. Raven, New York

    Google Scholar 

  • Belgard TG, Marques AC, Oliver PL, Abacu HO, Sirey TM, Hoerder-Suabedissen A et al (2011) A transcriptome atlas of mouse neocortical layers. Neuron 71:605–616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belichenko PV, Oldfors A, Hagberg B, Dahlström A (1994) Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents. Neuroreport 5:1509–1513

    CAS  PubMed  Google Scholar 

  • Belichenko PV, Wright EE, Belichenko NP, Masliah E, Li HH, Mobley WC, Francke U (2009) Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol 514:240–258

    CAS  PubMed  Google Scholar 

  • Bellugi U, Lichtenberger L, Mills D, Galaburda A, Korenberg JR (1999) Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends Neurosci 22:197–209

    CAS  PubMed  Google Scholar 

  • Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A, Celli J, van Beusekom E, van der Zwaag B et al (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 71:1033–1043

    PubMed  PubMed Central  Google Scholar 

  • Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24:353–360

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    CAS  PubMed  Google Scholar 

  • Benavides-Piccione R, Ballesteros-Yáñez I, Martínez de Lagrán M, Elston G, Estivill X, Fillat C et al (2004) On dendrites in Down syndrome and DS murine models: a spiny way to learn. Prog Neurobiol 74:111–126

    CAS  PubMed  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    CAS  PubMed  Google Scholar 

  • Benes FM, Taylor JB, Cunningham MC (2000) Convergence and plasticity of monoaminergic systems in the medial prefrontal cortex during the postnatal period: implications for the development of psychopathology. Cereb Cortex 10:1014–1027

    CAS  PubMed  Google Scholar 

  • Berger B, Alvarez C (1996) Neurochemical development of the hippocampal region in the fetal rhesus monkey. III. Calbindin D28k, calretinin and parvalbumin with special mention of Cajal-Retzius cells and the retrosplenial cortex. J Comp Neurol 366:674–699

    CAS  PubMed  Google Scholar 

  • Berger B, Alvarez C, Goldman-Rakic P (1993) Ibid. Early appearance of peptides, calcium-binding proteins, DARPP-32, and the monoamine innervation in the entorhinal cortex during the first half of gestation (E47 to E90). Hippocampus 3:279–305

    CAS  PubMed  Google Scholar 

  • Bernard A, Lubbers LS, Taris KQ, Luo R, Podtelezhnikov AA, Finney EM et al (2012) Transcriptional architecture of the primate neocortex. Neuron 73:1083–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat (Lond) 99:691–709

    CAS  Google Scholar 

  • Billette de Villemeur T, Chiron C, Robain O (1992) Unlayered polymicrogyria and agenesis of the corpus callosum: a relevant association? Acta Neuropathol (Berl) 83:265–270

    CAS  Google Scholar 

  • Blaschke AJ, Staley K, Chun J (1996) Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122:1165–1174

    CAS  PubMed  Google Scholar 

  • Blaschke AJ, Weiner JA, Chun J (1998) Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol 396:39–50

    CAS  PubMed  Google Scholar 

  • Blümcke I, Spreafico R (2011) An international consensus classification for focal cortical dysplasias. Lancet Neurol 10:26–27

    PubMed  Google Scholar 

  • Blümcke I, Zuschratter W, Schewe J-C, Suter B, Lie AA, Riederer BM et al (1999) Cellular pathology of hilar neurons in Ammon’s horn sclerosis. J Comp Neurol 414:437–453

    PubMed  Google Scholar 

  • Blümcke I, Thom M, Wiestler OD (2002) Ammon’s Horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12:199–211

    PubMed  Google Scholar 

  • Blümcke I, Vinters HV, Armstrong D, Aronica E, Thom M, Spreafico R (2009) Malformations of cortical development and epilepsies: neuropathological findings with emphasis on focal cortical dysplasia. Epileptic Disord 11:181–193

    PubMed  Google Scholar 

  • Blümcke I, Pieper T, Pauli E, Hildebrandt M, Kudernatsch M, Winkler P et al (2010) A distinct variant of focal cortical dysplasia type I characterized by magnetic resonance imaging and neuropathological examination in children with severe epilepsies. Epileptic Disord 12:172–180

    PubMed  Google Scholar 

  • Blümcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A et al (2011) The clinicopathologic spectrum of cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 52:158–174

    PubMed  PubMed Central  Google Scholar 

  • Bodensteiner JB, Schaefer GB, Craft JM (1998) Cavum septum pellucidi and cavum Vergae in normal and developmentally delayed populations. J Child Neurol 13:120–121

    CAS  PubMed  Google Scholar 

  • Boer K, Troost D, Spliet WG, Redeker S, Crino PB, Aronica E (2007) A neuropathological study of two autopsy cases of syndromic hemimegalencephaly. Neuropathol Appl Neurobiol 33:455–470

    CAS  PubMed  Google Scholar 

  • Boer K, Troost D, Jansen F, Nellist M, van den Ouweland AM, Geurts JJ et al (2008) Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology 28:577–590

    PubMed  Google Scholar 

  • Boer K, Crino PB, Gorter JA, Nellist M, Jansen FE, Spliet WG et al (2010) Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol 20:704–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bogerts B, Meertz E, Schönfeld-Bausch R (1985) Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 42:784–791

    CAS  PubMed  Google Scholar 

  • Bogerts B, Falkai P, Greve B, Schneider T, Pfeiffer U (1993) The neuropathology of schizophrenia: past and present. J Hirnforsch 34:193–205

    CAS  PubMed  Google Scholar 

  • Bourneville DM (1880) Contributions à l’étude de l’idiotie. III. Sclérose tubéreuse des circonvolutions cérébrales. Arch Int Neurol 1:81–91

    Google Scholar 

  • Braak H (1976) A primitive gigantopyramidal field buried in the depth of the cingulate sulcus of the human brain. Brain Res 109:219–233

    CAS  PubMed  Google Scholar 

  • Braak H (1979) Pigment architecture of the human telencephalic cortex. V. Regio anterogenualis. Cell Tissue Res 204:441–451

    CAS  PubMed  Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Braak H, Braak E (1992) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15:6–31

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E, Yilmazer D, Bohl J (1996) Functional anatomy of human hippocampal formation and related structures. J Child Neurol 11:265–275

    CAS  PubMed  Google Scholar 

  • Brambati SM, Termine C, Ruffino M, Stella G, Fazio F, Cappa S, Perani D (2004) Regional reductions of gray matter volume in familial dyslexia. Neurology 63:742–745

    CAS  PubMed  Google Scholar 

  • Brambilla P, Hardan A, Ucelli di Nemi S, Perez J, Soares JC, Barale F (2003) Brain anatomy and development in autism: review of structural MRI studies. Brain Res Bull 61:557–569

    PubMed  Google Scholar 

  • Brauer J, Friederici AD (2007) Functional neural networks of semantic and syntactic processes in the developing brain. J Cogn Neurosci 19:1609–1623

    PubMed  Google Scholar 

  • Brauer J, Neumann J, Friederici AD (2008) Temporal dynamics of perisylvian activation during language processing in children and adults. Neuroimage 41:1484–1492

    PubMed  PubMed Central  Google Scholar 

  • Brauer J, Anwander A, Friederici AD (2011) Neuroanatomical prerequisites for language functions in the maturing brain. Cereb Cortex 21:459–466

    PubMed  Google Scholar 

  • Brazel CY, Romanenko MJ, Rothstein RP, Levison SW (2003) Roles of the mammalian subventricular zone in brain development. Prog Neurobiol 69:49–69

    PubMed  Google Scholar 

  • Brinks H, Conrad S, Vogt J, Oldekamp J, Sierra A, Deitinghoff L et al (2004) The repulsive guidance molecule RGMa is involved in the formation of afferent connections in the dentate gyrus. J Neurosci 24:3862–3869

    CAS  PubMed  Google Scholar 

  • Broca P (1878) Anatomie comparée des circonvolutions cérébrales. Le grand lobe limbique et la scissure limbique dans la série des mammifères. Rev Antropol 1:385–498

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig; English translation by LJ Garey (1999) Brodmann’s ‘Localisation in the Cerebral Cortex’. Imperial College Press, London

    Google Scholar 

  • Brown WT (2002) The molecular biology of the fragile X mutation. In: Hagerman RJ, Hagerman PJ (eds) Fragile X syndrome: diagnosis, treatment and research, 3rd edn. Johns Hopkins University Press, Baltimore, MD, pp 110–135

    Google Scholar 

  • Brun A (1965) The subpial granular layer of the foetal cerebral cortex in man. Its ontogeny and significance in congenital cortical malformations Acta Pathol Microbiol Scand 179(Suppl):1–98

    Google Scholar 

  • Brunner HG, Nelen MR, Breakefield XO, Ropers H-H, van Oost BA (1993a) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase a. Science 262:578–586

    CAS  PubMed  Google Scholar 

  • Brunner HG, Nelen MR, van Zandvoort P, Abeling NG, van Gennip AH, Wolters EC et al (1993b) X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet 52:1032–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruyn GW (1977) Agenesis septi pellucidi, cavum septi pellucidi, and cavum Vergae, and cavum veli interpositi. Handb Clin Neurol 30:299–336

    Google Scholar 

  • Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29:1092–1105

    PubMed  Google Scholar 

  • Bürgel U, Mädler B, Honey CR, Thron A, Gilsbach J, Coenen V (2009) Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cent Eur Neurosurg 70:27–35

    PubMed  Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935–951

    PubMed  Google Scholar 

  • Bystron I, Rakic P, Molnár Z, Blakemore C (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9:880–886

    CAS  PubMed  Google Scholar 

  • Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122

    CAS  PubMed  Google Scholar 

  • Cabrero-Socorro A, Hernandez-Acosta NC, Gonzalez-Gomez MG (2007) Comparative aspects of p73 and reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human. Brain Res 1132:59–70

    Google Scholar 

  • Cameron HE, McKay RDG (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    CAS  PubMed  Google Scholar 

  • Cannon M, Jones PB, Murray RM (2002) Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 159:1080–1092

    PubMed  Google Scholar 

  • Cao QL, Yan XX, Luo XG, Garey LJ (1996) Prenatal development of parvalbumin immunoreactivity in the human striate cortex. Cereb Cortex 6:620–630

    CAS  PubMed  Google Scholar 

  • Casanova MF (1997) Functional and anatomical aspects of prefrontal pathology and schizophrenia. Schizophr Bull 23:517–519

    CAS  PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy EL (2002a) Minicolumnar pathology in autism. Neurology 58:428–432

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Cohen M, Switala AE, Roy EL (2002b) Minicolumnar pathology in dyslexia. Ann Neurol 52:108–110

    PubMed  Google Scholar 

  • Casanova MF, van Kooten IAJ, Switala AE, van Engeland H, Heinsen H, Steinbusch HWM et al (2006) Minicolumnar abnormalities in autism. Acta Neuropathol (Berl) 112:287–303

    Google Scholar 

  • Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S et al (1995) Agressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    CAS  PubMed  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2008) A diffusion tensor tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    PubMed  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2012) Atlas of human brain connections. Oxford University Press, Oxford

    Google Scholar 

  • Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    PubMed  Google Scholar 

  • Caviness VS Jr (1973) Time of neuron origin in the hippocampus and dentate gyrus of normal and reeler mutant mice: an autoradiographic analysis. J Comp Neurol 151:113–120

    PubMed  Google Scholar 

  • Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Dev Brain Res 4:293–302

    Google Scholar 

  • Caviness VS Jr, Sidman RL (1973) Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J Comp Neurol 170:449–460

    Google Scholar 

  • Caviness VS Jr, Takahashi T, Nowakowski RS (1995) Numbers, time and neocortical neurogenesis: a general developmental and evolutionary model. Trends Neurosci 18:379–393

    CAS  PubMed  Google Scholar 

  • Caviness VS Jr, Takahashi T, Nowakowski RS (2000) Neurogenesis and the early events of neocortical histogenesis. In: Goffinet AM, Rakic P (eds) Mouse brain development. Springer, Berlin Heidelberg New York, pp 107–143

    Google Scholar 

  • Caviness VS Jr, Takahashi T, Nowakowski RS (2003) Morphogenesis of the human cerebral cortex. In: Barth PG (ed) Disorders of neuronal migration. Mac Keith, London, pp 1–23

    Google Scholar 

  • Caviness VS Jr, Nowakowski RS, Bhide PG (2009) Neocortical neurogenesis: morphogenetic gradients and beyond. Trends Neurosci 32:443–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchi C, Boncinelli E (2000) Emx homeogenes and mouse brain development. Trends Neurosci 23:347–352

    CAS  PubMed  Google Scholar 

  • Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai L-H (1997) Mice lacking p35, a neuronal specific activator of cdk5, display cortical lamination defects, seizures and adult lethality. Neuron 18:29–42

    CAS  PubMed  Google Scholar 

  • Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 8:422–437

    Google Scholar 

  • Chan WY, Kostović I, Takashima S, Feldhaus C, Stoltenburg-Didinger G, Verney C et al (2002) Normal and abnormal development of the human cerebral cortex. Neuroembryology 1:78–90

    Google Scholar 

  • Chang BS, Lowenstein DH (2003) Mechanisms of disease: epilepsy. N Engl J Med 349:1257–1266

    PubMed  Google Scholar 

  • Chang BS, Piao X, Giannini C, Cascino GD, Scheffer I, Wood CG et al (2004) Bilateral generalised polymicrogyria (BGP): a distinct syndrome of cortical malformation. Neurology 62:1722–1728

    CAS  PubMed  Google Scholar 

  • Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S et al (2009) Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 35:219–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chédotal A, Del Rio JA, Ruiz M, He Z, Borrell V, de Castro F et al (1998) Semaphorins III and IV repel hippocampal axons via two distinct receptors. Development 125:4313–4323

    PubMed  Google Scholar 

  • Chelly J, Khelfaoui M, Francis F, Cheriff B, Bienvenu T (2006) Genetics and pathophysiology of mental retardation. Eur J Hum Genet 14:701–713

    CAS  PubMed  Google Scholar 

  • Chen H, Bagri A, Zupicich JA, Zou Y, Stoeckli E, Pleasure SJ et al (2000) Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25:43–56

    PubMed  Google Scholar 

  • Chen H, Cheng Q, Lin Y, Meissner A, West AE, Griffith EC et al (2003) Depression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302:885–889

    CAS  PubMed  Google Scholar 

  • Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641

    CAS  PubMed  Google Scholar 

  • Chenn A, Braisted JE, McConnell SK, O’Leary DDM (1997) Development of the cerebral cortex: mechanisms controlling cell fate, laminar and areal patterning, and axonal connectivity. In: Cowan WM, Jessell TM, Zipursky SL (eds) Molecular and cellular approach to neural development. Oxford University Press, New York, pp 440–473

    Google Scholar 

  • Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1:86–93

    CAS  PubMed  Google Scholar 

  • Chiurazzi P, Oostra BA (2000) Genetics of mental retardation. Curr Opin Pediatr 12:529–535

    CAS  PubMed  Google Scholar 

  • Chiurazzi P, Schwartz CE, Gecz J, Neri G (2008) XLMR genes: update 2007. Eur J Hum Genet 16:422–434

    CAS  PubMed  Google Scholar 

  • Cho WH, Seidenwurm D, Barkovich AJ (1999) Adult-onset neurologic dysfunction associated with cortical malformations. AJNR Am J Neuroradiol 20:1037–1043

    CAS  PubMed  Google Scholar 

  • Cholfin JA, Rubinstein JLR (2008) Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2. J Comp Neurol 509:144–155

    PubMed  Google Scholar 

  • Chow EWC, Zipursky RB, Mikulis DJ, Bassett AS (2002) Structural brain abnormalities in patients with schizophrenia and 22q11 deletion syndrome. Biol Psychiatry 51:208–215

    PubMed  PubMed Central  Google Scholar 

  • Clowry G, Molnár Z, Rakic P (2010) Renewed focus on the developing human neocortex. J Anat (Lond) 217:276–288

    Google Scholar 

  • Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT et al (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478:519–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 94:5401–5404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Condé F, Lund JS, Lewis DA (1996) The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. Dev Brain Res 96:261–276

    Google Scholar 

  • Conel JL (1939) The postnatal development of the human cerebral cortex. I. The cortex of the newborn. Harvard University Press, Cambridge

    Google Scholar 

  • Conel JL (1941) The postnatal development of the human cerebral cortex, II. The cortex of the one-month infant. Harvard University Press, Cambridge

    Google Scholar 

  • Conel JL (1947) The postnatal development of the human cerebral cortex. III. The cortex of the three-month infant. Harvard University Press, Cambridege

    Google Scholar 

  • Conel JL (1951) The postnatal development of the human cerebral cortex. IV. The cortex of the six-month infant. Harvard University Press, Cambridge

    Google Scholar 

  • Conel JL (1955) The postnatal development of the human cerebral cortex. V. The cortex of the fifteen-month infant. Harvard University Press, Cambridge

    Google Scholar 

  • Conel JL (1959) The postnatal development of the human cerebral cortex. VI. The cortex of the twenty-four-month infant. Harvard University Press, Cambridge

    Google Scholar 

  • Conel JL (1963) The postnatal development of the human cerebral cortex, VII. The cortex of the four-year child. Harvard University Press, Cambridge

    Google Scholar 

  • Conel JL (1967) The postnatal development of the human cerebral cortex. VIII. The cortex of the six-year child. Harvard University Press, Cambridge

    Google Scholar 

  • Connolly MB, Hendson G, Steinbok P (2006) Tuberous sclerosis complex: a review of the management of epilepsy with emphasis on surgical aspects. Childs Nerv Syst 22:896–908

    PubMed  Google Scholar 

  • Consortium ECTS (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315

    Google Scholar 

  • Copp AJ, Harding BN (1999) Neuronal migration disorders in humans and in mouse models – an overview. Epilepsy Res 36:133–141

    CAS  PubMed  Google Scholar 

  • Costa E, Davis J, Pesold C, Tueting P, Guidotti A (2002) The heterozygote reeler mouse as a model for the development of a new generation of antipsychotics. Curr Opin Pharmacol 2:56–62

    CAS  PubMed  Google Scholar 

  • Counsell SJ, Dyet LE, Larkman DJ, Nunes RG, Boardman JP, Allsop JM et al (2007) Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance imaging. Neuroimage 34:896–904

    PubMed  Google Scholar 

  • Courchesne E (1997) Brainstem, cerebellum and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol 7:269–278

    CAS  PubMed  Google Scholar 

  • Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225–230

    CAS  PubMed  Google Scholar 

  • Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA 290:337–344

    PubMed  Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:665–666

    Google Scholar 

  • Craig AD (2009) How do you feel – now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    CAS  PubMed  Google Scholar 

  • Crino PB, Henske EP (1999) New developments in the neurobiology of the tuberous sclerosis complex. Neurology 53:1384–1390

    CAS  PubMed  Google Scholar 

  • Crino PB, Duhaime A-C, Baltuch G, White R (2001) Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology 56:906–913

    CAS  PubMed  Google Scholar 

  • Crino PB, Miyata H, Vinters HV (2002) Neurodevelopmental disorders as a cause of seizures: neuropathologic, genetic, and mechanistic considerations. Brain Pathol 12:212–233

    CAS  PubMed  Google Scholar 

  • Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356

    CAS  PubMed  Google Scholar 

  • Curatolo P, Verdecchia M, Bombardieri R (2002) Tuberous sclerosis complex: a review of neurological aspects. Eur J Paediatr Neurol 6:15–23

    PubMed  Google Scholar 

  • Cushion TD, Dobyns WB, Mullins JGL, Stoodley N, Chung S-K, Fry AE et al (2013) Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. Brain 136:536–548

    PubMed  Google Scholar 

  • D’Agostino MD, Bernasconi A, Das S, Bastos A, Valerio RM, Palmini A et al (2002) Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females. Brain 125:2507–2522

    PubMed  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen S-C, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723

    PubMed  Google Scholar 

  • D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17:23–31

    PubMed  Google Scholar 

  • Damasio AR, Maurer RG (1978) A neurological model for childhood autism. Arch Neurol 35:777–786

    CAS  PubMed  Google Scholar 

  • Danesin C, Houart C (2012) A Fox stops the Wnt: implications for forebrain development and diseases. Curr Opin Genet Dev 22:323–330

    CAS  PubMed  Google Scholar 

  • Darby JH (1976) Neuropathological aspects of psychosis in childhood. J Autism Childhood Schizophrenia 6:339–352

    CAS  Google Scholar 

  • de Lacoste MC, Kirkpatrick JB, Ross ED (1985) Topography of the human corpus callosum. J Neuropathol Exp Neurol 44:578–591

    PubMed  Google Scholar 

  • de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367:1921–1929

    PubMed  Google Scholar 

  • deAzevedo LC, Hedin-Pereira C, Leht R (1997) Callosal neurons in the cingulate cortical plate and subplate of human fetuses. J Comp Neurol 386:60–70

    CAS  PubMed  Google Scholar 

  • Deb P, Sharma MC, Tripathi M, Sarat Chandra P, Gupta A, Sarkar C (2006) Expression of CD34 as a novel marker for glioneuronal lesions associated with chronic intractable epilepsy. Neuropathol Appl Neurobiol 32:461–468

    CAS  PubMed  Google Scholar 

  • DeFelipe J (2002) Cortical interneurons: from Cajal to 2001. Prog Brain Res 136:215–238

    PubMed  Google Scholar 

  • DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielar C, Larraňaga P et al (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14:202–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deguchi K, Inoue K, Avila WE, Lopez-Terrada D, Antalffy BA, Quattrocchi CC et al (2003) Reelin and disabled-1 expression in developing and mature human cortical neurons. J Neuropathol Exp Neurol 62:676–684

    CAS  PubMed  Google Scholar 

  • Demb JB, Boynton GM, Heeger DJ (1998) Functional magnetic resonance imaging of early visual pathways in dyslexia. J Neurosci 18:6939–6951

    CAS  PubMed  Google Scholar 

  • Deng J, Elberger AJ (2001) The role of pioneer neurons in the development of mouse visual cortex and corpus callosum. Anat Embryol (Berl) 204:437–453

    CAS  Google Scholar 

  • des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, Carrié A et al (1998) A novel gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92:51–61

    CAS  PubMed  Google Scholar 

  • Devisme L, Bouchet C, Gonzalès M, Alanio E, Bazin A, Bessières B et al (2012) Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 135:469–482

    PubMed  Google Scholar 

  • Di Virgilio G, Clarke S (1997) Direct interhemispheric visual input to human speech areas. Hum Brain Mapp 5:347–354

    PubMed  Google Scholar 

  • Di Virgilio G, Clarke S, Pizzolatto G, Schaffner T (1999) Cortical regions contributing to the anterior commissure in man. Exp Brain Res 124:1–7

    PubMed  Google Scholar 

  • Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 135:3529–3550

    PubMed  Google Scholar 

  • Dobyns WB, Truwit CL (1995) Lissencephaly and other malformations of cortical development: 1995 an update. Neuropediatrics 26:132–147

    CAS  PubMed  Google Scholar 

  • Dobyns WB, Stratton RF, Greenberg F (1984) Syndromes with lissencephaly. I. Miller-Dieker and Norman-Roberts syndromes and isolated lissencephaly. Am J Med Genet 18:509–526

    CAS  PubMed  Google Scholar 

  • Dobyns WB, Kirkpatrick JB, Hittner HM, Roberts RM, Kretzer FL (1985) Syndromes with lissencephaly. II. Walker-Warburg and cerebro-oculo-muscular syndromes and a new syndrome with type II lissencephaly. Am J Med Genet 22:157–195

    CAS  PubMed  Google Scholar 

  • Dobyns WB, Pagon RA, Armstrong D, Curry CJ, Greenberg F, Grix A et al (1989) Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet 32:195–210

    CAS  PubMed  Google Scholar 

  • Dobyns WB, Andermann E, Andermann F, Czapansky-Beilman D, Dubeau F, Dulac O et al (1996) X-linked malformations of neuronal migration. Neurology 47:331–339

    CAS  PubMed  Google Scholar 

  • Dobyns WB, Truwit CL, Ross ME, Matsumoto N, Pilz DT, Ledbetter DH et al (1999) Differences in the gyral pattern distinguish chromosome 17-linked and X-linked lissencephaly. Neurology 53:270–277

    CAS  PubMed  Google Scholar 

  • Donahoo A-LS, Richards LJ (2009) Understanding the mechanisms of callosal development through the use of transgenic mouse models. Semin Pediatr Neurol 16:217–242

    Google Scholar 

  • Dooling EC, Chi JG, Gilles FH (1983) Telencephalic development: changing gyral patterns. In: Gilles FH, Leviton A, Dooling EC (eds) The developing human brain. Wright, Bristol, pp 94–104

    Google Scholar 

  • Dover CJ, Le Couteur A (2007) How to diagnose autism. Arch Dis Child 92:540–545

    PubMed  PubMed Central  Google Scholar 

  • DSM-IV (1994) Diagnostic and statistical manual of mental disorders, IV. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Dubeau F, Tampieri D, Lee N, Andermann E, Carpenter S, Leblanc R et al (1995) Periventricular and subcortical nodular heterotopia. A study of 33 patients. Brain 118:1273–1287

    PubMed  Google Scholar 

  • Dubois J, Benders M, Borradori-Tolsa C, Cachia A, Lazeyras F, Ha-Vinh Leuchter R et al (2008a) Primary cortical folding in the human newborn: an early marker of later functional development. Brain 131:2028–2041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois J, Benders M, Cachia A, Lazeyras F, Ha-Vinh Leuchter R, Sizonenko SV et al (2008b) Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 18:1444–1454

    CAS  PubMed  Google Scholar 

  • Dubois J, Benders M, Lazeyras F, Borradori-Tolsa C, Ha-Vinh Leuchter R, Mangin JF, Hüppi PS (2010) Structural asymmetries of perisylvian regions in the preterm newborn. Neuroimage 52:32–42

    CAS  PubMed  Google Scholar 

  • Duchowny M, Jayakar P, Levin B (2000) Aberrant neural circuits in malformations of cortical development and focal epilepsy. Neurology 55:423–428

    CAS  PubMed  Google Scholar 

  • Dudek FE, Sutula TP (2007) Epileptogenesis in the dentate gyrus: a critical perspective. Prog Brain Res 163:755–773

    CAS  PubMed  Google Scholar 

  • Duffau H (2008) The anatomo-functional connectivity of language revisited: New insights provided by electrostimulation and tractography. Neuropsychologia 46:927–934

    PubMed  Google Scholar 

  • Dum RP, Strick PL (1996) Spinal cord terminations of the medial motor areas in macaque monkeys. J Neurosci 15:6513–6525

    Google Scholar 

  • Duvernoy HM (1992) Le cerveau humain. Surface, coupes sériée tridimensionelles et IRM. Springer, Paris

    Google Scholar 

  • Duvernoy HM (1998) The human hippocampus. Functional anatomy, vascularization and serial sections with MRI, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ekşioğlu YZ, Scheffer IE, Cardenas P, Knoll J, DiMario F, Ramsby G et al (1996) Periventricular heterotopia: an X-linked dominant epilepsy locus causing aberrant cerebral cortical development. Neuron 16:77–87

    PubMed  Google Scholar 

  • Elliot Smith G (1897) The morphology of the indusium griseum and striae Lancisii. Anat Anz 13:23–27

    Google Scholar 

  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    CAS  PubMed  Google Scholar 

  • Eriksson SH, Thom M, Hefferman J, Lin WR, Harding BN, Squier MV, Sisodiya SM (2001) Persistent reelin-expressing Cajal-Retzius cells in polymicrogyria. Brain 124:1350–1361

    CAS  PubMed  Google Scholar 

  • Evrard P, Miladi N, Bonnier C, Gressens P (1992) Normal and abnormal development of the brain. In: Rapin I, Segalowitz SJ (eds) Child neuropsychology. Elsevier, Amsterdam, pp 11–44

    Google Scholar 

  • Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C (2000) Functionally corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123:51–64

    PubMed  Google Scholar 

  • Falconer DS (1951) Two new mutants, “trembler” and “reeler”, with neurological actions in the house mouse (Mus musculus L). J Genet 50:192–201

    CAS  PubMed  Google Scholar 

  • Farah S, Sabry MA, Khuraibet A, Khaffagi S, Rudwan M, Hassan M et al (1997) Lissencephaly associated with cerebellar hypoplasia and myoclonic epilepsy in a Bedouin kindred: a new syndrome? Clin Genet 51:326–330

    CAS  PubMed  Google Scholar 

  • Fatemi SH (2002) The role of Reelin in the pathology of autism. Mol Psychiatry 7:919–920

    CAS  PubMed  Google Scholar 

  • Feess-Higgins A, Larroche J-C (1987) Le développement du cerveau foetal humain. Atlas anatomique, Masson, Paris

    Google Scholar 

  • Ferland RJ, Batic LF, Neal J, Lian G, Bundock E, Lu J et al (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreiro DM, Miller SP (2010) Imaging selective vulnerability in the developing nervous system. J Anat (Lond) 217:429–435

    Google Scholar 

  • Fertuzinhos S, Krsnik Z, Kawasawa YI, Rašin M-R, Kwan KY, Chen J-G et al (2009) Selective depletion of molecularly defined cortical interneurons in human prosencephaly with severe striatal hypoplasia. Cereb Cortex 19:2196–2207

    PubMed  PubMed Central  Google Scholar 

  • Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Nitsch R, Huttner WB (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699

    CAS  PubMed  Google Scholar 

  • Filipovi B, Prostran M, Ilankovi N, Filipovi B (2004) Predictive potential of cavum septi pellucidi (CSP) in schizophrenics, alcoholics and persons with past head trauma. A postmortem study. Eur Arch Psychiatry Clin Neurosci 254:228–230

    Google Scholar 

  • Fink GR, Frackowiak RSJ, Pietrzyk U, Passingham RF (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174

    CAS  PubMed  Google Scholar 

  • Fishell G, Kriegstein AR (2003) Neuron from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol 13:34–41

    CAS  PubMed  Google Scholar 

  • Fisher SE, DeFries JC (2002) Developmental dyslexia: genetic dissection of a complex cognitive trait. Nat Rev Neurosci 3:767–780

    CAS  PubMed  Google Scholar 

  • Flores-Sarnat L (2002) Hemimegalencephaly: part 1. Genetic, clinical, and imaging aspects. J Child Neurol 17:373–384

    PubMed  Google Scholar 

  • Fox JW, Lamperti ED, Ekşioğlu YZ, Hong SE, Feng Y, Graham DA et al (1998) Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21:1315–1325

    CAS  PubMed  Google Scholar 

  • Franz DN, Bissler JJ, McCormack FX (2010) Tuberous sclerosis complex: Neurological, renal and pulmonary manifestations. Neuropediatrics 41:199–208

    CAS  PubMed  Google Scholar 

  • Frey S, Campbell JSW, Pike GB, Petrides M (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28:11435–11444

    CAS  PubMed  Google Scholar 

  • Friede RL (1989) Developmental neuropathology, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Friederici AD (2009) Pathways to language: fiber tracts in the human brain. Trends Cogn Sci 13:175–181

    PubMed  Google Scholar 

  • Friederici AD (2012) The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn Sci 16:262–268

    PubMed  Google Scholar 

  • Friederici AD, Bahlmann J, Helm S, Schubotz RI, Anwander A (2006) The brain differentiates human and non-human grammars: functional localization and structural connectivity. Proc Natl Acad Sci U S A 103:2458–2463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frotscher M (1997) Dual role of Cajal-Retzius cells and reelin in cortical development. Cell Tissue Res 290:315–322

    CAS  PubMed  Google Scholar 

  • Fukuyama Y, Osawa M, Suzuki H (1981) Congenital progressive muscular dystrophy of the Fukuyama type – clinical, genetic and pathological considerations. Brain Dev 3:1–29

    CAS  PubMed  Google Scholar 

  • Fukuzako H, Kodama S (1998) Cavum septum pellucidum in schizophrenia. Biol Psychiatry 43:466–469

    Google Scholar 

  • Gadisseux J-F, Goffinet AM, Lyon G, Evrard P (1992) The human transient subpial granular layer: an optical, immunohistochemical, and ultrastructural analysis. J Comp Neurol 324:94–114

    CAS  PubMed  Google Scholar 

  • Galaburda AM (1999) Developmental dyslexia: a multilevel syndrome. Dyslexia 5:183–191

    Google Scholar 

  • Galaburda AM, Kemper TL (1979) Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Ann Neurol 6:94–100

    CAS  PubMed  Google Scholar 

  • Galaburda AM, Sherman GF, Rosen GD, Aboitiz F, Geschwind N (1985) Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol 18:222–233

    CAS  PubMed  Google Scholar 

  • Galaburda AM, Menard MT, Rosen GD (1994a) Evidence for aberrant auditory anatomy in developmental dyslexia. Proc Natl Acad Sci U S A 91:8010–8013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galaburda AM, Wang PP, Bellugi U, Rossen M (1994b) Cytoarchitectonic anomalies in a genetically based disorder: Williams syndrome. Neuroreport 5:753–757

    CAS  PubMed  Google Scholar 

  • Galaburda AM, Schmitt JE, Atlas SW, Eliez S, Bellugi U (2001) Dorsal forebrain anomaly in Williams syndrome. Arch Neurol 58:1865–1869

    CAS  PubMed  Google Scholar 

  • Garel C (2004) MRI of the fetal brain. Normal development and cerebral pathologies. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Garey L (2010) When cortical development goes wrong: Schizophrenia as a neurodevelopmental disease of microcircuits. J Anat (Lond) 217:324–333

    Google Scholar 

  • Geerdink N, Rotteveel JJ, Lammens M, Sistermans EA, Heikens GT, Gabreëls FJM et al (2002) MECP2 Mutation in a boy with severe neonatal encephalopathy: clinical, neuropathological and molecular findings. Neuropediatrics 33:33–36

    CAS  PubMed  Google Scholar 

  • Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111

    CAS  PubMed  Google Scholar 

  • Geyer S, Matelli M, Luppino G, Zilles K (2000) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol (Berl) 202:443–474

    CAS  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    CAS  PubMed  Google Scholar 

  • Gilles FN, Nelson MD (2012) The developing human brain: growth and adversities. Mac Keith, London

    Google Scholar 

  • Giraud A-L, Ramus F (2013) Neurogenetics and auditory processing in developmental dyslexia. Curr Opin Neurobiol 23:37–42

    CAS  PubMed  Google Scholar 

  • Glasser MF, Rilling JK (2008) DTI tractography of human brain’s language pathways. Cereb Cortex 18:2471–2482

    PubMed  Google Scholar 

  • Gleeson JG (2000) Classical lissencephaly and double cortex (subcortical band heterotopia): LIS1 and doublecortin. Curr Opin Neurol 13:121–125

    CAS  PubMed  Google Scholar 

  • Gleeson JG, Walsh CA (2000) Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 23:352–359

    CAS  PubMed  Google Scholar 

  • Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic SF, Scheffer IE et al (1998) doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63–72

    CAS  PubMed  Google Scholar 

  • Godfrey C, Clement E, Mein R, Brockington M, Smith J, Talim B et al (2007) Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130:2725–2735

    PubMed  Google Scholar 

  • Godfrey C, Reghan Foley A, Clement A, Muntoni F (2011) Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 21:278–285

    CAS  PubMed  Google Scholar 

  • Goffinet AM (1979) An early developmental defect in the cerebral cortex of the reeler mouse. Anat Embryol (Berl) 157:205–216

    CAS  Google Scholar 

  • Goffinet AM (1984) Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain Res Rev 7:291–296

    Google Scholar 

  • Goldberg EM, Coulter DA (2013) Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci 14:337–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldowitz D, Cushing RC, Laywell E, D’Arcangelo G, Sheldon M, Sweet H et al (1997) Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J Neurosci 17:8767–8777

    CAS  PubMed  Google Scholar 

  • Gomez MR (1988) Tuberous sclerosis. Raven, New York

    Google Scholar 

  • González JL, Russo CJ, Goldowitz D, Sweet HO, Davisson MT, Walsh CA (1997) Birthdate and cell marker analysis of scrambler: a novel mutation affecting cortical development with a reeler-like phenotype. J Neurosci 17:9204–9211

    PubMed  Google Scholar 

  • Gorman DG, Unützer J (1993) Brodmann’s “missing” numbers. Neurology 43:226–227

    CAS  PubMed  Google Scholar 

  • Götz M, Bolz J (1994) Differentiation of transmitter phenotypes in rat cerebral cortex. Eur J Neurosci 6:18–32

    PubMed  Google Scholar 

  • Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A 96:5263–5267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths PD, Batty R, Reeves MJ, Connolly DJA (2009) Imaging the corpus callosum, septum pellucidum and fornix in children: normal anatomy and variations of normality. Neuroradiology 51:337–345

    PubMed  Google Scholar 

  • Groen WB, Zwiers MP, van der Gaag RJ, Buitelaar JK (2008) The phenotype and neural correlates of language in autism: an integrative review. Neurosci Biobehav Rev 32:1416–1425

    PubMed  Google Scholar 

  • Grove EA, Tole S (1999) Patterning events and specification signals in the developing hippocampus. Cereb Cortex 9:551–561

    CAS  PubMed  Google Scholar 

  • Grove EA, Tole S, Limon J, Yip L, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 117:553–561

    Google Scholar 

  • Guerrini R, Parrini E (2010) Neuronal migration disorders. Neurobiol Dis 38:154–166

    CAS  PubMed  Google Scholar 

  • Guerrini R, Dubeau F, Dulac O, Barkovich AJ, Kuzniecky R, Fett C et al (1997) Bilateral parasagittal parietooccipital polymicrogyria and epilepsy. Ann Neurol 41:65–73

    CAS  PubMed  Google Scholar 

  • Guerrini R, Barkovich AJ, Sztriha L, Dobyns WB (2000a) Bilateral frontal polymicrogyria: a newly recognized malformation syndrome. Neurology 54:909–913

    CAS  PubMed  Google Scholar 

  • Guerrini R, Andermann E, Guerrini R, Dobyns WB, Kuzniecky R, Silver K et al (2000b) Familial perisylvian polymicrogyria: a new familial syndrome of cortical maldevelopment. Ann Neurol 48:39–48

    PubMed  Google Scholar 

  • Guerrini R, Sicca F, Parmeggiani L (2003) Epilepsy and malformations of the cerebral cortex. Epileptic Disord 9(Suppl 2):S9–S26

    Google Scholar 

  • Guerrini R, Mei D, Sisodiya S, Sicca F, Harding B, Takahashi Y et al (2004) Germline and mosaic mutations of FLN1 in men with periventricular heterotopia. Neurology 63:51–56

    CAS  PubMed  Google Scholar 

  • Guerrini R, Dobyns WB, Barkovich AJ (2008) Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends Neurosci 31:154–162

    CAS  PubMed  Google Scholar 

  • Gutknecht L (2001) Full-genomic scans with autistic disorder: a review. Behav Genet 31:113–123

    CAS  PubMed  Google Scholar 

  • Gutmann DH, Zhang Y, Hasbani MJ, Goldberg MP, Plank TL, Henske EP (2000) Expression of the tuberous sclerosis complex gene products hamartin and tuberin in central nervous system tissues. Acta Neuropathol (Berl) 99:223–230

    CAS  Google Scholar 

  • Habas PA, Scott JA, Roosta A, Rajagopalan V, Kim K, Rousseau F et al (2012) Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex 22:13–25

    PubMed  PubMed Central  Google Scholar 

  • Habib M (2000) The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain 123:2373–2399

    PubMed  Google Scholar 

  • Hagberg B, Hagberg G (1997) Rett syndrome: epidemiology and geographical variability. Eur Child Adolesc Psychiatry 6:5–7

    PubMed  Google Scholar 

  • Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14:471–479

    CAS  PubMed  Google Scholar 

  • Hagerman RJ (2002) Physical and behavioral phenotype. In: Hagerman RJ, Hagerman PJ (eds) Fragile X syndrome: diagnosis, treatment and research, 3rd edn. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J et al (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57:127–130

    CAS  PubMed  Google Scholar 

  • Hamel BCJ (1999) X-linked mental retardation – a clinical and molecular study. University of Nijmegen, Thesis

    Google Scholar 

  • Hannan AJ, Servotte S, Katsnelson A, Sisodiya S, Blakemore C, Squier M, Molnár Z (1999) Characterization of nodular neuronal heterotopia in children. Brain 122:219–238

    PubMed  Google Scholar 

  • Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    CAS  PubMed  Google Scholar 

  • Harrison PJ, Law AJ (2006) Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 60:132–140

    CAS  PubMed  Google Scholar 

  • Hartmann D, De Strooper B, Saftig P (1999) Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr Biol 9:719–727

    CAS  PubMed  Google Scholar 

  • Hatanaka Y, Jones EG (1999) Novel genes expressed in the developing medial cortex. Cereb Cortex 9:577–585

    CAS  PubMed  Google Scholar 

  • Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA et al (2012) An anatomical comprehensive atlas of the adult human brai transcriptome. Nature 489:391–399

    CAS  PubMed  Google Scholar 

  • Haydar TF, Kuan C-Y, Flavell RA, Rakic P (1999) The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb Cortex 9:621–626

    CAS  PubMed  Google Scholar 

  • He S-Q, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13:952–980

    CAS  PubMed  Google Scholar 

  • He S-Q, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 14:3284–3306

    Google Scholar 

  • Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behaviour. Neurosci Biobehav Rev 30:126–147

    PubMed  Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Pearson J, Sakamoto N, Marksteiner J, Switzer RC (1999) The human basal forebrain, part 2. Handb Chem Neuroanat 15:57–226

    Google Scholar 

  • Heimer L, Van Hoesen GW, Trimble M, Zahm DS (2008) Anatomy of neuropsychiatry. Elsevier, Amsterdam

    Google Scholar 

  • Heimrich B, Vogt J, Simbürger E, Skutella T, Glumm R (2002) Axon guidance and the formation of specific connections in the hippocampus. Neuroembryology 1:154–160

    CAS  Google Scholar 

  • Hengst M, Tücke J, Zerres M, Häusler M (2010) Megalencephaly, mega corpus callosum, and complete lack of motor development: delineation of a rare syndrome. Am J Med Genet A 152A:2360–2364

    PubMed  Google Scholar 

  • Hennou S, Khalilov I, Diabira D, Ben-Ari Y, Gozlan H (2002) Early sequential formation of functional GABAA and glutamatergic synapses in CA1 interneurons of the rat foetal hippocampus. Eur J Neurosci 16:197–208

    PubMed  Google Scholar 

  • Herbst DS, Miller JR (1980) Non-specific X-linked mental retardation. II. The frequency in British Columbia. Am J Med Genet 7:461–469

    CAS  PubMed  Google Scholar 

  • Hevner RF, Kinney HC (1996) Reciprocal entorhinal-hippocampal connections established by human fetal midgestation. J Comp Neurol 372:384–394

    CAS  PubMed  Google Scholar 

  • Hewitt W (1961) The development of the human internal capsule and lentiform nucleus. J Anat (Lond) 95:191–199

    CAS  Google Scholar 

  • Hinton VJ, Brown WT, Wisniewski K, Rudelli RD (1991) Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet 41:289–294

    CAS  PubMed  Google Scholar 

  • Hirotsune S, Takahara T, Sasaki N, Hirose K, Yoshiki A, Ohashi T et al (1995) The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nat Genet 10:77–83

    CAS  PubMed  Google Scholar 

  • His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate. Hirzel, Leipzig

    Google Scholar 

  • Hochstetter F (1919) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. I. Teil, Deuticke, Wien, Leipzig

    Google Scholar 

  • Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994

    PubMed  Google Scholar 

  • Homayouni R, Curran T (2000) Cortical development: Cdk5 gets into sticky situations. Curr Biol 10:331–334

    Google Scholar 

  • Hong SE, Shugart YY, Huang DT, Al Shahwan S, Grant PE, Hourihane JO et al (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:93–96

    CAS  PubMed  Google Scholar 

  • Honig LS, Herrmann K, Shatz CJ (1996) Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Cereb Cortex 6:794–806

    CAS  PubMed  Google Scholar 

  • Hori A (1996) Precocious cerebral development associated with agenesis of the corpus callosum in mid-fetal life: a transient syndrome? Acta Neuropathol (Berl) 91:120–125

    CAS  Google Scholar 

  • Hori A (1997) Anatomical variants of brain structure: confused spatial relationship of the fornix to the corpus callosum and anterior commissure. Ann Anat 179:545–547

    CAS  PubMed  Google Scholar 

  • Hori A (1999) Morphology of brain malformations: beyond the classification, towards the integration. No Shinkei Geka (Neurol Surg) 27:969–985 (in Japanese)

    CAS  Google Scholar 

  • Hori A, Stan AC (2004) Supracallosal longitudinal fiber bundle: heterotopic cingulum, dorsal fornix or Probst bundle? Neuropathology 24:56–59

    PubMed  Google Scholar 

  • Hori A, Friede RL, Fischer G (1983) Ventricular diverticles with localized dysgenesis of the temporal lobe in cloverleaf skull anomaly. Acta Neuropathol (Berl) 60:132–136

    CAS  Google Scholar 

  • Hourihane JO, Bennett CP, Chaudhuri R, Robb SA, Martin ND (1993) A sibship with a neuronal migration defect, cerebellar hypoplasia and congenital lymphedema. Neuropediatrics 24:43–46

    CAS  PubMed  Google Scholar 

  • Houser CR (1990) Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 535:195–204

    CAS  PubMed  Google Scholar 

  • Houser CR, Swartz BE, Walsh GO, Delgado-Escueta AV (1992) Granule cell disorganization in the dentate gyrus: possible alterations of neuronal migration in human temporal lobe epilepsy. Epilepsy Res Suppl 9:41–48

    CAS  PubMed  Google Scholar 

  • Howell BW, Hawkes R, Soriano P, Cooper JA (1997a) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389:733–737

    CAS  PubMed  Google Scholar 

  • Howell BW, Herrick TM, Cooper JA (1997b) Reelin-induced tyrosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev 13:643–648

    Google Scholar 

  • Huang H, Zhang J, Wakana S, Zhang W, Ren T, Richards LJ et al (2006) White and grey matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38

    PubMed  Google Scholar 

  • Huang H, Xue R, Zhang J, Ren T, Richards LJ, Yarowsky P et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160:106–154

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198:1–59

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN, Stryker MP (1978) Anatomical demonstration of orientation columns in macaque monkey. J Comp Neurol 177:361–379

    CAS  PubMed  Google Scholar 

  • Humphrey T (1960) The development of the pyramidal tracts in human fetuses, correlated with cortical differentiation. In: Tower DB, Schadé JP (eds) Structure and function of the cerebral cortex. Elsevier, Amsterdam, pp 93–103

    Google Scholar 

  • Humphrey T (1966a) The development of the human hippocampal formation correlated with some aspects of its phylogenetic history. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 104–116

    Google Scholar 

  • Humphrey T (1966b) Correlations between the development of the hippocampal formation and the differentiation of the olfactory bulbs. Alab J Med Sci 3:235–269

    CAS  Google Scholar 

  • Humphreys P, Kaufmann WE, Galaburda AM (1990) Developmental dyslexia in women: neuropathological findings in three patients. Ann Neurol 28:727–738

    CAS  PubMed  Google Scholar 

  • Huttenlocher PR (1970) Dendritic development and mental defect. Neurology 20:381

    CAS  PubMed  Google Scholar 

  • Huttenlocher PR (1974) Dendritic development in neocortex of children with mental defect and infantile spasms. Neurology 24:203–210

    CAS  PubMed  Google Scholar 

  • Huttenlocher PR (1975) Synaptic and dendritic development and mental defect. In: Buchwald NA, Brazier MAB (eds) Brain mechanisms in mental retardation. Academic, New York, pp 123–140

    Google Scholar 

  • Huttenlocher PR (1991) Dendritic and synaptic pathology in mental retrdation. Pediatr Neurol 7:79–85

    CAS  PubMed  Google Scholar 

  • Huttenlocher PR, Taravath S, Mojtahedi S (1994) Periventricular heterotopia and epilepsy. Neurology 44:51–55

    CAS  PubMed  Google Scholar 

  • Ikeda Y, Terashima T (1997) Corticospinal tract neurons are radially malpositioned in the sensory-motor cortex of the shaking rat Kawasaki. J Comp Neurol 383:370–380

    CAS  PubMed  Google Scholar 

  • Innocenti GM (1994) Some new trends in the study of the corpus callosum. Behav Brain Res 64:1–8

    CAS  PubMed  Google Scholar 

  • Inoue K, Lupski JR (2003) Genetics and genomics of behavioral and psychiatric disorders. Curr Opin Genet Dev 13:303–309

    CAS  PubMed  Google Scholar 

  • Insausti R, Amaral DG (2012) Hippocampal formation. In: Mai JK, Paxinos G (eds) The human nervous system. Elsevier, Amsterdam, pp 896–942

    Google Scholar 

  • Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395

    CAS  PubMed  Google Scholar 

  • Insausti R, Tuñón T, Sobreviela T, Insausti AM, Gonzalo LM (1995) The human entorhinal cortex: a cytoarchitectonic analysis. J Comp Neurol 355:171–198

    CAS  PubMed  Google Scholar 

  • Insausti R, Cebada-Sánchez S, Marcos P (2010) Postnatal development of the hippocampal formation. Adv Anat Embryol Cell Biol 206:1–89

    PubMed  Google Scholar 

  • Ip BK, Bayatti N, Howard NJ, Lindsay S, Clowry GJ (2011) The corticofugal neuron-associated genes ROBO1, SRGAP1, and CTIP2 exhibit an anterior to posterior gradient in early fetal human neocortex development. Cereb Cortex 21:1395–1407

    PubMed  PubMed Central  Google Scholar 

  • Izzi L, Charron F (2011) Midline axon guidance and human genetic disorders. Clin Genet 80:226–234

    CAS  PubMed  Google Scholar 

  • Janssen A, Gressens P, Grabenbauer M, Baumgart E, Schad A, Vanhorebeek I et al (2003) Neuronal migration depends on intact peroxisomal function in brain and in extraneuronal tissues. J Neurosci 23:9732–9741

    CAS  PubMed  Google Scholar 

  • Jellinger K, Rett A (1976) Agyria-pachygyria (lissencephaly syndrome). Neuropediatrie 7:66–91

    CAS  Google Scholar 

  • Jellinger K, Seitelberger F (1986) Neuropathology of Rett syndrome. Am J Med Genet Suppl 1(1986):259–288

    CAS  PubMed  Google Scholar 

  • Jeste SS (2011) The neurology of autism spectrum disorders. Curr Opin Neurol 24:132–139

    PubMed  PubMed Central  Google Scholar 

  • Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanović D et al (2009) Functional and evolutionary insights onto human brain development through global transcriptome analysis. Neuron 62:494–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston MV, Mullaney B, Blue ME (2003) Neurobiology of Rett syndrome. J Child Neurol 18:688–692

    PubMed  Google Scholar 

  • Jonas R, Nguyen S, Hu B, Asarnow RF, LoPresti C, Curtiss S et al (2004) Cerebral hemispherectomy: hospital course, seizure, developmental, language, and motor outcomes. Neurology 62:1712–1721

    CAS  PubMed  Google Scholar 

  • Jones EG (2009) The origins of cortical interneurons: Mouse versus monkey and human cerebral cortex. Cereb Cortex 19:1953–1956

    PubMed  Google Scholar 

  • Judaš M, Radoš M, Jovanov-Milošević N et al (2005) Structural, immunohistochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR Am J Neuroradiol 26:2671–2684

    PubMed  Google Scholar 

  • Judaš M, Sedmak G, Pletikos M, Jovanov-Milošević N (2010) Populations of subplate and interstitial neurons in fetal and adult human telencephalon. J Anat (Lond) 217:381–399

    Google Scholar 

  • Just MA, Cherkassy VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821

    PubMed  Google Scholar 

  • Kahle W (1969) Die Entwicklung der menschlichen Grosshirnhemisphäre. Schriftenr Neurol 1:1–116

    Google Scholar 

  • Kaindl AM, Passemard M, Kumar P, Kraemer N, Issa L, Zwirner A et al (2009) Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol 90:363–383

    PubMed  Google Scholar 

  • Kakita A, Hayashi S, Moro F, Guerrini R, Ozawa T, Ono K et al (2002) Bilateral periventricular nodular heterotopia due to filamin 1 gene mutation: widespread glomeruloid microvascular anomaly and dysplastic cytoarchitecture in the cerebral cortex. Acta Neuropathol (Berl) 104:649–657

    CAS  Google Scholar 

  • Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M et al (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanner L (1943) Autistic disturbances of affective contact. Nervous Child 2:217–250

    Google Scholar 

  • Kanold PO, Luhmann HJ (2010) The subplate and early cortical circuits. Annu Rev Neurosci 33:23–48

    CAS  PubMed  Google Scholar 

  • Kasprian G, Brugger PC, Schöpf V, Mitter C, Weber M, Hainfellner JA, Prayer D (2013) Assessing prenatal white matter connectivity in commissural agenesis. Brain 136:168–179

    PubMed  Google Scholar 

  • Kato M, Dobyns WB (2005) X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: proposal for a new term ‘interneuronopathy’. J Child Neurol 20:392–397

    PubMed  Google Scholar 

  • Kaufmann WE, Galaburda AM (1989) Cerebrocortical microdysgenesis in neurologically normal subjects: a histopathological study. Neurology 39:238–244

    CAS  PubMed  Google Scholar 

  • Kaufmann WE, Moser HW (2000) Dendritic anomalies associated with mental retardation. Cereb Cortex 10:981–991

    CAS  PubMed  Google Scholar 

  • Keibel F, Mall FP (eds) (1911) Handbuch der Entwicklungsgeschichte des Menschen. Hirzel, Leipzig

    Google Scholar 

  • Keibel F, Mall FP (eds) (1912) Manual of human embryology. Lippincott, Philadelphia, PA

    Google Scholar 

  • Kemper TL, Bauman M (1998) Neuropathology of infantile autism. J Neuropathol Exp Neurol 57:645–652

    CAS  PubMed  Google Scholar 

  • Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    CAS  PubMed  Google Scholar 

  • Kerner B, Graham JM Jr, Golden JA, Pepkowitz SH, Dobyns WB (1999) Familial lissencephaly with cleft palate and severe cerebellar hypoplasia. Am J Med Genet 87:440–445

    CAS  PubMed  Google Scholar 

  • Khazipov R, Esclaper M, Caillard O, Bernard C, Khalilov I, Tyzio R et al (2001) Early development of neuronal activity in the primate hippocampus in utero. J Neurosci 21:9770–9781

    CAS  PubMed  Google Scholar 

  • Kilb W, Hartmann D, Saftig P, Luhmann HJ (2004) Altered morphological and electrophysiological properties of Cajal-Retzius cells in cerebral cortex of embryonic Presenilin-1 knockout mice. Eur J Neurosci 20:2749–2756

    PubMed  Google Scholar 

  • Kirkcaldie MTK (2012) Neocortex. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 52–111

    Google Scholar 

  • Kleefstra T, Smidt M, Banning MJ, Oudakker AR, Van Esch H, de Brouwer AP et al (2005) Disruption of the gene euchromatin histone methyl transferase 1 (Eu-HMTase 1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet 42:299–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A et al (2006) Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 79:370–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klingler J (1948) Die makroskopische Anatomie der Ammonsformation. Denkschriften der Schweizerischen Naturforschenden Gesellschaft, vol 78. Fretz, Zürich

    Google Scholar 

  • Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y et al (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392

    CAS  PubMed  Google Scholar 

  • Koenderink MJT, Uylings HBM (1995) Postnatal maturation of layer V pyramidal neurons in the human prefrontal cortex. A quantitative Golgi analysis. Brain Res 678:233–243

    PubMed  Google Scholar 

  • Koenderink MJT, Uylings HBM, Mrzljak L (1994) Postnatal maturation of the layer III pyramidal neurons in the human prefrontal cortex: A quantitative Golgi analysis. Brain Res 653:173–182

    CAS  PubMed  Google Scholar 

  • Koester SE, O’Leary DDM (1994) Axons of early generating neurons in cingulate cortex pioneer the corpus callosum. J Neurosci 14:6608–6620

    CAS  PubMed  Google Scholar 

  • Kooy RF (2003) Of mice and the fragile X syndrome. Trends Genet 19:148–154

    PubMed  Google Scholar 

  • Kooy RF, Reyniers E, Verhoye M, Sijbers J, Bakker CE, Oostra BA et al (1999) Neuroanatomy of the fragile X knockout mouse brain studied using in vivo high resolution magnetic resonance imaging. Eur J Hum Genet 7:526–532

    CAS  PubMed  Google Scholar 

  • Kornack DR, Rakic P (1995) Radial and horizontal development of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15:311–321

    CAS  PubMed  Google Scholar 

  • Kostović I (1990a) Zentralnervensystem. In: Hinrichsen KV (ed) Humanembryologie. Lehrbuch und Atlas der vorgeburtlichen Entwicklung des Menschen. Springer, Berlin/Heidelberg/New York, pp 381–448

    Google Scholar 

  • Kostović I (1990b) Structural and histochemical reorganization of the human prefrontal cortex during prenatal and postnatal life. Prog Brain Res 85:223–240

    PubMed  Google Scholar 

  • Kostović I, Goldman-Rakic PS (1983) Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connectivity in the developing human and monkey brain. J Comp Neurol 219:431–447

    PubMed  Google Scholar 

  • Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422

    PubMed  Google Scholar 

  • Kostović I, Judaš M (2002) The role of the subplate zone in the structural plasticity of the developing human cerebral cortex. Neuroembryology 1:145–153

    Google Scholar 

  • Kostović I, Judaš M (2007) Transient patterns of cortical lamination during prenatal life: Do they have implications in treatment? Neurosci Biobehav Rev 31:1157–1168

    PubMed  Google Scholar 

  • Kostović I, Judaš M (2010) The development of the subplate and thalamocortical connections in the human fetal brain. Acta Paediatr 99:1119–1127

    PubMed  Google Scholar 

  • Kostović I, Rakic P (1990) Developmental history of the transient subplate in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470

    PubMed  Google Scholar 

  • Kostović I, Vasung L (2009) Insights from in vitro fetal magnetic resonance imaging of cerebral development. Semin Perinatol 33:220–233

    PubMed  Google Scholar 

  • Kostović I, Lukinovic N, Judaš M, Bogdanovich N, Mrzljak L, Zecevic N, Kubat M (1989) Structural basis of the developmental plasticity in the human cerebral cortex: the role of the transient subplate zone. Metab Brain Dis 4:17–23

    PubMed  Google Scholar 

  • Kotrla KJ, Sater AM, Weinberger DR (1997) Neuropathology, neurodevelopment and schizophrenia. In: Keshavan MS, Murray RM (eds) Neurodevelopment & adult psychopathology. Cambridge University Press, Cambridge, pp 187–198

    Google Scholar 

  • Kriegstein AR, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex/Trends Neurosci 27:393–399

    Google Scholar 

  • Krsek P, Pieper T, Karlmeier A, Hildebrandt M, Kolodziejczyk D, Winkler P et al (2009) Different presurgical characteristics and seizure outcomes in children with focal cortical dysplasia type I or II. Epilepsia 50:125–137

    PubMed  Google Scholar 

  • Kumar A, Juhasz C, Asano E, Sundaram SK, Makki MI, Chugani DC, Chugani HT (2009) Diffusion tensor imaging study of the cortical origin and course of the corticospinal tract in healthy children. AJNR Am J Neuroradiol 30:1963–1970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RA, Pilz DT, Babatz TD, Cushion TD, Harvey K, Topf M et al (2010) TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet 19:2817–2827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brooks VB, Brookhart JM, Mountcastle VB (eds) Handbook of physiology – the nervous system, vol 2, Motor systems. American Physiological Society, Bethesda, MD, pp 597–666

    Google Scholar 

  • Kuzniecky R, Andermann F, Guerrini R (1993) Congenital bilateral perisylvian syndrome: a study of 31 patients. The Congenital Bilateral Perisylvian Syndrome Multicenter Collaborative Study. Lancet 341:608–612

    CAS  PubMed  Google Scholar 

  • Kwan KY, Lam MM, Johnson MB, Dube U, Shim S, Rasini MR et al (2012) Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 149:899–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski DJ, Short MP (1994) Tuberous sclerosis. Arch Dermatol 130:348–354

    CAS  PubMed  Google Scholar 

  • Kwon YT, Tsai L-H (1998) A novel disruption of cortical development in p35-/- mice distinct from reeler. J Comp Neurol 395:510–522

    CAS  PubMed  Google Scholar 

  • Kwon JS, Shenton ME, Hirayasu Y, Salisbury DF, Fischer IA, Dickey CC et al (1998) MRI study of cavum septi pellicidi in schizophrenia, affective disorders, and schizotypal personality disorders. Am J Psychiatry 15:509–515

    Google Scholar 

  • Kyin R, Hua Y, Baybis M, Scheithauer B, Kolson D, Uhlmann E et al (2001) Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex. Am J Pathol 159:1541–1554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–523

    CAS  PubMed  Google Scholar 

  • Lai G, Pantazatos SP, Schneider H, Hirsch J (2012) Neural systems for speech and song in autism. Brain 135:961–975

    PubMed  PubMed Central  Google Scholar 

  • Lamantia AS, Rakic P (1990a) Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10:2165–2175

    Google Scholar 

  • Lamantia AS, Rakic P (1990b) Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. J Comp Neurol 291:520–537

    CAS  PubMed  Google Scholar 

  • Lambert de Rouvroit C, Goffinet AM (1998) The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol 150:1–108

    CAS  PubMed  Google Scholar 

  • Lammens M (2000) Neuronal migration disorders in man. Eur J Morphol 38:327–333

    CAS  PubMed  Google Scholar 

  • Lammens M, Hiel JAP, Gabreëls FJM, van Engelen BGM, van den Heuvel LPWJ, Weemaes CMR (2003) Nijmegen breakage syndrome: a neuropathological study. Neuropediatrics 34:189–193

    CAS  PubMed  Google Scholar 

  • LaMonica BE, Lui JH, Wang X, Kreigstein AR (2012) OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease. Curr Opin Neurobiol 22:747–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamparello P, Baybis M, Pollard J, Hol EM, Eisenstat DD, Aronica E, Crino PB (2007) Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain 130:2267–2276

    PubMed  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    CAS  PubMed  Google Scholar 

  • Lawes INC, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, Clark CA (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79

    PubMed  Google Scholar 

  • Laxova R, Ohara PT, Timothy JAD (1972) A further example of a lethal autosomal recessive condition in sibs. J Ment Defic Res 16:139–143

    CAS  PubMed  Google Scholar 

  • Lee KS, Schottler F, Collins JL, Lanzino G, Couture D, Rao A et al (1997) A genetic animal model of human neocortical heterotopia associated with seizures. J Neurosci 17:6236–6242

    CAS  PubMed  Google Scholar 

  • Lee KS, Collins JL, Anzivino MJ, Frankel EA, Schottler F (1998) Heterotopic neurogenesis in a rat with cortical heterotopia. J Neurosci 18:9365–9375

    CAS  PubMed  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    CAS  PubMed  Google Scholar 

  • Lemire RJ, Loeser JJ, Leech RW, Alvord EC Jr (1975) Normal and abnormal development of the human nervous system. Harper & Row, Hagerstown

    Google Scholar 

  • Lena G, van Calenberg F, Genitori L, Choux M (1995) Supratentorial interhemispheric cysts associated with callosal agenesis: surgical treatment and outcome in 16 children. Childs Nerv Syst 11:568–573

    CAS  PubMed  Google Scholar 

  • Lent R, Uziel D, Baudrimont M, Fallet C (2005) Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses. J Comp Neurol 483:375–382

    PubMed  Google Scholar 

  • Letinić K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    PubMed  Google Scholar 

  • Leventer RJ, Dobyns WB (2003) Periventricular gray matter heterotopias: a heterogeneous group of malformations of cortical development. In: Barth PG (ed) Disorders of neuronal migration. Mac Keith, London, pp 72–82

    Google Scholar 

  • Levine D, Barnes PD (1999) Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology 210:751–758

    CAS  PubMed  Google Scholar 

  • Levitt P, Eagleson KL, Powell EM (2004) Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 27:400–406

    CAS  PubMed  Google Scholar 

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    CAS  PubMed  Google Scholar 

  • Ligon KL, Echelard Y, Assimacopoulos S, Danielian PS, Kaing S, Grove EA et al (2003) Loss of Emx function leads to ectopic expression of Wnt1 in the developing telencephalon and cortical dysplasia. Development 130:2275–2287

    CAS  PubMed  Google Scholar 

  • Lim C, Blume HW, Madsen JR, Saper CB (1997a) Connections of the hippocampal formation in humans. I. The mossy fiber pathway. J Comp Neurol 385:325–351

    CAS  PubMed  Google Scholar 

  • Lim C, Mufson EJ, Kordower JW, Blume HW, Madsen JR, Saper CB (1997b) Connections of the hippocampal formation in humans. II. The endfolial fiber pathway. J Comp Neurol 385:352–371

    CAS  PubMed  Google Scholar 

  • Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen YJ et al (2002) Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci U S A 99:16859–16864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livingstone MS, Rosen GD, Drislane FW, Galaburda AM (1991) Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc Natl Acad Sci U S A 88:7943–7947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loeser JD, Alvord EC Jr (1968) Agenesis of the corpus callosum. Brain 91:553–570

    CAS  PubMed  Google Scholar 

  • López-Bendito G, Molnár Z (2003) Thalamocortical development: how are we going to get there? Nat Rev Neurosci 4:276–289

    PubMed  Google Scholar 

  • López-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, Chédotal A et al (2007) Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci 27:3395–3407

    PubMed  Google Scholar 

  • Ludwig E, Klingler J (1956) Atlas cerebri humani. Karger, Basel

    Google Scholar 

  • Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146:18–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex 13:15–24

    PubMed  Google Scholar 

  • Luo R, Jeong S-J, Jin Z, Strokes N, Li S, Piao X (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108:12925–12930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luskin MB, Pearlman AL, Sanes JR (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1:635–647

    CAS  PubMed  Google Scholar 

  • Mai JK, Berger K, Sofroniew MV (1993) Morphometric evaluation of neurophysin-immunoreactivity in the human brain: Pronounced inter-individual variability and evidence for altered staining patterns in schizophrenia. J Hirnforsch 34:133–154

    CAS  PubMed  Google Scholar 

  • Mallamaci A, Mercurio S, Muzio L, Cecchi C, Pardini CL, Gruss P, Boncinelli E (2000) The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex. J Neurosci 20:1109–1118

    CAS  PubMed  Google Scholar 

  • Manoranjan B, Provias JP (2010) Hemimegalencephaly: a fetal case with neuropathological confirmation and review of the literature. Acta Neuropathol (Berl) 120:117–130

    Google Scholar 

  • Marcorelles P, Laquierrière A, Adde-Michel C, Marret S, Saugier-Veber P, Beldjord C, Friocourt G (2010) Evidence for tangential migration disturbances in human lissencephaly resulting from defects in LIS1, DCX and ARX genes. Acta Neuropathol (Berl) 120:503–515

    CAS  Google Scholar 

  • Marcotte A, Aronica E, Baybis M, Crino PB (2012) Cytoarchitectural alterations are widespread in cerebral cortex in tuberous sclerosis complex. Acta Neuropathol (Berl) 123:685–693

    Google Scholar 

  • Marín O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13:107–120

    PubMed  Google Scholar 

  • Marín O, Rubinstein JLR (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790

    PubMed  Google Scholar 

  • Marín O, Anderson SA, Rubinstein JLR (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076

    PubMed  Google Scholar 

  • Marín O, Yaron A, Bagri A, Tessier-Lavigne M, Rubinstein JLR (2001) Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293:872–875

    PubMed  Google Scholar 

  • Marín-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica): a Golgi study. I. The primordial neocortical organization. Z Anat Entw Gesch 134:117–145

    Google Scholar 

  • Marín-Padilla M (1972) Structural abnormalities of the cerebral cortex in human chromosomal aberrations. A Golgi study. Brain Res 44:625–629

    PubMed  Google Scholar 

  • Marin-Padilla M (1976) Pyramidal cell abnormalities in the motor cortex of a child with Down’s syndrome. A Golgi study. J Comp Neurol 167:63–82

    CAS  PubMed  Google Scholar 

  • Marín-Padilla M (1978) The dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109–126

    PubMed  Google Scholar 

  • Marín-Padilla M (1990) Origin, formation, and prenatal maturation of the human cerebral cortex: an overview. J Craniofac Genet Dev Biol 10:137–146

    PubMed  Google Scholar 

  • Marín-Padilla M (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J Comp Neurol 321:223–240

    PubMed  Google Scholar 

  • Marín-Padilla M (1996) Developmental neuropathology and impact of perinatal brain damage. I. Hemorrhagic lesions of neocortex. J Neuropathol Exp Neurol 55:758–773

    PubMed  Google Scholar 

  • Marín-Padilla M (1997) Developmental neuropathology and impact of perinatal brain damage. II. White matter lesions of neocortex. J Neuropathol Exp Neurol 56:219–235

    PubMed  Google Scholar 

  • Marín-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21:64–71

    PubMed  Google Scholar 

  • Marín-Padilla M (1999) Developmental neuropathology and impact of perinatal brain damage. III. Gray matter lesions of the neocortex. J Neuropathol Exp Neurol 58:407–429

    PubMed  Google Scholar 

  • Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82:477–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matelli M, Luppino G, Geyer S, Zilles K (2004) Motor cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 973–996

    Google Scholar 

  • McConnell SK, Kaznowski CE (1991) Cell cycle dependence of laminar determination in developing cerebral cortex. Science 254:282–285

    CAS  PubMed  Google Scholar 

  • McConnell SK, Ghosh A, Shatz CJ (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–982

    CAS  PubMed  Google Scholar 

  • McConnell SK, Ghosh A, Shatz CJ (1994) Subplate pioneers and the formation of descending connections from cerebral cortex. J Neurosci 14:1892–1907

    CAS  PubMed  Google Scholar 

  • Meencke H-J (2000) Diagnosis of cortical and subcortical dysplasias in epilepsy. In: Schmidt D, Schachter SC (eds) Epilepsy – problemsolving in clinical practice. Dunitz, London, pp 95–109

    Google Scholar 

  • Mesulam M-M (1985) Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In: Mesulam M-M (ed) Principles of behavioral neurology. Davis, Philadelphia, PA, pp 1–70

    Google Scholar 

  • Mesulam M-M (2000) Behavioral neuroanatomy: large-scale networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 1–120

    Google Scholar 

  • Mesulam M-M, Mufson EJ (1985) The insula of reil in man and monkey. Architectonics, connectivity and function. In: Peters A, Jones EG (eds) The cerebral cortex, vol 4. Plenum, New York, pp 179–226

    Google Scholar 

  • Meyer G (2007) Genetic control of neuronal migrations in human cortical development. Adv Anat Embryol Cell Biol 189:1–114

    PubMed  Google Scholar 

  • Meyer G (2010) Building a human cortex: the evolutionary differentiation of Cajal-Retzius cells and the cortical hem. J Anat (Lond) 217:334–343

    Google Scholar 

  • Meyer G, Goffinet AM (1998) Prenatal development of reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 397:29–40

    CAS  PubMed  Google Scholar 

  • Meyer G, Gonzalez-Hernandez T (1993) Developmental changes in layer I of the human neocortex during prenatal life: a DiI-tracing and AChE and NADPH-d histochemical study. J Comp Neurol 338:317–336

    CAS  PubMed  Google Scholar 

  • Meyer G, Wahle P (1999) The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur J Neurosci 11:3937–3944

    CAS  PubMed  Google Scholar 

  • Meyer G, Soria JM, Martínez-Galán JR, Martín-Clemente B, Fairén A (1998) Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J Comp Neurol 397:493–518

    CAS  PubMed  Google Scholar 

  • Meyer G, Goffinet AM, Fairén A (1999) What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb Cortex 9:765–775

    CAS  PubMed  Google Scholar 

  • Meyer G, Castro R, Soria JM, Fairén A (2000a) The subpial granular layer in the developing cerebral cortex of rodents. In: Goffinet AM, Rakic P (eds) Mouse brain development. Springer, Berlin/Heidelberg/New York, pp 277–291

    Google Scholar 

  • Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000b) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868

    CAS  PubMed  Google Scholar 

  • Meyer G, Pérez-García CG, Abraham H, Coput D (2002) Expression of p73 and Reelin in the developing human cortex. J Neurosci 22:4973–4986

    CAS  PubMed  Google Scholar 

  • Meyer G, Lambert de Rouvroit C, Goffinet AM, Wahle P (2003) Disabled-1 mRNA and protein expression in developing human cortex. Eur J Neurosci 17:517–525

    PubMed  Google Scholar 

  • Meynert T (1872) Vom Gehirne der Säugethiere. In: Stricker’s Handbuch der Lehre von den Geweben des Menschen und der Thiere, Vol 2. Engelmann, Leipzig, pp 694–808 (English translation by Putnam JJ (1872) Stricker S (ed) Manual of histology, William Wood, New York, pp 650–766)

    Google Scholar 

  • Miles JH (2011) Autism spectrum disorders – a genetics review. Genes Med 13:278–294

    Google Scholar 

  • Miles JH, Takahashi TN, Bagby S, Schota PK, Vaslow DF, Wang CH et al (2005) Essential versus complex autism: definition of fundamental prognostic subtypes. Am J Hum Genet 135:171–180

    CAS  Google Scholar 

  • Miller DT, Adams MP, Aradhya S, Biesecker LG, Brothman AR et al (2010) Consensus statement: chromosomal microarray is the first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mione MC, Cavanagh JFR, Harris B, Parnavelas JG (1997) Cell fate specification and symmetrical/asymmetrical divisions in the developing cerebral cortex. J Neurosci 17:2018–2029

    CAS  PubMed  Google Scholar 

  • Mirzaa GM, Conway RL, Gripp KW, Lorman-Sagic T, Siegel DH, de Vries LS et al (2012) Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am J Med Genet A 158:269–291

    Google Scholar 

  • Mirzaa GM, Rivière J-B, Dobyns WB (2013) Megalencephaly syndromes and activating mutations in the P13K-AKT pathway: MPPH and MCAP. Am J Med Genet C Semin Med Genet 163C:122–130

    PubMed  Google Scholar 

  • Mischel PS, Nguyen LP, Vinters HV (1995) Cerebral cortical dysplasias associated with pediatric epilepsy. Review of neuropathological features and proposal for a grading system. J Neuropathol Exp Neurol 54:137–153

    CAS  PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    CAS  PubMed  Google Scholar 

  • Miyata H, Chute DJ, Fink J, Villablanca P, Vinters HV (2004) Lissencephaly with agenesis of corpus callosum and rudimentary dysplastic cerebellum: a subtype of lissencephaly with cerebellar hypoplasia. Acta Neuropathol (Berl) 107:69–81

    Google Scholar 

  • Mizuguchi M, Takahashi S, Ikeda K, Kato M, Hori A (2002) Loss of doublecortin in heterotopic gray matter of a fetus with subcortical laminar heterotopia. Neurology 59:143–144

    CAS  PubMed  Google Scholar 

  • Mochida GH (2009) Genetics and biology of microcephaly and lissencephaly. Semin Pediatr Neurol 16:120–126

    PubMed  PubMed Central  Google Scholar 

  • Mochida GH, Walsh CA (2001) Molecular genetics of human microcephaly. Curr Opin Neurobiol 14:151–156

    CAS  Google Scholar 

  • Molnár Z, Adams R, Goffinet AM, Blakemore C (1998) The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse. J Neurosci 18:5746–5765

    PubMed  Google Scholar 

  • Molyneaux BJ, Arlotta P, Fame RM, MacDonald JL, MacQuarrie KL, Macklis JD (2009) Novel subtype-specific genes identify distinct populations of callosal projection neurons. J Neurosci 29:12343–12354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore CJ, Daly EM, Tassone F, Tysoe C, Schmitz N, Ng V et al (2004) The effect of pre-mutation of X chromosome CGG trinucleotide repeats on brain anatomy. Brain 127:2672–2681

    PubMed  Google Scholar 

  • Mori S, Wakana S, Nagae-Poetscher LM, van Zijl PC (2005) MRI atlas of human white matter. Elsevier, Amsterdam

    Google Scholar 

  • Morris-Rosendahl DJ, Segel R, Born AP, Conrad C, Loeys B, Brooks SS et al (2008) New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish. Eur J Hum Genet 18:1100–1106

    Google Scholar 

  • Mostofsky SH, Mazzocco MMM, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL (1998) Decreased cerebellar posterior vermis size in fragile X syndrome. Correlation with neurocognitive performance. Neurology 50:121–130

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    PubMed  Google Scholar 

  • Mrzljak L, Uylings HBM, Kostović I, van Eden CG (1988) Prenatal development of neurons in the human prefrontal cortex. I. A qualitative Golgi study. J Comp Neurol 271:355–386

    CAS  PubMed  Google Scholar 

  • Mrzljak L, Uylings HBM, van Eden CG, Judaš M (1990) Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog Brain Res 85:185–222

    CAS  PubMed  Google Scholar 

  • Muller RA (2007) The study of autism as a distributed disorder. Ment Retard Dev Disabil Res Rev 13:85–95

    PubMed  PubMed Central  Google Scholar 

  • Nadarajah B, Brunstrom JE, Grutzendler J, Wong ROL, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4:143–150

    CAS  PubMed  Google Scholar 

  • Nagano T, Morikubo S, Sato M (2004) Filamin A and FILIP (Filamin A-interacting protein) regulate cell polarity and motility in neocortical subventricular and intermediate zones during radial migration. J Neurosci 24:9648–9657

    CAS  PubMed  Google Scholar 

  • Naidu S (1997) Rett syndrome: a disorder affecting early brain growth. Ann Neurol 42:3–10

    CAS  PubMed  Google Scholar 

  • Naidu S, Bibat G, Kratz L, Kelley RI, Pevsner J, Hoffman E et al (2003) Clinical variability in Rett syndrome. J Child Neurol 18:662–668

    PubMed  Google Scholar 

  • Nance MA, Berry SA (1992) Cockayne syndrome: review of 140 cases. Am J Med Genet 42:68–84

    CAS  PubMed  Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1990) The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain 113:303–324

    PubMed  Google Scholar 

  • Neu RL, Kajii T, Gardner LI, Nagyfy SF, King S (1971) A lethal syndrome of microcephaly with multiple congenital anomalies in three siblings. Pediatrics 47:610–612

    CAS  PubMed  Google Scholar 

  • Newton JM, Ward NS, Parker GJM, Deichmann R, Alexander DC, Friston KJ, Frackowiak RSJ (2006) Non-invasive mapping of corticofugal fibres from multiple motor areas – relevance to stroke recovery. Brain 129:1844–1858

    PubMed  PubMed Central  Google Scholar 

  • Nguyen Ba-Charvet KT, Brose K, Marillat V, Kidd T, Goodman CS, Tessier-Lavigne M et al (1999) Slit2-mediated chemorepulsion and collapse of developing forebrain axons. Neuron 22:463–473

    CAS  PubMed  Google Scholar 

  • Nicolson RI, Fawcett AJ, Dean P (2001) A TINS debate – hindbrain versus the forebrain: a case for cerebellar deficit in developmental dyslexia. Trends Neurosci 24:508–516

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1994) The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol (Berl) 190:307–337

    CAS  Google Scholar 

  • Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (2013) The myeloarchitectonic studies on the human cerebral cortexof the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 218:303–352

    PubMed  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1988) The human central nervous system, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nikolic M, Dudek YT, Kwon YT, Ramos YFM, Tsai L-H (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev 7:816–825

    Google Scholar 

  • Nimchinski EA, Oberlander AM, Svoboda K (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21:5139–5146

    Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    CAS  PubMed  Google Scholar 

  • Noctor SC, Martínez-Cerdeňo V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    CAS  PubMed  Google Scholar 

  • Noctor SC, Martínez-Cerdeňo V, Kriegstein AR (2007) Contribution of intermediate progenitor cells to cortical histogenesis. Arch Neurol 64:639–642

    PubMed  Google Scholar 

  • Noctor SC, Martínez-Cerdeňo V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508:28–44

    PubMed  PubMed Central  Google Scholar 

  • Nopoulos PC, Giedd JN, Andreasen NC, Rapoport JL (1998) Frequency and severity of enlarged cavum septi pellucidi in childhood and schizophrenia. Am J Psychiatry 155:1074–1079

    CAS  PubMed  Google Scholar 

  • Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskitt KJ (1995) Congenital malformations of the brain. Pathological, embryological, clinical, radiological and genetic aspects. Oxford University Press, New York

    Google Scholar 

  • Nudo RJ, Masterton RB (1990) Descending pathways to the spinal cord. III. Sites of origin of the corticospinal tract. J Comp Neurol 296:559–583

    CAS  PubMed  Google Scholar 

  • O’Donnell WT, Warren ST (2002) A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 25:315–338

    PubMed  Google Scholar 

  • O’Leary DDM (1989) Do cortical areas emerge from a protocortex? Trends Neurosci 12:400–406

    PubMed  Google Scholar 

  • O’Leary DDM, Koester SE (1993) Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 10:991–1006

    PubMed  Google Scholar 

  • O’Leary DDM, Nakagawa Y (2002) Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr Opin Neurobiol 12:14–25

    PubMed  Google Scholar 

  • O’Leary DDM, Sahara S (2008) Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18:90–100

    PubMed  PubMed Central  Google Scholar 

  • O’Rahilly R, Müller F (1999) The embryonic human brain. An atlas of developmental stages, 2nd edn. Wiley, New York

    Google Scholar 

  • O’Rourke NA, Chenn A, McConnell SK (1997) Postmitotic neurons migrate tangentially in the cortical ventricular zone. Development 124:997–1005

    PubMed  Google Scholar 

  • Oba H, Barkovich AJ (1995) Holoprosencephaly: an analysis of callosal formation and its relation to development of the interhemispheric fissure. AJNR Am J Neuroradiol 16:453–456

    CAS  PubMed  Google Scholar 

  • Oeschger FM, Wang WZ, Lee S, García-Moreno F, Goffinet AM, Arbonés ML et al (2012) Gene expression analysis of the embryonic subplate. Cereb Cortex 22:1343–1359

    PubMed  Google Scholar 

  • Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K et al (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899–912

    CAS  PubMed  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna XX, Pant HC et al (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 93:11173–11178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X et al (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43:447–457

    PubMed  PubMed Central  Google Scholar 

  • Ono M, Kubik S, Abermathey CD (1990) Atlas of the cerebral sulci. Thieme, Stuttgart

    Google Scholar 

  • Overy K, Molnar-Szakacs I (2009) Being together in time: musical experience and the mirror neuron system. Music Percept 26:489–504

    Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    CAS  PubMed  Google Scholar 

  • Palmen SJMC, van Engeland H, Hof PR, Schmitz C (2004) Neuropathological findings in autism. Brain 127:2572–2583

    PubMed  Google Scholar 

  • Palmini A, Gambardella A, Andermann F, Dubeau F, da Costa JC, Olivier A et al (1995) Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 37:476–487

    CAS  PubMed  Google Scholar 

  • Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N et al (2004) Terminology and classification of the cortical dysplasias. Neurology 62:S2–S8

    CAS  PubMed  Google Scholar 

  • Pandya DN, Karol EA, Heilbronn D (1971) The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res 32:31–43

    CAS  PubMed  Google Scholar 

  • Parent JM (2007) Adult neurogenesis in the intact and epileptic dentate gyrus. Prog Brain Res 163:529–540

    CAS  PubMed  Google Scholar 

  • Parent JM, Lowenstein DH (1997) Mossy fiber reorganization in the epileptic hippocampus. Curr Opin Neurol 10:103–109

    CAS  PubMed  Google Scholar 

  • Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131

    CAS  PubMed  Google Scholar 

  • Parnavelas JG, Barfield JA, Franke E, Luskin MB (1991) Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. Cereb Cortex 1:463–468

    CAS  PubMed  Google Scholar 

  • Patel DR, Greydanus DE, Calles JL Jr, Pratt HD (2010) Developmental disabilities across the lifespan. Dis Mon 56:304–397

    PubMed  Google Scholar 

  • Paul LK, Brown WS, Adolphs R, Tyszka M, Richards LJ, Mukherjee P, Sgerr EH (2007) Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8:287–299

    CAS  PubMed  Google Scholar 

  • Pearlman AL, Faust PL, Hatten ME, Brunstrom JE (1998) New directions for neuronal migration. Curr Opin Neurobiol 8:45–54

    CAS  PubMed  Google Scholar 

  • Pena SDJ, Shokeir MHK (1974) Autosomal recessive cerebro-oculo-facio-skeletal (COFS) syndrome. Clin Genet 5:285–293

    CAS  PubMed  Google Scholar 

  • Penzes P, Cahill ME, Jones KA, Vanleeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perani D, Saccuman MC, Scifo P, Anwander A, Spada D, Baldoli C et al (2011) The neural language networks at birth. Proc Natl Acad Sci U S A 108:16056–16061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pilz DT, Matsumoto N, Minnerath S, Mills P, Gleeson JG, Allen KM et al (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 13:2029–2037

    Google Scholar 

  • Pilz D, Stoodley N, Golden JA (2002) Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. J Neuropathol Exp Neurol 61:1–11

    PubMed  Google Scholar 

  • Pinard J-M, Feydy A, Carlier R, Perez N, Pierot L, Burnod Y (2000) Functional MRI in double cortex: functionality of heterotopia. Neurology 54:1531–1533

    CAS  PubMed  Google Scholar 

  • Pirozzi T, Tabolazzi E, Neri G (2011) The FRAXopathies: definition, overview and update. Am J Med Genet A 155:1803–1816

    CAS  Google Scholar 

  • Poliakov GI (1949) Structural organisation of the human cerebral cortex during ontogenetic development. In: Sarkissov SA, Filimonoff IN, Preobraschenskaja SN (eds) Cytoarchitectonics of the cerebral cortex in man. Medgiz, Moscow, pp 33–92 (in Russian)

    Google Scholar 

  • Poliakov GI (1959) Progressive neuron differentiation of the human cerebral cortex in ontogenesis. In: Sarkissov SA, Preobraschenskaja SN (eds) Development of the central nervous system. Medgiz, Moscow, pp 11–26 (in Russian)

    Google Scholar 

  • Poliakov GI (1965) Development of the cerebral neocortex during the first half of intrauterine life. In: Sarkissov SA (ed) Development of the Child’s brain. Medicina, Leningrad, pp 22–52 (in Russian)

    Google Scholar 

  • Porter R, Lemon R (1993) Corticospinal function and voluntary movements. Monographs of the physiological society, vol 45. Clarendon, Oxford

    Google Scholar 

  • Porter BE, Brooks-Kayal A, Golden JA (2002) Disorders of cortical development and epilepsy. Arch Neurol 59:361–365

    PubMed  Google Scholar 

  • Poussaint TY, Fox JW, Dobyns WB, Radtke R, Scheffer IE, Berkovic SF et al (2000) Periventricular nodular heterotopia in a patiënt with filamin-1 gene mutation: neuroimaging findings. Pediatr Radiol 30:748–755

    CAS  PubMed  Google Scholar 

  • Povey S, Burley M, Attwood J, Benham F, Hunt D, Jeremiah SJ et al (1994) Two loci for tuberous sclerosis: one on 9q34 and one on 16p13. Ann Hum Genet 58:107–127

    CAS  PubMed  Google Scholar 

  • Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P (2003) Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci 23:622–631

    CAS  PubMed  Google Scholar 

  • Powers RE (1999) The neuropathology of schizophrenia. J Neuropathol Exp Neurol 58:679–690

    CAS  PubMed  Google Scholar 

  • Prayer D, Kasprian G, Krampl E, Ulm B, Witzani L, Prayer L, Brugger PC (2006) MRI of normal fetal brain development. Eur J Radiol 57:199–216

    PubMed  Google Scholar 

  • Price DJ, Thurlow L (1988) Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 104:473–482

    CAS  PubMed  Google Scholar 

  • Price DJ, Willshaw DJ (2000) Mechanisms of cortical development. Monographs of the physiological society, vol 48. Oxford University Press, Oxford

    Google Scholar 

  • Price DJ, Aslam S, Tasker L, Gillies K (1997) The fates of the earliest generated cells in the developing murine neocortex. J Comp Neurol 377:414–422

    CAS  PubMed  Google Scholar 

  • Probst M (1901) Ueber den Bau des vollständig balkenlosen Grosshirnes sowie über Mikrogyrie und Heterotopie der grauen Substanz. Arch Psychiatry 34:709–786

    Google Scholar 

  • Pujol J (2006) Myelination of language-related networks at birth. Neurology 66:339–343

    CAS  PubMed  Google Scholar 

  • Purpura DP (1974) Dendritic spine ‘dysgenesis’ and mental retardation. Science 186:1126–1128

    CAS  PubMed  Google Scholar 

  • Purpura DP (1975a) Dendritic differentiation in human cerebral cortex: normal and aberrant developmental patterns. Adv Neurol 12:91–116

    CAS  PubMed  Google Scholar 

  • Purpura DP (1975b) Normal and aberrant neuronal development in the cerebral cortex of human fetus and young infant. In: Buchwald NA, Brazier MAB (eds) Brain mechanisms and mental retatdation. Academic, New York, pp 141–169

    Google Scholar 

  • Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: Implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329

    CAS  PubMed  Google Scholar 

  • Rademacher J, Bürgel U, Geyer S, Schormann T, Schleicher A, Freund H-J, Zilles K (2001) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124:2232–2258

    CAS  PubMed  Google Scholar 

  • Radoš M, Judaš M, Kostović I (2006) In vitro MRI of brain development. Eur J Radiol 57:187–198

    PubMed  Google Scholar 

  • Raedler E, Raedler A (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat Embryol (Berl) 154:267–284

    CAS  Google Scholar 

  • Raedler TJ, Knable MB, Weinberger DR (1998) Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 8:157–161

    CAS  PubMed  Google Scholar 

  • Ragsdale CW, Grove EA (2001) Patterning the mammalian cerebral cortex. Curr Opin Neurobiol 11:50–58

    CAS  PubMed  Google Scholar 

  • Rajarethinam R, Miedler J, De Quardo J, Smet CI, Brunberg J, Kirbat R, Tandon R (2001) Prevalence of cavum septum pellucidum in schizophrenics studied with MRI. Schizophr Res 48:201–205

    CAS  PubMed  Google Scholar 

  • Rakic P (1974) Neurons in rhesus monkey visual cortex: systemic relation between time of origin and eventual disposition. Science 183:425–427

    CAS  PubMed  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176

    CAS  PubMed  Google Scholar 

  • Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388

    CAS  PubMed  Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132:45–72

    CAS  PubMed  Google Scholar 

  • Ramakers GJA (2002) Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci 25:191–199

    CAS  PubMed  Google Scholar 

  • Ramón y Cajal S (1891) Sur la structure de l’écorce cérébrale de quelques mammifères. Cellule 7:123–176

    Google Scholar 

  • Ramus F (2004) Neurobiology of dyslexia: a reinterpretation of the data. Trends Neurosci 27:720–726

    CAS  PubMed  Google Scholar 

  • Ramus F, Rosen S, Dakin SC, Day BL, Castelletto JM, White S, Frith U (2003) Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain 126:841–865

    PubMed  Google Scholar 

  • Ranke G (1910) Beiträge zur Kenntnis der normalen und pathologischen Hirnrindenbildung. Ziegl Beitr Path Anat 47:51–125

    Google Scholar 

  • Ranson SW, Clark SL (1959) The anatomy of the nervous system. Its development and function. Saunders, Philadelphia

    Google Scholar 

  • Rash BG, Richards LJ (2001) A role for cingulate pioneering axons in the development of the corpus callosum. J Comp Neurol 434:147–157

    CAS  PubMed  Google Scholar 

  • Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayer T et al (2012) Range of genetic mutations associated with severe non-syndromic spradic intellectual disability: an exome sequencing study. Lancet 380:1674–1682

    CAS  PubMed  Google Scholar 

  • Rauschecker AM, Deutsch GK, Ben-Shachar M, Schwartman A, Perry LM, Dougherty RF (2009) Reading impairment in a patient with missing arcuate fasciculus. Neuropsychologia 47:180–194

    PubMed  PubMed Central  Google Scholar 

  • Raybaud CA (2010) The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformations. Neuroradiology 52:447–477

    PubMed  Google Scholar 

  • Raybaud CA, Girard N (1998) Étude anatomique par IRM des agénésies et dysplasies commissurales télencéphaliques. Neurochirurgie 44(Suppl 1):38–60

    CAS  PubMed  Google Scholar 

  • Raybaud CA, Girard N (1999) The developmental disorders of the commissural plate of the telencephalon: MR imaging study and morphologic classification. Nerv Syst Child 24:348–357

    Google Scholar 

  • Raymond AA, Fish DR, Stevens JM, Sisodiya SM, Alsanjari N, Shorvon SD (1994) Subependymal heterotopia: a distinct neuronal migration disorder associated with epilepsy. J Neurol Neurosurg Psychiatry 57:1195–1202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reid CB, Liang I, Walsh C (1995) Systematic widespread clonal organization in cerebral cortex. Neuron 15:299–310

    CAS  PubMed  Google Scholar 

  • Reillo I, de Juan RC, Garcia-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21:1674–1694

    PubMed  Google Scholar 

  • Reiss AL, Aylward E, Freund LS, Joshi PK, Bryan RN (1991a) Neuroanatomy of fragile X syndrome: the posterior fossa. Ann Neurol 29:26–32

    CAS  PubMed  Google Scholar 

  • Reiss AL, Freund L, Tseng JE, Joshi PK (1991b) Neuroanatomy in fragile X females: the posterior fossa. Am J Hum Genet 49:279–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss AL, Faruque F, Naidu S, Abrams M, Beaty T, Bryan RN, Moser H (1993) Neuroanatomy of Rett syndrome: a volumetric imaging study. Ann Neurol 34:227–234

    CAS  PubMed  Google Scholar 

  • Ren T, Anderson A, Shen WB, Huang H, Plachez C, Zhang J et al (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing fetal brain. Anat Rec 288:191–204

    Google Scholar 

  • Rett A (1966) Über ein zerebral-atrophisches Syndrom bei Hyperammonemie. Wien Med Wochenschr 116:723–726

    CAS  PubMed  Google Scholar 

  • Retzius G (1893) Die Cajal’schen Zellen der Grosshirnrinde beim Menschen und bei Säugetieren. Biol Unter Neue Folge 5:1–8

    Google Scholar 

  • Retzius G (1894) Weitere Beiträge zur Kenntnis der Cajal’schen Zellen der Grosshirnrinde des Menschen. Biol Unters Neue Folge 6:29–36

    Google Scholar 

  • Reyniers E, Martin J-J, Cras P, Van Marck E, Handig I, Jorens HRJ et al (1999) Postmortem examination of two fragile X brothers with an FMR1 full mutation. Am J Med Genet 84:245–249

    CAS  PubMed  Google Scholar 

  • Rice DS, Curran T (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24:1005–1039

    CAS  PubMed  Google Scholar 

  • Richter W (1980) Neurohistologische und morphometrische Untersuchungen der Ontogenese der Regio cingularis mesoneocorticalis der Ratte. J Hirnforsch 21:53–87

    CAS  PubMed  Google Scholar 

  • Rickmann M, Chronwall BM, Wolff JR (1977) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat Embryol (Berl) 151:285–307

    CAS  Google Scholar 

  • Rico B, Marín O (2011) Neuroregulin signaling, cortical circuitry development and schizophrenia. Curr Opin Genet Dev 21:262–270

    CAS  PubMed  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TEJ (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    CAS  PubMed  Google Scholar 

  • Robain O, Gelot A (1996) Neuropathology of hemimegalencephaly. In: Guerrini R, Andermann F, Canapicchi R, Roger J, Zifkin BG, Pfanner P (eds) Dysplasia of cerebral cortex and epilepsy. Lippincott-Raven, Philadelphia, PA, pp 89–92

    Google Scholar 

  • Robain O, Floquet J, Heldt N, Rozemberg F (1988) Hemimegalencephaly: a clinicopathological study of four cases. Neuropathol Appl Neurobiol 14:125–135

    CAS  PubMed  Google Scholar 

  • Roland PE, Zilles K (1996) Functions and structures of the motor cortices in humans. Curr Opin Neurobiol 6:773–781

    CAS  PubMed  Google Scholar 

  • Ropers H-H (2010) Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet 11:161–187

    CAS  PubMed  Google Scholar 

  • Ropers H-H, Hamel B (2005) XLMR. Nat Rev Genet 6:46–58

    CAS  PubMed  Google Scholar 

  • Ropers H-H, Hoeltzenbein M, Kalscheuer V, Yntema H, Hamel B, Fryns J-P et al (2003) Nonsyndromic X-linked mental retardation: where are the missing mutations? Trends Genet 19:316–320

    CAS  PubMed  Google Scholar 

  • Rose M (1927a) Der Allocortex bei Tier und Mensch. I Teil J Psychol Neurol (Lpz) 34:1–111

    Google Scholar 

  • Rose M (1927b) Die sog. Riechrinde beim Menschen und beim Affen. II. Teil des “Allocortex bei Tier und Mensch”. J Psychol Neurol (Lpz) 34:261–401

    Google Scholar 

  • Rose J (1938) Zur normalen und pathologischen Architektonik der Ammonsformation. J Psychol Neurol (Lpz) 49:137–192

    Google Scholar 

  • Ross CA, Pearlson GD (1996) Schizophrenia, the heteromodal association neocortex and development: potential for a neurogenetic approach. Trends Neurosci 19:171–176

    CAS  PubMed  Google Scholar 

  • Ross ME, Walsh CA (2001) Human brain malformations and their lessons for neuronal migration. Annu Rev Neurosci 24:1041–1070

    CAS  PubMed  Google Scholar 

  • Ross ME, Swanson K, Dobyns WB (2001) Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformation. Neuropediatrics 32:256–263

    CAS  PubMed  Google Scholar 

  • Rubinstein JLR (2010) Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Curr Opin Neurol 23:118–123

    Google Scholar 

  • Rubinstein JLR, Anderson S, Shi L, Miyashita-Lin E, Bulfone A, Hevner R (1999) Genetic control of cortical regionalization and connectivity. Cereb Cortex 9:524–532

    Google Scholar 

  • Rudelli RD, Brown WT, Wisniewski K, Jenkins EC, Laure-Kamionowska M, Connell F, Wisniewski HM (1985) Adult fragile X syndrome. Clinico-neuropathologic findings. Acta Neuropathol (Berl) 67:289–295

    CAS  Google Scholar 

  • Ruoss K, Lövblad K, Schroth G, Moessinger AC, Fusch C (2001) Brain development (sulci and gyri) as assessed by early postnatal MR imaging in preterm and term newborn infants. Neuropediatrics 32:69–74

    CAS  PubMed  Google Scholar 

  • Sahyoun CP, Belliveau JW, Soulieres I, Schwartz S, Mody M (2009) Neuroimaging of functional and structural networks underlying visuospatial vs. linguistic reasoning in high-functioning autism. Neuropsychologia 48:86–95

    Google Scholar 

  • Saito Y, Kobayashi M, Itoh M, Saito K, Mizuguchi M, Sasaki H et al (2003) Aberrant neuronal migration in the brainstem of Fukuyama-type congenital muscular dystrophy. J Neuropathol Exp Neurol 62:497–508

    PubMed  Google Scholar 

  • Saitoh O, Karns CM, Courchesne E (2001) Development of the hippocampal formation from 2 to 42 years. MRI evidence of smaller area dentata in autism. Brain 124:1317–1324

    CAS  PubMed  Google Scholar 

  • Sanchez MP, Frassoni C, Alvarez-Bolado G, Spreafico R, Fairén A (1992) Distribution of calbindin and parvalbumin in the developing somatosensory cortex and its primordium in the rat: an immunocytochemical study. J Neurocytol 21:717–736

    CAS  PubMed  Google Scholar 

  • Sanes JR, Yamagata M (1999) Formation of lamina-specific synaptic connections. Curr Opin Neurobiol 9:79–97

    CAS  PubMed  Google Scholar 

  • Santavuori P, Somer H, Sainio K, Rapola J, Kruus S, Nikitin T et al (1989) Muscle-eye-brain disease (MEB). Brain Dev 11:147–153

    CAS  PubMed  Google Scholar 

  • Sarkissov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja SN, Kukuew LA (1955) Atlas of the cytoarchitecture of the human cerebral cortex. Medgiz, Moscow

    Google Scholar 

  • Sarwar M (1989) The septum pellucidum: normal and abnormal. Am J Neuroradiol 10:989–1005

    CAS  PubMed  Google Scholar 

  • Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vay M-S et al (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci U S A 105:18035–18040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saur D, Schelter B, Schnell S, Kratochvil D, Kupper H, Kellmeyer P et al (2010) Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension. Neuroimage 49:3187–3197

    PubMed  Google Scholar 

  • Schaefer GB, Bodensteiner JB, Thompson JN (1994) Subtle anomalies of the septum pellucidum and neurodevelopmental deficits. Dev Med Child Neurol 36:554–559

    CAS  PubMed  Google Scholar 

  • Schanen NC, Kurczynski TW, Brunelle D, Woodcock MM, Dure LS, Percy AK (1998) Neonatal encephalopathy in two boys in families with recurrent Rett syndrome. J Child Neurol 13:229–231

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New York

    Google Scholar 

  • Schmahmann JD, Pandya DN (2008) Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Corte 44:1037–1066

    Google Scholar 

  • Schmitt JE, Eliez S, Bellugi U, Reiss AL (2001) Analysis of cerebral shape in Williams syndrome. Arch Neurol 58:283–287

    CAS  PubMed  Google Scholar 

  • Schottler F, Couture D, Rao A, Kahn H, Lee KS (1998) Subcortical connections of normotopic and heterotopic neurons in sensory and motor cortices of the tish mutant rat. J Comp Neurol 395:29–42

    CAS  PubMed  Google Scholar 

  • Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679

    CAS  PubMed  Google Scholar 

  • Scott BS, Becker LE, Petit TL (1983) Neurobiology of Down’s syndrome. Prog Neurobiol 21:199–237

    CAS  PubMed  Google Scholar 

  • Scott TF, Price TRP, George MS, Brillman J, Rothfus W (1993) Midline cerebral malformation and schizophrenia. J Neuropsychiatry Clin Neurosci 5:287–293

    CAS  PubMed  Google Scholar 

  • Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Levigne M (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87:1001–1014

    CAS  PubMed  Google Scholar 

  • Seress L (2007) Comparative anatomy of he hippocampal dentate gyrus in adult and developing rodents, non-human primates and humans. Prog Brain Res 163:23–41

    PubMed  Google Scholar 

  • Seress L, Ábrahám H, Tornóczky T, Kosztolányi G (2001) Cell formation in the human hippocampal formation from mid-gestation to the late postnatal period. Neuroscience 105:831–843

    CAS  PubMed  Google Scholar 

  • Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60:56–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahbazian MD, Zoghbi HY (2002) Rett syndrome and MeCP2: Linking epigenetics and neuronal function. Am J Hum Genet 71:1259–1272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw CM, Alvord EC Jr (1969) Cava septi pellucidi et Vergae: their normal and pathological states. Brain 92:213–224

    CAS  PubMed  Google Scholar 

  • Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K et al (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733

    CAS  PubMed  Google Scholar 

  • Shepherd GMG, Katz DM (2011) Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr Opin Neurobiol 21:827–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd MM, Özarslan E, Yachnis AT, King MA, Blackband SJ (2007) Diffusion tensor microscopy indicates the cytoarchitectural basis for diffusion anisotropy in the human hippocampus. AJNR Am J Neuroradiol 28:958–964

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Miyagi T, Yoshida M, Miyata T, Ogawa M, Aizawa S, Suda Y (2002) Absence of Cajal-Retzius cells and subplate neurons associated with defects of tangential cell migration from ganglionic eminence in Emx1/2 double nutant cerebral cortex. Development 129:3479–3492

    CAS  PubMed  Google Scholar 

  • Short MP, Richardson EP, Haines J, Kwiatkowski DJ (1995) Clinical, neuropathological, and genetic aspects of the tuberous sclerosis complex. Brain Pathol 5:173–179

    CAS  PubMed  Google Scholar 

  • Shu T, Richards LJ (2001) Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 21:2749–2758

    CAS  PubMed  Google Scholar 

  • Shu T, Li Y, Keller A, Richards LJ (2003a) The glial sling is a migratory population of developing neurons. Development 130:2929–2937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shu T, Butz KG, Pachez C, Gronostajski RM, Richards LJ (2003b) Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice. J Neurosci 23:203–212

    CAS  PubMed  Google Scholar 

  • Shu T, Sundaresan V, McCarthy MM, Richards LJ (2003c) Slit2 guides both precrossing and postcrossing axons at the midline in vivo. J Neurosci 23:8176–8184

    CAS  PubMed  Google Scholar 

  • Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Thomas, Springfield, IL, pp 3–145

    Google Scholar 

  • Silver J (1993) Glia-neuron interactions at the midline of the developing mammalian brain and spinal cord. Perspect Dev Neurobiol 1:227–236

    CAS  PubMed  Google Scholar 

  • Silver J, Lorenz S, Wahlsten D, Coughlin J (1982) Axonal guidance during development of the great commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210:10–29

    CAS  PubMed  Google Scholar 

  • Sisodiya SM (2000) Surgery for malformations of cortical development causing epilepsy. Brain 123:1075–1091

    PubMed  Google Scholar 

  • Sisodiya SM, Fauser S, Cross JH, Thom M (2009) Focal cortical dysplasia type II: biological features and clinical perspectives. Lancet Neurol 8:830–843

    PubMed  Google Scholar 

  • Skutella I, Nitsch R (2001) New molecules for hippocampal development. Trends Neurosci 24:107–113

    CAS  PubMed  Google Scholar 

  • Smart IHM, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat (Lond) 134:415–442

    CAS  Google Scholar 

  • Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53

    PubMed  PubMed Central  Google Scholar 

  • Smith KM, Ohkuba Y, Maragnoli ME, Rasin MR, Schwartz ML, Sestan N, Vaccarino FM (2006) Midline radial glial translocation and corpus callosum formation require FGF signaling. Nat Neurosci 9:787–797

    CAS  PubMed  Google Scholar 

  • Solodkin A, Van Hoesen GW (1996) Entorhinal cortex modules of the human brain. J Comp Neurol 365:610–627

    CAS  PubMed  Google Scholar 

  • Sommer W (1880) Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiatry 10:631–675

    Google Scholar 

  • Soriano E, Cobas A, Fairén A (1989) Neurogenesis of glutamic acid decarboxylase immunoreactive cells in the hippocampus of the mouse. I: regio superior and regio inferior. J Comp Neurol 281:586–602

    CAS  PubMed  Google Scholar 

  • Soriano E, Del Rio JA, Martinez A, Supèr H (1994) Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characteristics of neuronal populations in the subplate and marginal zone. J Comp Neurol 340:1–25

    Google Scholar 

  • Spreafico R, Blümcke I (2010) Focal cortical dysplasias: clinical implication of neuropathological classification systems. Acta Neuropathol (Berl) 120:359–367

    Google Scholar 

  • Spreafico R, Frassoni C, Arcelli P, Selvaggio M, De Biasi S (1995) In situ labeling of apoptotic cell death in the cerebral cortex and thalamus of rats during development. J Comp Neurol 363:281–295

    CAS  PubMed  Google Scholar 

  • Spreafico R, Pasquier B, Minotti L, Garbelli R, Kahane P, Grand S et al (1998) Immunocytochemical investigation on dysplastic human tissue from epileptic patients. Epilepsy Res 32:34–48

    CAS  PubMed  Google Scholar 

  • Spreafico R, Arcelli P, Frassoni C, Canetti P, Giaccone G, Rizzuti T et al (1999) Development of layer I of the human cerebral cortex after midgestation: architectonic findings, immunocytochemical identification of neurons and glia, and in situ labeling of apoptotic cells. J Comp Neurol 410:126–142

    CAS  PubMed  Google Scholar 

  • Squier W, Jansen A (2010) Abnormal development of the human cerebral cortex. J Anat (Lond) 217:312–323

    Google Scholar 

  • Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892

    PubMed  PubMed Central  Google Scholar 

  • Stein J, Walsh V (1997) To see but not to read; the magnocellular theory of dyslexia. Trends Neurosci 20:147–152

    CAS  PubMed  Google Scholar 

  • Stein E, Savashan NE, Ninnemann O, Nitsch R, Zhou R, Skutella T (1999) A role for the Eph ligand ephrin A3 in entorhino-hippocampal axon targeting. J Neurosci 19:8885–8893

    CAS  PubMed  Google Scholar 

  • Stephan H (1975) Allocortex. Handbuch der mikroskopischen Anatomie des Menschen, vol 4, Teil 9. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Steup A, Lohrum M, Hamsho N, Savashan NE, Ninnemann O, Nitsch R et al (2000) Semaphorin 3C and netrin-1 differentially affect axon growth in the hippocampal formation. Mol Cell Neurosci 15:141–155

    CAS  PubMed  Google Scholar 

  • Subramaniam B, Naidu S, Reiss AL (1997) Neuroanatomy in Rett syndrome: cerebral cortex and posterior fossa. Neurology 48:399–407

    CAS  PubMed  Google Scholar 

  • Supèr H, Soriano E (1994) The organization of the embryonic and early postnatal murine hippocampus. II. Development of entorhinal, commissural, and septal connections studied with the lipophilic tracer DiI. J Comp Neurol 344:101–120

    PubMed  Google Scholar 

  • Supèr H, Uylings HBM (2001) The early differentiation of the neocortex: a hypothesis on neocortical evolution. Cereb Cortex 11:1101–1109

    PubMed  Google Scholar 

  • Supèr H, Martínez A, Del Rio JA, Soriano E (1998a) Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus. J Neurosci 18:4616–4626

    PubMed  Google Scholar 

  • Supèr H, Soriano E, Uylings HBM (1998b) The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Res Rev 27:40–64

    PubMed  Google Scholar 

  • Supprian T, Sian J, Heils A, Hoffmann E, Warmuth-Metz M, Solymosi L (1999) Isolated absence of the septum pellucidum. Neuroradiology 41:563–566

    CAS  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (2003) Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe. Neuroscience 120:893–906

    CAS  PubMed  Google Scholar 

  • Sweet HO, Bronson RT, Johnson KR, Cook SA, Davisson MT (1996) Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm Genome 7:798–802

    CAS  PubMed  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1995a) The cell cycle of the pseudostratified ventricular epithelium of the murine cerebral wall. J Neurosci 15:6046–6057

    CAS  PubMed  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1995b) Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosci 15:6058–6068

    CAS  PubMed  Google Scholar 

  • Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464

    PubMed  PubMed Central  Google Scholar 

  • Takiguchi-Hayashi K, Sekiguchi M, Ashigaki S, Takamatsu M, Hasegawa H, Suzuki-Migishima R et al (2004) Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J Neurosci 24:2286–2295

    CAS  PubMed  Google Scholar 

  • Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A et al (2012) Sequencing chromosomal abnormalities reveals neurosevelopmental loci that confer across diagnostic boundaries. Cell 149:525–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talos DM, Kwiatkowski DJ, Cordero K, Black PM, Jensen FE (2008) Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers. Ann Neurol 63:454–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S-S, Kalloniatis M, Sturm K, Tam PPL, Reese BE, Faulkner-Jones B (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21:295–304

    CAS  PubMed  Google Scholar 

  • Tanaka D, Nakaya Y, Yanagawa Y, Obata K, Murakami F (2003) Multimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins. Development 130:5803–5813

    CAS  PubMed  Google Scholar 

  • Tassi L, Garbelli R, Colombo N, Bramerio M, Lo Russo G, Deleo F et al (2010) Type I focal cortical dysplasia: surgical outcome is related to histopathology. Epileptic Disord 12:181–191

    PubMed  Google Scholar 

  • ten Donkelaar HJ (2000) Development and regenerative capacity of descending supraspinal pathways in tetrapods: a comparative approach. Adv Anat Embryol Cell Biol 154:1–145

    Google Scholar 

  • ten Donkelaar HJ, Wesseling P, Semmekrot BA, Liem KD, Tuerlings J, Cruysberg JRM, de Wit PEJ (1999) Severe, non X-linked congenital microcephaly with absence of the pyramidal tracts in two saiblings. Acta Neuropathol (Berl) 98:203–211

    Google Scholar 

  • ten Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Rotteveel J (2004) Development and malformations of the human pyramidal tract. J Neurol 251:1429–1442

    PubMed  Google Scholar 

  • ten Donkelaar HJ, Brabec J, Lammens M, Küsters B, Hashizume Y, Hori A (2011a) The limbic system. In: ten Donkelaar HJ (ed) Clinical neuroanatomy: brain circuitry and its disorders. Springer, Berlin Heidelberg New York, pp 633–710

    Google Scholar 

  • ten Donkelaar HJ, van Domburg P, Eling P, Keyser A, Küsters B, Hori A (2011b) The cerebral cortex and complex cerebral functions. In: ten Donkelaar HJ (ed) Clinical neuroanatomy: brain circuitry and its disorders. Springer, Berlin Heidelberg New York, pp 711–809

    Google Scholar 

  • Terashima T (1995) Anatomy, development and lesion-induced plasticity of rodent corticospinal tract. Neurosci Res 22:139–161

    CAS  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Kinkingnéhun S, Delmaire C, Lehéricy S, Duffau H, Thivard L et al (2008) Visualization of disconnection syndromes in humans. Cortex 44:1097–1103

    PubMed  Google Scholar 

  • Thirumalai SS, Shubin RA, Robinson R (2002) Rapid eye movement sleep behavior disorder in children with autism. J Child Neurol 17:173–178

    PubMed  Google Scholar 

  • Thom M, Sisodiya SM, Harkness W, Scaravilli F (2001) Microdysgenesis in temporal lobe epilepsy. A quantitative and immunohistochemical study of white matter neurones. Brain 124:2299–2309

    CAS  PubMed  Google Scholar 

  • Thom M, Sisodiya SM, Beckett A, Martinian L, Lin W-R, Harkness W et al (2002) Cytoachitectural abnormalities in hippocampal sclerosis. J Neuropathol Exp Neurol 61:510–519

    PubMed  Google Scholar 

  • Thom M, Eriksson S, Martinian L, Caboclo LO, McEvoy AW, Duncan JS, Sisodiya SM (2009) Temporal lobe sclerosis associated with hippocampal sclerosis in temporal lobe epilepsy: neuropathological features. J Neuropathol Exp Neurol 68:928–938

    PubMed  PubMed Central  Google Scholar 

  • Thom M, Blümcke I, Aronica E (2012) Long-term epilepsy-associated tumors. Brain Pathol 22:356–379

    Google Scholar 

  • Thomaidou D, Mione MC, Cavanagh JFR, Parnavelas JG (1997) Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J Neurosci 17:1075–1085

    CAS  PubMed  Google Scholar 

  • Thornton GK, Woods CG (2009) Primary microcephaly: do all roads lead to Rome? Trends Genet 25:501–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tinkle BT, Schorry EK, Franz DN, Crone KR, Saal HM (2005) Epidemiology of hemimegalencephaly: a case series and review. Am J Med Genet A 139A:204–211

    Google Scholar 

  • Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4:496–505

    CAS  PubMed  Google Scholar 

  • Toda T, Kobayashi K, Takeda S, Sasaki J, Kurahashi H, Kano H et al (2003) Fukuyama-type congenital muscular dystrophy (FCMD) and α–dystroglycanopathy. Cong Anom 43:97–104

    CAS  Google Scholar 

  • Tole S, Gutin G, Bhatnager L, Remedios R, Hebert JM (2006) Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Dev Biol 289:141–151

    CAS  PubMed  Google Scholar 

  • Tomaiuolo F, Di Paola M, Caravale B, Vicari S, Petrides M, Caltagirone C (2002) Morphology and morphometry of the corpus callosum in Williams syndrome: a T10weigted MRI study. Neuroreport 13:2281–2284

    CAS  PubMed  Google Scholar 

  • Toniolo D, D’Adamo P (2000) X-linked non-specific mental retardation. Curr Opin Genet Dev 10:280–285

    CAS  PubMed  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Sheldon J, Stockinger W, Nimpf J et al (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701

    CAS  PubMed  Google Scholar 

  • Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1:352–358

    PubMed  Google Scholar 

  • Türe U, Yaşargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspects of the brain. Neuroimaging 47:417–427

    Google Scholar 

  • Tyzio R, Represa A, Jorquera I, Ben-Ari Y, Hozlan H, Anikszteyn L (1999) The establishment of GABAergic and glutaminergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J Neurosci 19:10372–10382

    CAS  PubMed  Google Scholar 

  • Ulfig N, Chan WY (2002) Axonal patterns in the prosencephalon of the human developing brain. Neuroembryology 1:4–16

    CAS  Google Scholar 

  • Ulfig N, Szabo A, Bohl J (2001) Effects of fetal hydrocephalus on the distribution patterns of calcium-binding proteins in the human occipital cortex. Pediatr Neurosurg 34:20–32

    CAS  PubMed  Google Scholar 

  • Utsunomiya H, Ogasawara T, Hayashi T, Hashimoto T, Okazaki M (1997) Dysgenesis of the corpus callosum and associated telencephalic anomalies: MRI. Neuroradiology 39:302–310

    CAS  PubMed  Google Scholar 

  • Uylings HBM (2001) The human cerebral cortex in development. In: Kalverboer AF, Gramsbergen A (eds) Handbook of brain and behaviour in human development. Kluwer, Dordrecht, pp 63–80

    Google Scholar 

  • Uylings HBM, Delalle I, Petanjek Z, Koenderink MJT (2002) Structural and immunocytochemical differentiation of neurons in prenatal and postnatal human prefrontal cortex. Neuroembryology 1:176–186

    Google Scholar 

  • Valiente M, Marín O (2010) Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 20:68–78

    CAS  PubMed  Google Scholar 

  • van Bokhoven H (2011) Genetic and epigenetic networks in intellectual disabilities. Annu Rev Genet 45:81–104

    PubMed  Google Scholar 

  • Van den Veyver IB, Zoghbi HY (2000) Methyl-CpG-binding protein 2 mutations in Rett syndrome. Curr Opin Genet Dev 10:275–279

    PubMed  Google Scholar 

  • van der Knaap MS, van Wezel-Meijler G, Barth PG, Barkhof F, Ader HJ, Valk J (1996) Normal gyration and sulcation in preterm and term neonates: appearances on MR images. Radiology 200:389–396

    PubMed  Google Scholar 

  • van der Knaap MS, Smit LME, Barth PG, Catsman-Berrevoets CE, Brouwer OF, Begeer JH, de Coo IFM (1997) MRI in classification of congenital muscular dystrophies with brain abnormalities. Ann Neurol 42:50–59

    PubMed  Google Scholar 

  • van Eden CG, Mrzljak L, Voorn P, Uylings HBM (1989) Prenatal development of GABAergic neurons in the neocortex of the rat. J Comp Neurol 289:213–227

    PubMed  Google Scholar 

  • van Karnebeek CDM, van Gelderen I, Nijhoff GJ, Abeling NG, Vreken P, Rederer EJ et al (2002) An aetiological study of 25 mentally retarded adults with autism. J Med Genet 39:205–214

    PubMed  PubMed Central  Google Scholar 

  • Van Paesschen W, Révész T (1998) Hippocampal sclerosis. In: Scaravilli F (ed) Neuropathology of epilepsy. World Scientific, Singapore, pp 501–572

    Google Scholar 

  • van Reeuwijk J, Janssen M, van den Elzen C, Beltrán-Valero de Bernabé D, Sabatelli P, Merlini L et al (2005) POMT2 mutations cause (alpha)-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet 42:907–912

    PubMed  PubMed Central  Google Scholar 

  • van Reeuwijk J, Maugenre S, van den Elzen C, Verrips A, Bertini E, Muntoni F et al (2006) The expanding phenotype of POMT1 mutations: from Walker-Warburg syndrome to congenital muscular dystrophy, microcephaly, and mental retardation. Hum Mutat 27:453–459

    PubMed  Google Scholar 

  • van Reeuwijk J, Grewal P, Salik M, Beltrán-Valero de Bernabé D, McLaughlan J, Michielse C et al (2007) Intragenic deletion in the LARGE gene cause Walker-Warburg syndrome. Hum Genet 121:685–690

    PubMed  PubMed Central  Google Scholar 

  • van Reeuwijk J, Olderode-Berends MJW, van den Elzen C, Brouwer OF, Roscioli T, van Pampus MG et al (2010) A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. Clin Genet 78:275–281

    PubMed  Google Scholar 

  • van Slegtenhorst M, de Hoogt R, Hermans C, Nellitt M, Janssen B, Verhoef S et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808

    PubMed  Google Scholar 

  • Vandermosten M, Boets B, Poelmans H, Sunaert S, Wouters J, Ghesquière P (2012) A tractography study in dyslexia: neuroanatomic correlates of orthographic, phonological and speech processing. Brain 135:935–948

    PubMed  Google Scholar 

  • Vasung L, Huang H, Jovanov-Milošević N, Pletikos M, Mori S, Kostović I (2010) Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat (Lond) 217:400–417

    Google Scholar 

  • Vasung L, Jovanov-Milošević N, Pletikos M, Mori S, Judaš M, Kostović I (2011) Prominent periventricular fiber system related to ganglionic eminence and striatum in the human fetal cerebrum. Brain Struct Funct 215:237–253

    CAS  PubMed  Google Scholar 

  • Verga A (1851) Sul ventriculo della volta e tre pilastri. Gazz Med Lombarda 2: Series 3, No 7 (quoted from Bruyn 1977)

    Google Scholar 

  • Verhoeven JS, De Cock P, Lagae L, Sunaert S (2010) Neuroimaging of autism. Neuroradiology 52:3–14

    PubMed  Google Scholar 

  • Vissers LE, de Vries BB, Veltman JA (2010a) Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis. J Med Genet 47:289–297

    CAS  PubMed  Google Scholar 

  • Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P et al (2010b) A de novo paradigm for mental retardation. Nat Genet 42:1109–1112

    CAS  PubMed  Google Scholar 

  • Voeller KKS (2004) Dyslexia. J Child Neurol 19:740–744

    PubMed  Google Scholar 

  • Vogt BA, Palomero-Gallagher N (2012) Cingulate cortex. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 943–987

    Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–461

    Google Scholar 

  • Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR (1995) Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J Comp Neurol 359:490–506

    CAS  PubMed  Google Scholar 

  • von Economo C (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, London

    Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S et al (2007) Human motor corpus callosum: topography, somatotopy and link between microstructure and function. J Neurosci 27:12132–12138

    CAS  PubMed  Google Scholar 

  • Wahl M, Strominger Z, Jeremy RJ, Barkovich AJ, Wakahiro M, Sherr EH, Mukherjee P (2009) Variability of homotypic and heterotopic callosal connectivity in partial agenesis of the corpus callosum: a 3 T diffusion tensor imaging and Q-ball tractography study. AJNR Am J Neuroradiol 30:282–289

    CAS  PubMed  Google Scholar 

  • Walker AE (1942) Lissencephaly. Arch Neurol Psychiatry 48:13–29

    Google Scholar 

  • Walsh CA (1999) Genetic malformations of the human cerebral cortex. Neuron 23:19–29

    CAS  PubMed  Google Scholar 

  • Walsh CA, Cepko CL (1988) Clonally related cortical cells show several migration patterns. Science 241:1342–1345

    CAS  PubMed  Google Scholar 

  • Walsh CA, Cepko CL (1992) Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255:434–440

    CAS  PubMed  Google Scholar 

  • Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543

    CAS  PubMed  Google Scholar 

  • Wang WZ, Hoerder-Suabedissen A, Oeschger FM, Bayatti N, Ip BK, Lindsay S et al (2010) Subplate in the developing cortex of mouse and human. J Anat (Lond) 217:368–380

    Google Scholar 

  • Wang X, Tsai JW, LaMonica B, Kriegstein AR (2011) A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci 14:555–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ware ML, Fox JW, González JL, Davis NM, Lambert de Rouvroit C, Russo CJ et al (1997) Aberrant splicing of a mouse disabled homologue, mdab1, in the scrambler mouse. Neuron 19:239–249

    CAS  PubMed  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK et al (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50:825–844

    CAS  PubMed  Google Scholar 

  • Weiner HL, Carlson C, Ridgway EB, Zaroffi CM, Miles D, LaJoie J, Devinsky O (2006) Epilepsy surgery in young children with tuberous sclerosis: results of a novel approach. Pediatrics 117:1494–1502

    PubMed  Google Scholar 

  • White B, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB (2001) Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells in cortical tubers. Ann Neurol 49:6–78

    Google Scholar 

  • Whitford KL, Dijkhuizen P, Polleux F, Ghosh A (2002) Molecular control of cortical dendrite development. Annu Rev Neurosci 25:127–149

    CAS  PubMed  Google Scholar 

  • WHO (1980) International classification of impairments. Disabilities and handicaps. World Health Organization, Genève

    Google Scholar 

  • Willemsen MH, Rensen H, van Schrojenstein-Lantman de Valk H, Hamel BCJ, Kleefstra T (2012a) Adult phenotypes in Angelman- and Rett-like syndromes. Mol Syndromol 2(van Schrojenstein-Lantman de Valk H):217–234

    Google Scholar 

  • Willemsen MH, Vissets LE, Willemsen MA, van Bon BW, Kroes T, de Ligt J et al (2012b) Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J Med Genet 49:179–183

    CAS  PubMed  Google Scholar 

  • Williams RS, Swisher CN, Jennings M, Ambler M, Caviness VS Jr (1984) Cerebro-ocular dysgenesis (Walker-Warburg syndrome): neuropathologic and etiologic analysis. Neurology 34:1531–1541

    CAS  PubMed  Google Scholar 

  • Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690

    CAS  PubMed  Google Scholar 

  • Wisniewski KE, Segan SM, Miezejeski CM, Sersen EA, Rudelli RD (1991) The Fra(X) syndrome: neurological, electrophysiological, and neuropathological abnormalities. Am J Med Genet 38:476–480

    CAS  PubMed  Google Scholar 

  • Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112:799–835

    PubMed  Google Scholar 

  • Witter MP, Amaral DG (1991) Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol 307:437–459

    CAS  PubMed  Google Scholar 

  • Witter MP, Van Hoesen GW, Amaral DG (1989) Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci 9:216–228

    CAS  PubMed  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci U S A 95:5341–5346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Zecevic N (2011) Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain. J Neurosci 31:2413–2420

    Google Scholar 

  • Xu Q, Cobos I, De La Cruz E, Rubinstein JL, Anderson SA (2004) Origins of cortical interneuron subtypes. J Neurosci 24:2612–2622

    CAS  PubMed  Google Scholar 

  • Yakovlev PI, Lecours A (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

  • Yamadori T (1965) Die Entwicklung der Thalamuskerne mit ihren ersten Fasersystemen bei menschlichen Embryonen. J Hirnforsch 7:393–413

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Kato Y, Karita M, Takeiri H, Muramatsu F, Kobayashi M et al (2002) Fukutin expression in glial cells and neurons: Implication in the brain lesions of Fukuyama congenital muscular dystrophy. Acta Neuropathol (Berl) 104:217–224

    CAS  Google Scholar 

  • Yamamoto T, Kato Y, Kawaguchi M, Shibata N, Kobayashi M (2004) Expression and localization of fukutin, POMGnT1, and POMT1 in the central nervous system: consideration for functions of fukutin. Med Electron Microsc 37:200–207

    CAS  PubMed  Google Scholar 

  • Ying Z, Babb TL, Comair YG, Bingaman W, Bushey M, Touhalisky K (1998) Induced expression of NMDAR2 proteins and differential expression of NMDAR1 splice variants in dysplastic neurons of human epileptic neocortex. J Neuropathol Exp Neurol 57:47–62

    CAS  PubMed  Google Scholar 

  • Ying Z, Gonzalez-Martinez J, Tilelli C, Bingaman W, Najim I (2005) Expression of neural stem cell surface marker CD133 in balloon cells of human focal cortical dysplasia. Epilepsia 46:1716–1723

    CAS  PubMed  Google Scholar 

  • Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M et al (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1:717–724

    CAS  PubMed  Google Scholar 

  • Yu J, Baybis M, Lee A, McKhann S, Chugani D, Kupsky WJ et al (2005) Targeted gene expression analysis in hemimegalencephaly: activation of beta-catenin signaling. Brain Pathol 15:179–186

    CAS  PubMed  Google Scholar 

  • Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34

    CAS  PubMed  Google Scholar 

  • Zaki PA, Quinn JC, Price DJ (2003) Mouse models of telencephalic development. Curr Opin Genet Dev 13:423–437

    CAS  PubMed  Google Scholar 

  • Zarei M, Johansen-Berg H, Smith S, Ciccarelli O, Thompson AJ, Matthews PM (2006) Functional anatomy of interhemispheric cortical connections in the human brain. J Anat (Lond) 209:311–320

    Google Scholar 

  • Zecevic N, Milosevic A, Rakic S, Marín-Padilla M (1999) Early development and composition of the human primordial plexiform layer: an immunohistochemical study. J Comp Neurol 412:241–254

    CAS  PubMed  Google Scholar 

  • Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical ventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122

    PubMed  PubMed Central  Google Scholar 

  • Zecevic N, Hu F, Jakovcevski I (2011) Interneurons in the developing human neocortex. Dev Neurobiol 71:18–33

    PubMed  PubMed Central  Google Scholar 

  • Zeki S (1993) A vision of the brain. Blackwell, Oxford

    Google Scholar 

  • Zilles K (2004) Architecture of the human cerebral cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 997–1055

    Google Scholar 

  • Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurobiol 22:331–339

    Google Scholar 

  • Zilles K, Amunts K (2012) Architecture of the cerebral cortex. In: Mai J, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 836–895

    Google Scholar 

  • Zilles K, Palomero-Gallagher N, Schleicher A (2004) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat (Lond) 205:417–432

    CAS  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Amunts K (2013) Developments of cortical folding during evolution and ontogeny. Trends Neurosci 36:275–284

    CAS  PubMed  Google Scholar 

  • Zuckerkandl E (1901) Zur Entwicklung des Balkens und des Gewölbes. Sitzber Akad Wissensch Wien, Math-Naturw Classe 110:233–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar M.D., Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J., Lammens, M., Aronica, E., van Bokhoven, H., Ulzen, K.Kv., Hori, A. (2014). Development and Developmental Disorders of the Cerebral Cortex. In: Clinical Neuroembryology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54687-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54687-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54686-0

  • Online ISBN: 978-3-642-54687-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics