Skip to main content

Overview of the Development of the Human Brain and Spinal Cord

  • Chapter
  • First Online:
Clinical Neuroembryology

Abstract

The development of the human brain and spinal cord may be divided into several phases, each of which is characterized by particular developmental disorders. After implantation, formation and separation of the germ layers occur, followed by dorsal and ventral induction phases, and phases of neurogenesis, migration, organization and myelination. With the transvaginal ultrasound technique a detailed description of the living embryo and fetus has become possible. With magnetic resonance imaging fetal development of the brain can now be studied in detail from about the beginning of the second half of pregnancy. In recent years, much progress has been made in elucidating the mechanisms by which the central nervous system (CNS) develops, and also in our understanding of its major developmental disorders, such as neural tube defects, holoprosencephaly, microcephaly and neuronal migration disorders. Molecular genetic data, that explain programming of development aetiologically, can now be incorporated.

In this chapter an overview is presented of (1) major stages in the development of the human CNS (Sect. 1.2), (2) the first three weeks of development (Sect. 1.3), (3) neurulation (Sect. 1.4), (4) development of the spinal cord (Sect. 1.5), (5) pattern formation of the brain (Sect. 1.6), (6) early development of the brain (Sect. 1.7), (7) fetal development of the brain (Sect. 1.8), (8) development of the meninges and choroid plexuses (Sect. 1.9), (9) development of the blood supply of the brain (Sect. 1.10), and (10) development of fibre tracts (Sect. 1.11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acampora D, Gulisano M, Broccoli V, Simeone A (2001) Otx genes in brain morphogenesis. Prog Neurobiol 64:69–95

    CAS  PubMed  Google Scholar 

  • Aicardi J (1992) Diseases of the nervous system in childhood, Clinics in developmental medicine. Nr 115/118. Mac Keith, London

    Google Scholar 

  • Aida N, Nishimura G, Hachiya Y, Matsui K, Takeuchi M, Itani Y (1998) MR imaging of perinatal brain damage: comparison of clinical outcome with initial and follow-up MR findings. AJNR Am J Neuroradiol 19:1909–1921

    CAS  PubMed  Google Scholar 

  • Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218

    CAS  PubMed  Google Scholar 

  • Allsopp G, Gamble HJ (1979) Light and electron microscopic observations on the development of the blood vascular system of the human brain. J Anat (Lond) 128:461–477

    CAS  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system: in relation to its evolution, structure and functions. CRC, Boca Raton

    Google Scholar 

  • Anderson SA, Mione M, Yun K, Rubinstein JLR (1999) Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex 9:646–654

    CAS  PubMed  Google Scholar 

  • Anderson SA, Marín O, Horn C, Jennings K, Rubinstein JLR (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128:353–363

    CAS  PubMed  Google Scholar 

  • Ariëns Kappers JA (1958) Structural and functional changes in the telencephalic choroid plexus during brain ontogenesis. In: Wolstenholme GEW, O’Connor CM (eds) The cerebrospinal fluid. Little, Brown, Boston, pp 3–25

    Google Scholar 

  • Arnold SE, Trojanowski JQ (1996) Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol 367:274–292

    CAS  PubMed  Google Scholar 

  • Banker BQ, Larroche JC (1962) Periventricular leukomalacia of infancy. Arch Neurol 7:386–410

    CAS  PubMed  Google Scholar 

  • Barkovich AJ (2000) Pediatric neuroimaging, 3rd edn. Lippincott, Philadelphia

    Google Scholar 

  • Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2001) Classification system for malformations of cortical development. Update 2001. Neurology 57:2168–2178

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Millen KJ, Dobyns WB (2009) A developmental and genetic classification for midbrain-hindbrain malformations. Brain 132:3199–3230

    PubMed Central  PubMed  Google Scholar 

  • Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: Update 2012. Brain 135:1348–1369

    PubMed Central  PubMed  Google Scholar 

  • Bartelmez GW (1923) The subdivisions of the neural folds in man. J Comp Neurol 35:231–295

    Google Scholar 

  • Bartelmez GW, Dekaban AS (1962) The early development of the human brain. Contrib Embryol Carnegie Instn 37:13–32

    Google Scholar 

  • Barth PG (1993) Pontocerebellar hypoplasias. An overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Dev 15:411–422

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development. Raven, New York

    Google Scholar 

  • Bayer SA, Altman J (2002) Atlas of human central nervous system development, vol 1, The spinal cord from gestational week 4 to the 4th postnatal month. CRC, Boca Raton

    Google Scholar 

  • Bayer SA, Altman J (2003) Atlas of human central nervous system development, vol 2, The The human brain during the third trimester. CRC, Boca Raton

    Google Scholar 

  • Bayer SA, Altman J (2005) Atlas of human central nervous system development, vol 3, The human brain during the second trimester. CRC, Boca Raton

    Google Scholar 

  • Bayer SA, Altman J (2006) Atlas of human central nervous system development, vol 4, The human brain during the late first trimester. CRC, Boca Raton

    Google Scholar 

  • Bayer SA, Altman J (2007) Atlas of human central nervous system development, vol 5, The human brain during the early first trimester. CRC, Boca Raton

    Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Zhang X (1995) Embryology. In: Duckett S (ed) Pediatric neuropathology. Williams & Wilkins, Baltimore, pp 54–107

    Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q et al (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172

    CAS  PubMed  Google Scholar 

  • Bergquist H (1952) The formation of neuromeres in Homo. Acta Soc Med Ups 57:23–32

    CAS  PubMed  Google Scholar 

  • Blaas H-GK (1999) The Embryonic Examination. Ultrasound studies on the development of the human embryo. Thesis, Norwegian University of Science and Technology, Trondheim. TAPIR, Trondheim, Norway

    Google Scholar 

  • Blaas H-GK, Eik-Nes SH (1996) Ultrasound assessment of early brain development. In: Jurkovic D, Jauniaux E (eds) Ultrasound and early pregnancy. Parthenon, New York, pp 3–18

    Google Scholar 

  • Blaas H-G, Eik-Nes SH (2002) The description of the early development of the human central nervous system using two-dimensional and three-dimensional ultrasound. In: Lagercrantz H, Hanson M, Evrard P, Rodeck CH (eds) The newborn brain – neuroscience and clinical applications. Cambridge University Press, Cambridge, pp 278–288

    Google Scholar 

  • Blaas H-G, Eik-Nes SH (2009) Sonoembryology and early prenatal diagnosis of neural anomalies. Prenat Diagn 29:312–325

    PubMed  Google Scholar 

  • Blaas H-G, Eik-Nes SH, Kiserud T, Hellevik LR (1994) Early development of the forebrain and midbrain: a longitudinal ultrasound study from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol 4:183–192

    CAS  PubMed  Google Scholar 

  • Blaas H-G, Eik-Nes SH, Kiserud T, Berg S, Angelsen B, Olstad B (1995a) Three-dimensional imaging of the brain cavities in human embryos. Ultrasound Obstet Gynecol 5:228–232

    CAS  PubMed  Google Scholar 

  • Blaas H-G, Eik-Nes SH, Kiserud T, Hellevik LR (1995b) Early development of the hindbrain: a longitudinal ultrasound study from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol 5:151–160

    CAS  PubMed  Google Scholar 

  • Boltshauser E, Schmahmann J (eds) (2012) Cerebellar disorders in children. Mac Keith, London

    Google Scholar 

  • Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–262

    Google Scholar 

  • Brazel CY, Romanko MJ, Rothstein RP, Levison SW (2003) Roles of the mammalian subventricular zone in brain development. Prog Neurobiol 69:49–69

    PubMed  Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301

    CAS  PubMed  Google Scholar 

  • Brun A (1965) The subpial granular layer of the foetal cerebral cortex in man. Its ontogeny and significance in congenital cortical malformations. Acta Pathol Microbiol Scand 179(Suppl):1–98

    Google Scholar 

  • Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubinstein JLR (1993) Spatially restricted expression of Dlx-1, Dlx-2, (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal boundaries. J Neurosci 13:3155–3172

    CAS  PubMed  Google Scholar 

  • Bystron I, Rakic P, Molnár Z, Blakemore C (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9:880–886

    CAS  PubMed  Google Scholar 

  • Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–112

    CAS  PubMed  Google Scholar 

  • Carlson BM (1999) Human embryology & development, 2nd edn. Mosby, St. Louis

    Google Scholar 

  • Carney RS, Bystron I, Lopez-Bendito G, Molnár Z (2007) Comparative analysis of extra-ventricular mitoses at early stages of cortical development in rat and human. Brain Struct Funct 212:37–54

    PubMed  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2012) Atlas of human brain connections. Oxford University Press, Oxford

    Google Scholar 

  • Collins P, Billett FS (1995) The terminology of early development. Clin Anat 8:418–425

    CAS  PubMed  Google Scholar 

  • Congdon ED (1922) Transformation of the aortic-arch system during the development of the human embryo. Contrib Embryol Carnegie Instn 14:47–110

    Google Scholar 

  • Corner GW (1929) A well-preserved human embryo of 10 somites. Contrib Embryol Carnegie Instn 20:81–102

    Google Scholar 

  • Crelin EA (1973) Functional anatomy of the newborn. Yale University Press, London

    Google Scholar 

  • de Carlos JA, Lopez-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16:6146–6156

    PubMed  Google Scholar 

  • De Reuck J (1971) The human periventricular arterial blood supply and the anatomy of cerebral infarction. Eur Neurol 5:321–334

    PubMed  Google Scholar 

  • De Reuck J, Chattha AS, Richardson EPJ (1972) Pathogenesis and evolution of periventricular leukomalacia in infancy. Arch Neurol 27:229–236

    Google Scholar 

  • de Souza FSJ, Niehrs C (2000) Anterior endoderm and head induction in early vertebrate embryos. Cell Tissue Res 300:207–217

    PubMed  Google Scholar 

  • de Vries JI, Fong BF (2006) Normal fetal motility: an overview. Ultrasound Obstet Gynecol 27:701–711

    PubMed  Google Scholar 

  • de Vries JI, Fong BF (2007) Changes in fetal motility as a result of congenital disorders: an overview. Ultrasound Obstet Gynecol 29:590–599

    PubMed  Google Scholar 

  • de Vries JIP, Visser GHA, Prechtl HFR (1982) The emergence of fetal behaviour. I. Qualitative aspects. Early Hum Dev 7:301–322

    PubMed  Google Scholar 

  • Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    CAS  PubMed  Google Scholar 

  • Dubois J, Benders M, Borradori-Tolsa C, Cachia A, Lazeyras F, Ha-Vinh Leuchter R et al (2008a) Primary folding of the human newborn: an early marker of later functional development. Brain 131:2028–2041

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dubois J, Benders M, Cachia A, Lazeyras F, Ha-Vinh Leuchter R, Sizonenko SV et al (2008b) Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 18:1444–1454

    CAS  PubMed  Google Scholar 

  • Dubois J, Benders M, Lazeyras F, Borradori-Tolsa C, Ha-Vinh Leuchter R, Magin JF, Hüppi PS (2010) Structural asymmetries of perisylvian regions in the preterm newborn. Neuroimage 52:32–42

    CAS  PubMed  Google Scholar 

  • Duckett S (1971) The establishment of internal vascularization in the human telencephalon. Acta Anat (Basel) 80:107–113

    CAS  Google Scholar 

  • Duvernoy HM (1998) The human hippocampus. Functional anatomy, vascularization and serial sections with MRI, 2nd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Essick CR (1912) The development of the nuclei pontis and the nucleus arcuatus in man. Am J Anat 13:25–54

    Google Scholar 

  • Evans HM (1911) Die Entwicklung des Blutgefäβsystems. In: Keibel F, Mall FP (eds) Handbuch der Entwicklungsgeschichte des Menschen, Zweiter Band. Hirzel, Leipzig, pp 551–688

    Google Scholar 

  • Evans HM (1912) The development of the vascular system. In: Keibel F, Mall FP (eds) Manual of human embryology, vol 2. Lippincott, Philadelphia, pp 570–709

    Google Scholar 

  • Favier B, Dollé P (1997) Developmental functions of mammalian Hox genes. Mol Hum Reprod 3:115–131

    CAS  PubMed  Google Scholar 

  • Feess-Higgins A, Larroche J-C (1987) Le développement du cerveau foetal humain. Atlas anatomique. Masson, Paris

    Google Scholar 

  • Fertuzinhos S, Krsnik Z, Kawasawa YI, Rašin M-R, Kwan KY, Chen J-G et al (2009) Selective depletion of molecularly defined cortical interneurons in human prosencephaly with severe striatal hypoplasia. Cereb Cortex 19:2196–2207

    PubMed Central  PubMed  Google Scholar 

  • Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL et al (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699

    CAS  PubMed  Google Scholar 

  • Flechsig PE (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, Leipzig

    Google Scholar 

  • Flores-Sarnat L, Sarnat HB (2008) Axes and gradients of the neural tube and gradients for a morphological molecular genetic classification of nervous system malformations. Hb Clin Neurol 87:3–11

    Google Scholar 

  • Francis-West PH, Robson L, Evans DJR (2003) Craniofacial development: the tissue and molecular interactions that control development of the head. Adv Anat Embryol Cell Biol 169:1–144

    Google Scholar 

  • Gadisseux J-F, Goffinet AM, Lyon G, Evrard P (1992) The human transient subpial granular layer: an optical, immunohistochemical, and Ultrastructural analysis. J Comp Neurol 324:94–114

    CAS  PubMed  Google Scholar 

  • Gardner RJM, Coleman LT, Mitchell LA, Smith LJ, Harvey AS, Scheffer IE et al (2001) Near-total absence of the cerebellum. Neuropediatrics 32:62–68

    CAS  PubMed  Google Scholar 

  • Garel C (2004) MRI of the fetal brain. Normal development and cerebral pathologies. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Gilles FH, Nelson MD (2012) The developing human brain: growth and adversities. Mac Keith, London

    Google Scholar 

  • Gilles FH, Shankle W, Dooling EC (1983) Myelinated tracts. In: Gilles FH, Leviton A, Dooling EC (eds) The developing human brain. Wright, Bristol, pp 117–183

    Google Scholar 

  • Gillilan LA (1972) Anatomy and embryology of the arterial system of the brain stem and cerebellum. Handb Clin Neurol 11:24–44

    Google Scholar 

  • Gleeson JG, Walsh CA (2000) Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 23:352–359

    CAS  PubMed  Google Scholar 

  • Golden JA (1998) Holoprosencephaly: a defect in brain patterning. J Neuropathol Exp Neurol 57:991–999

    CAS  PubMed  Google Scholar 

  • Gribnau AAM, Geijsberts LGM (1985) Morphogenesis of the brain in staged rhesus monkey embryos. Adv Anat Embryol Cell Biol 91:1–69

    CAS  PubMed  Google Scholar 

  • Habas PA, Scott JA, Roosta A, Rajagopalan V, Kim K, Rousseau F et al (2012) Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex 22:13–25

    PubMed Central  PubMed  Google Scholar 

  • Hadders-Algra M, Forssberg H (2002) Development of motor functions in health and disease. In: Lagercrantz H, Hanson M, Evrard P, Rodeck CH (eds) The newborn brain – neuroscience and clinical applications. Cambridge University Press, Cambridge, pp 479–507

    Google Scholar 

  • Hall JG (1986) Analysis of Pena Shokeir phenotype. Am J Med Genet 25:99–117

    CAS  PubMed  Google Scholar 

  • Hambleton G, Wigglesworth JS (1976) Origin of intraventricular haemorrhage in the preterm infant. Arch Child Dis 51:651–659

    CAS  Google Scholar 

  • Hamburger V, Wenger E, Oppenheim RW (1966) Motility in the chick embryo in the absence of sensory input. J Exp Zool 162:133–160

    Google Scholar 

  • Hamilton WJ, Mossman HW (1972) Hamilton, Boyd and Mossman’s human embryology. Prenatal development of form and function, 4th edn. Heffer, Cambridge

    Google Scholar 

  • Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    CAS  PubMed  Google Scholar 

  • Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    CAS  PubMed  Google Scholar 

  • Hatten ME, Alder J, Zimmerman K, Heintz N (1997) Genes involved in cerebellar cell specification and differentiation. Curr Opin Neurobiol 7:40–47

    CAS  PubMed  Google Scholar 

  • Heuser CH, Corner GW (1957) Developmental horizons in human embryos. Description of age group X, 4 to 12 somites. Contrib Embryol Carnegie Instn 36:29–39

    Google Scholar 

  • Hevner RF, Kinney HC (1996) Reciprocal entorhinal-hippocampal connections established by human fetal midgestation. J Comp Neurol 372:384–394

    CAS  PubMed  Google Scholar 

  • Hewitt W (1961) The development of the human internal capsule and lentiform nucleus. J Anat (Lond) 95:191–199

    CAS  Google Scholar 

  • His W (1880) Anatomie menschlicher Embryonen. I. Embryonen des ersten Monats. Vogel, Leipzig

    Google Scholar 

  • His W (1889) Die Formentwickelung des menschlichen Vorderhirns vom Ende des ersten bis zum Beginn des dritten Monats. Abh Kön Sächs Ges Wiss Math Phys Kl 15:675–735

    Google Scholar 

  • His W (1890) Die Entwickelung des menschlichen Rautenhirns vom Ende des ersten bis zum Beginn des dritten Monats. I. Verlängertes Mark. Abh Kön Sächs Ges Wiss Math Phys Kl 29:1–74

    Google Scholar 

  • His W (1904) Die Entwickelung des menschlichen Gehirns während der ersten Monate. Hirzel, Leipzig

    Google Scholar 

  • Hochstetter F (1919) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns, I. Teil. Deuticke, Vienna

    Google Scholar 

  • Hochstetter F (1929) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns, II. Teil, 3. Lieferung. Die Entwicklung des Mittel- und Rautenhirns. Deuticke, Vienna

    Google Scholar 

  • Hochstetter F (1934) Über die Entwicklung und Differenzierung der Hüllen des Rückenmarkes beim Menschen. Morphol Jahrb 74:1–104

    Google Scholar 

  • Hochstetter F (1939) Über die Entwicklung und Differenzierung der Hüllen des menschlichen Gehirns. Morphol Jahrb 83:359–494

    Google Scholar 

  • Hori A, Friede RL, Fischer G (1983) Ventricular diverticles with localized dysgenesis of the temporal lobe in a cloverleaf skull anomaly. Acta Neuropathol (Berl) 60:132–136

    CAS  Google Scholar 

  • Hori A, Eubel R, Ulbrich R (1984a) Congenital ventricular diverticulum in the brainstem. Report of four cases. Acta Neuropathol (Berl) 63:330–333

    CAS  Google Scholar 

  • Hori A, Bardosi A, Tsuboi K, Maki Y (1984b) Accessory cerebral ventricle of the occipital lobe. Morphogenesis and clinical and pathological appearance. J Neurosurg 61:767–771

    CAS  PubMed  Google Scholar 

  • Huang H, Zhang J, Wakana S, Zhang W, Ren T, Richards LJ et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38

    PubMed  Google Scholar 

  • Huang H, Xue R, Zhang J, Ren T, Richards LJ, Yarowsky P et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Humphrey T (1960) The development of the pyramidal tracts in human fetuses, correlated with cortical differentiation. In: Tower DB, Schadé JP (eds) Structure and function of the cerebral cortex. Elsevier, Amsterdam, pp 93–103

    Google Scholar 

  • Humphrey T (1966) The development of the human hippocampal formation correlated with some aspects of its phylogenetic history. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 104–116

    Google Scholar 

  • Hunter AGW, Stevenson RE (2008) Gastroschisis: clinical presentation and associations. Am J Med Genet Part C 148C:219–230

    PubMed  Google Scholar 

  • Ianniruberto A, Tajani E (1981) Ultrasonographic study of fetal movements. Sem Perinatol 5:175–181

    CAS  Google Scholar 

  • Inoue T, Nakamura S, Osumi N (2000) Fate mapping of the mouse prosencephalic neural plate. Dev Biol 219:373–383

    CAS  PubMed  Google Scholar 

  • Insausti R, Cebada-Sánchez S, Marcos P (2010) Postnatal development of the human hippocampus. Adv Anat Embryol Cell Biol 206:1–89

    PubMed  Google Scholar 

  • Jakob A (1928) Das Kleinhirn. In: von Möllendorf W (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol 4, Teil 1. Springer, Berlin/Heidelberg/New York, pp 674–916

    Google Scholar 

  • Jeffery N (2002) Differential regional brain growth and rotation of the prenatal human tentorium cerebelli. J Anat (Lond) 200:135–144

    Google Scholar 

  • Jirásek JE (1983) Atlas of human prenatal morphogenesis. Nijhoff, Baltimore

    Google Scholar 

  • Jirásek JE (2001) An atlas of the human embryo and fetus. Parthenon, New York

    Google Scholar 

  • Jirásek JE (2004) An atlas of human prenatal developmental mechanisms. Anatomy and staging. Taylor & Francis, London/New York

    Google Scholar 

  • Judaš M, Sedmak G, Pletikos M, Jovanov-Milošević N (2010) Populations of subplate and interstitial neurons in fetal and adult human telencephalon. J Anat (Lond) 217:381–399

    Google Scholar 

  • Kahle W (1969) Die Entwicklung der menschlichen Grosshirnhemisphäre. Schriftenr Neurol 1:1–116

    Google Scholar 

  • Kanold PO, Luhmann HJ (2010) The subplate and early cortical circuits. Annu Rev Neurosci 33:23–48

    CAS  PubMed  Google Scholar 

  • Keibel F, Elze C (1908) Normentafeln zur Entwicklungsgeschichte des Menschen. Hirzel, Leipzig

    Google Scholar 

  • Kerwin J, Yang Y, Merchan P, Sarma S, Thompson J, Wang X et al (2010) The HUDSEN atlas: a three-dimensional (3D) spatial framework for studying gene expression in the developing human brain. J Anat (Lond) 217:289–299

    CAS  Google Scholar 

  • Keyser AJM (1972) The development of the diencephalon of the Chinese hamster. Acta Anat (Basel) 83(Suppl 59):1–178

    Google Scholar 

  • Kiecker C, Lumsden A (2012) The role of organizers in patterning the nervous system. Annu Rev Neurosci 35:347–367

    CAS  PubMed  Google Scholar 

  • Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234

    CAS  PubMed  Google Scholar 

  • Klintworth GK (1967) The ontogeny and growth of the human tentorium cerebelli. Anat Rec 158:433–442

    CAS  PubMed  Google Scholar 

  • Kollias SS, Ball WS (1997) Congenital malformations of the brain. In: Ball WS (ed) Pediatric neuroradiology. Lippincott, Philadelphia, pp 91–174

    Google Scholar 

  • Konstantinidou AD, Silos-Santiago I, Flaris N, Snider WD (1995) Development of the primary afferent projection in human spinal cord. J Comp Neurol 354:1–12

    Google Scholar 

  • Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci U S A 98:4752–4757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422

    PubMed  Google Scholar 

  • Kostović I, Judaš M (2007) Transient patterns of cortical lamination during prenatal life: do they have implications for treatment? Neurosci Biobehav Rev 31:1157–1168

    PubMed  Google Scholar 

  • Kostović I, Judaš M (2010) The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 99:1119–1127

    PubMed  Google Scholar 

  • Kostović I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470

    PubMed  Google Scholar 

  • Kostović I, Vasung L (2009) Insights from in vitro fetal magnetic resonance imaging of cerebral development. Semin Perinatol 33:220–233

    PubMed  Google Scholar 

  • Kraus I, Jirásek JE (2002) Some observations of the structure of the choroid plexus and its cysts. Prenat Diagn 22:1223–1228

    PubMed  Google Scholar 

  • Kriegstein AR, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuban KCK, Gilles FH (1985) Human telencephalic angiogenesis. Ann Neurol 17:539–548

    CAS  PubMed  Google Scholar 

  • Kurjak A, Pooh RK, Tikvica A, Stanojevic M, Miskovic B, Ahmed B, Azumendi G (2009) Assessment of fetal neurobehavior by 3D/4D ultrasound. In: Pooh RK, Kurjak A (eds) Fetal neurology. Jaypee, St. Louis, pp 221–285

    Google Scholar 

  • Lammens M, Moerman P, Fryns JP, Lemmens F, van de Kamp GM, Goemans N, Dom R (1997) Fetal akinesia sequence caused by nemaline myopathy. Neuropediatrics 28:116–119

    CAS  PubMed  Google Scholar 

  • Langman J (1963) Medical embryology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    CAS  PubMed  Google Scholar 

  • Le Douarin NM, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee A (2001) Four-dimensional ultrasound in prenatal diagnosis: leading edge in imaging technology. Ultrasound Rev Obstet Gynecol 1:194–198

    Google Scholar 

  • Lemire RJ, Loeser JD, Leech RW, Alvord EC (1975) Normal and abnormal development of the human nervous system. Harper & Row, Hagerstown

    Google Scholar 

  • Letinić K, Kostović I (1997) Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol 384:373–395

    PubMed  Google Scholar 

  • Letinić K, Rakic P (2001) Telencephalic origin of human thalamic GABAergic neurons. Nat Neurosci 9:931–936

    Google Scholar 

  • Letinić K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    PubMed  Google Scholar 

  • Lie KTA (1968) Congenital Anomalies of the Carotid Arteries. Thesis, University of Amsterdam. Excerpta Medica Foundation, Amsterdam

    Google Scholar 

  • Lindenberg R (1956) Die Gefässversorgung und ihre Bedeutung für Art und Ort von kreislaufgedingten Gewebsschäden und Gefässprozessen. In: Scholz W (ed) Lubarsch-Henke-Rössle’s Handbuch der speziellen pathologischen Anatomie und Histologie, vol 13, Teil 1B. Springer, Berlin/Heidelberg/New York, pp 1071–1164

    Google Scholar 

  • Luckett WP (1978) Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am J Anat 152:59–97

    CAS  PubMed  Google Scholar 

  • Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146:18–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lumsden A, Krumlauf AR (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    CAS  PubMed  Google Scholar 

  • Macchi G (1951) The ontogenetic development of the olfactory telencephalon in man. J Comp Neurol 95:245–305

    CAS  PubMed  Google Scholar 

  • Marín O, Rubinstein JLR (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790

    PubMed  Google Scholar 

  • Marín O, Rubinstein JLR (2002) Patterning, regionalization, and cell differentiation in the forebrain. In: Rossant J, Tam PPL (eds) Mouse development – patterning, morphogenesis, and organogenesis. Academic, San Diego, pp 75–106

    Google Scholar 

  • Marín O, Anderson SA, Rubinstein JLR (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076

    PubMed  Google Scholar 

  • Marín O, Yaron A, Bagri A, Tessier-Lavigne M, Rubinstein JLR (2001) Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293:872–875

    PubMed  Google Scholar 

  • Marín-Padilla M (1990) Origin, formation, and prenatal maturation of the human cerebral cortex: an overview. J Craniofac Genet Dev Biol 10:137–146

    PubMed  Google Scholar 

  • Marín-Padilla M (1996) Developmental neuropathology and impact of perinatal brain damage. I. Hemorrhagic lesions of neocortex. J Neuropathol Exp Neurol 55:758–773

    PubMed  Google Scholar 

  • Marín-Padilla M (1997) Developmental neuropathology and impact of perinatal brain damage. II. White matter lesions of the neocortex. J Neuropathol Exp Neurol 56:219–235

    PubMed  Google Scholar 

  • Marín-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21:64–71

    PubMed  Google Scholar 

  • Marín-Padilla M (1999) Developmental neuropathology and impact of perinatal brain damage. III. Gray matter lesions of the neocortex. J Neuropathol Exp Neurol 58:407–429

    PubMed  Google Scholar 

  • Marti E, Bovolenta P (2002) Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci 25:89–96

    CAS  PubMed  Google Scholar 

  • Martínez S, Puelles E, Puelles L, Echevarria D (2012) Molecular regionalization of the developing neural tube. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 2–18

    Google Scholar 

  • Matsuda Y, Ono S, Otake Y, Handa S, Kose K, Haishi T et al (2007) Imaging of a large collection of human embryos using a super-parallel MR microscope. Magn Reson Med Sci 6:139–146

    PubMed  Google Scholar 

  • Medina L, Abellán A (2012) Subpallial structures. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 173–220

    Google Scholar 

  • Mehler MF, Mabie PC, Zhang D, Kessler JA (1997) Bone morphogenetic proteins in the nervous system. Trends Neurosci 20:309–317

    CAS  PubMed  Google Scholar 

  • Meng H, Zhang Z, Geng H, Lin X, Feng L, Feng G et al (2012) Development of the subcortical brain structures in the second trimester: assessment with 7.0-T MRI. Neuroradiology 54:1153–1159

    PubMed  Google Scholar 

  • Meyer G (2007) Genetic control of neuronal migrations in human cortical development. Adv Anat Embryol Cell Biol 189:1–111

    PubMed  Google Scholar 

  • Meyer G (2010) Building a human cortex: the evolutionary differentiation of Cajal-Retzius cells and the cortical hem. J Anat (Lond) 217:334–343

    Google Scholar 

  • Meyer G, Goffinet AM (1998) Prenatal development of reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 397:29–40

    CAS  PubMed  Google Scholar 

  • Meyer G, Wahle P (1999) The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur J Neurosci 11:3937–3944

    CAS  PubMed  Google Scholar 

  • Meyer G, Goffinet AM, Fairén A (1999) What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb Cortex 9:765–775

    CAS  PubMed  Google Scholar 

  • Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868

    CAS  PubMed  Google Scholar 

  • Millen KJ, Millonig JH, Wingate RJT, Alder J, Hatten ME (1999) Neurogenetics of the cerebellar system. J Child Neurol 14:574–582

    CAS  PubMed  Google Scholar 

  • Moessinger AC (1983) Fetal akinesia deformation sequence: an animal model. Pediatrics 72:857–863

    CAS  PubMed  Google Scholar 

  • Monteagudo A, Timor-Tritsch IE (2009) Normal sonographic development of the central nervous system from the second trimester onwards using 2D, 3D and transvaginal tomography. Prenat Diagn 29:326–329

    PubMed  Google Scholar 

  • Monuki ES, Walsh CA (2001) Mechanisms of cerebral cortical patterning in mice and human. Nat Neurosci 4:1199–1206

    CAS  PubMed  Google Scholar 

  • Moore KL, Persaud TVN, Shiota K (2000) Color atlas of clinical embryology, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  • Mori S, Wakana S, Nagao-Poetscher LM, van Zijl PCM (2005) MRI atlas of human white matter. Elsevier, Amsterdam

    Google Scholar 

  • Morriss-Kay GM, Wilkie AOM (2005) Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat (Lond) 207:637–653

    Google Scholar 

  • Muenke M, Beachy PA (2000) Genetics of ventral forebrain development and holoprosencephaly. Curr Opin Genet Dev 10:262–269

    CAS  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1983) The first appearance of the major divisions of the human brain at stage 9. Anat Embryol (Berl) 168:419–432

    Google Scholar 

  • Müller F, O’Rahilly R (1985) The first appearance of the neural tube and optic primordium in the human embryo at stage 10. Anat Embryol (Berl) 172:157–169

    Google Scholar 

  • Müller F, O’Rahilly R (1988a) The development of the human brain from a closed neural tube at stage 13. Anat Embryol (Berl) 177:203–224

    Google Scholar 

  • Müller F, O’Rahilly R (1988b) The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol (Berl) 177:495–511

    Google Scholar 

  • Müller F, O’Rahilly R (1989) The human brain at stage 16, including the initial evagination of the neurohypophysis. Anat Embryol (Berl) 179:551–569

    Google Scholar 

  • Müller F, O’Rahilly R (1990a) The human brain at stages 18–20, including the choroid plexuses and the amygdaloid and septal nuclei. Anat Embryol (Berl) 182:285–306

    Google Scholar 

  • Müller F, O’Rahilly R (1990b) The human brain at stages 21–23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. Anat Embryol (Berl) 182:375–400

    Google Scholar 

  • Müller F, O’Rahilly R (1990c) The human rhombencephalon at the end of the embryonic period proper. Am J Anat 189:127–145

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1997) The timing and sequence of appearance of neuromeres and their derivatives in staged human embryos. Acta Anat (Basel) 158:83–99

    Google Scholar 

  • Nakamura M, Roser F, Rundschuh O, Vorkapic P, Samii M (2003) Intraventricular meningiomas: a review of 16 cases with reference to the literature. Surg Neurol 59:491–503

    PubMed  Google Scholar 

  • Nakashima I, Hirose A, Yamada S, Uwabe C, Kose K, Takakuwa T (2011) Morphometric analysis of the brain vesicles during the human embryonic period by magnetic resonance microscopic imaging. Cong Anom 52:55–58

    Google Scholar 

  • Nakatsu T, Uwabe C, Shiota K (2000) Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol (Berl) 201:455–466

    CAS  Google Scholar 

  • Nelson MD, Gonzalez-Gomez I, Gilles FH (1991) The search for human telencephalic ventriculofugal arteries. Am J Neuroradiol 12:215–222

    PubMed  Google Scholar 

  • Niemann G, Wakat JP, Krägeloh-Mann I, Grodd W, Michaelis R (1994) Congenital hemiparesis and periventricular leukomalacia: pathogenetic aspects on magnetic resonance imaging. Dev Med Child Neurol 36:943–950

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1998) Morphogenesis and general structure. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin/Heidelberg/New York, pp 159–228

    Google Scholar 

  • Nieuwkoop PD, Albers B (1990) The role of competence in the craniocaudal segregation of the central nervous system. Dev Growth Diff 32:23–31

    Google Scholar 

  • Nishimura H, Semba R, Tanimura T, Tanaka O (1977) Prenatal development of the human with special reference to craniofacial structures. An atlas. Department of Health, Education & Welfare, National Institute of Health, Bethesda

    Google Scholar 

  • Noden DM (1991) Cell movements and control of patterned tissue assembly during craniofacial development. J Craniofac Genet Dev Biol 11:192–213

    CAS  PubMed  Google Scholar 

  • Noden DM, Trainor PA (2005) Relations and interactios between cranial mesoderm and neural crest populations. J Anat (Lond) 207:575–601

    Google Scholar 

  • Norman MG, O’Kusky JR (1986) The growth and development of microvasculature in human cerebral cortex. J Neuropathol Exp Neurol 45:222–232

    CAS  PubMed  Google Scholar 

  • Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskitt KJ (1995) Congenital malformations of the brain. Pathological, embryological, clinical, radiological and genetic aspects. Oxford University Press, New York

    Google Scholar 

  • O’Rahilly R (1973) Developmental Stages in Human Embryos. Part A: Embryos of the first three weeks (stages 1 to 9), Carnegie Institution of Washington Publication 631. Washington, DC

    Google Scholar 

  • O’Rahilly R (1975) A color atlas of human embryology. A slide presentation. Saunders, Philadelphia

    Google Scholar 

  • O’Rahilly R, Gardner E (1979) The initial development of the human brain. Acta Anat (Basel) 104:123–133

    Google Scholar 

  • O’Rahilly R, Müller F (1981) The first appearance of the human nervous system at stage 8. Anat Embryol (Berl) 163:1–13

    Google Scholar 

  • O’Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45:588–608

    PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1987) Developmental Stages in Human Embryos, Carnegie Institution of Washington Publication 637. Washington, DC

    Google Scholar 

  • O’Rahilly R, Müller F (1999) The embryonic human brain. An atlas of developmental stages, 2nd edn. Wiley-Liss, New York

    Google Scholar 

  • O’Rahilly R, Müller F (2001) Human embryology & teratology, 3rd edn. Wiley-Liss, New York

    Google Scholar 

  • O’Rahilly R, Müller F (2008) Significant features in the early prenatal development of the human brain. Ann Anat 190:105–118

    PubMed  Google Scholar 

  • Okado N (1981) Onset of synapse formation in the human spinal cord. J Comp Neurol 201:211–219

    CAS  PubMed  Google Scholar 

  • Okado N, Kojima T (1984) Ontogeny of the central nervous system: neurogenesis, fibre connections, synaptogenesis and myelination in the spinal cord. In: Prechtl HFR (ed) Continuity of neural functions from prenatal to postnatal life. Blackwell, Oxford, pp 31–45

    Google Scholar 

  • Okado N, Kahimi S, Kojima T (1979) Synaptogenesis in the cervical cord of the human embryo: sequence of synapse formation in a spinal reflex pathway. J Comp Neurol 184:491–517

    CAS  PubMed  Google Scholar 

  • Okudera T, Ohta T, Huang YP, Yokota A (1988) Development and radiological anatomy of the superficial cerebral convexity vessels in the human fetus. J Neuroradiol 15:205–224

    CAS  PubMed  Google Scholar 

  • Olson EC, Walsh CA (2002) Smooth, rough and upside-down neocortical development. Curr Opin Genet Dev 12:320–327

    CAS  PubMed  Google Scholar 

  • Opitz JM (1993) Blastogenesis and the “primary field” in human development. Birth Defects 29:3–37

    CAS  PubMed  Google Scholar 

  • Opitz JM, Wilson GN, Gilbert-Barness E (1997) Abnormalities of blastogenesis, organogenesis, and phenogenesis. In: Gilbert-Barness E (ed) Potter’s pathology of the fetus and infant. Mosby, St. Louis, pp 65–105

    Google Scholar 

  • Padget DH (1948) The development of the cranial arteries in the human embryo. Contrib Embryol Carnegie Instn 32:205–261

    Google Scholar 

  • Padget DH (1957) The development of the cranial venous system in man, from the viewpoint of comparative anatomy. Contrib Embryol Carnegie Instn 36:79–140

    Google Scholar 

  • Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131

    CAS  PubMed  Google Scholar 

  • Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH (2007) Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8:287–299

    CAS  PubMed  Google Scholar 

  • Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266

    CAS  PubMed  Google Scholar 

  • Pearce WJ (2002) Cerebrovascular regulation in the neonate. In: Lagercrantz H, Hanson M, Evrard P, Rodeck CH (eds) The newborn brain – neuroscience and clinical applications. Cambridge University Press, Cambridge, pp 252–277

    Google Scholar 

  • Pearlman AL, Faust PL, Hatten ME, Brunstrom JE (1998) New directions for neuronal migration. Curr Opin Neurobiol 8:45–54

    CAS  PubMed  Google Scholar 

  • Pearson AA (1941) The development of the olfactory nerve in man. J Comp Neurol 75:199–217

    Google Scholar 

  • Pilz D, Stoodley N, Golden JA (2002) Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. J Neuropathol Exp Neurol 61:1–11

    PubMed  Google Scholar 

  • Pooh RK (2009) Neuroanatomy visualized by 2D and 3D. In: Pooh RK, Kurjak A (eds) Fetal neurology. Jaypee, St. Louis, pp 16–38

    Google Scholar 

  • Pooh RK, Kurjak A (eds) (2009) Fetal neurology. Jaypee, St. Louis

    Google Scholar 

  • Pooh RK, Maeda K, Pooh K (2003) An atlas of fetal central nervous system diseases. Diagnosis and treatment. Parthenon, Boca Raton

    Google Scholar 

  • Pooh RK, Shiota K, Kurjak A (2011) Imaging of the human embryo with magnetic resonance imaging microscopy and high-resolution transvaginal 3-dimensional sonography: human embryology in the 21st century. Am J Obstet Gynecol 204:77.e1–77.e16

    Google Scholar 

  • Prayer D, Kasprian G, Krampl E, Ulm B, Witzani L, Prayer L, Brugger PC (2006) MRI of normal fetal brain development. Eur J Radiol 57:199–216

    PubMed  Google Scholar 

  • Puelles L, Rubinstein JLR (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic forebrain suggest a neuromeric organization. Trends Neurosci 16:472–479

    CAS  PubMed  Google Scholar 

  • Puelles L, Rubinstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476

    CAS  PubMed  Google Scholar 

  • Puelles L, Verney C (1998) Early neuromeric distribution of tyrosine-hydroxylase-immunoreactive neurons in human embryos. J Comp Neurol 394:283–308

    CAS  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J et al (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438

    CAS  PubMed  Google Scholar 

  • Puelles L, Martínez S, Martínez de la Torre M (2008) Neuroanatomía. Médica Panamericana, Buenos Aires/Madrid (in Spanish)

    Google Scholar 

  • Puelles L, Martínez-de-la-Torre M, Bardet S, Rubinstein JLR (2012) Hypothalamus. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 221–312

    Google Scholar 

  • Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–578

    CAS  PubMed  Google Scholar 

  • Radoš M, Judaš M, Kostović I (2006) In vitro MRI of brain development. Eur J Radiol 57:187–198

    PubMed  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84

    CAS  PubMed  Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rakić P, Sidman RL (1969) Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entw Gesch 129:53–82

    Google Scholar 

  • Rakic P, Sidman RL (1970) Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol 139:473–500

    CAS  PubMed  Google Scholar 

  • Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132:45–72

    CAS  PubMed  Google Scholar 

  • Ramaekers VT, Heimann G, Reul J, Thron A, Jaeken J (1997) Genetic disorders and cerebellar structural abnormalities in childhood. Brain 120:1739–1751

    PubMed  Google Scholar 

  • Ranke G (1910) Beiträge zur Kenntnis der normalen und pathologischen Hirnrindenbildung. Ziegl Beitr Path Anat 47:51–125

    Google Scholar 

  • Raybaud C (2010) The corpus callosum, the other great forebrain commissures, and the septum pellucidum: Anatomy, development, and malformations. Neuroradiology 52:447–477

    PubMed  Google Scholar 

  • Rhinn M, Brand M (2001) The midbrain-hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42

    CAS  PubMed  Google Scholar 

  • Rijli FM, Gavalas A, Chambon P (1998) Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int J Dev Biol 42:393–401

    CAS  PubMed  Google Scholar 

  • Rorke LB (1992) Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury. Brain Pathol 2:211–221

    CAS  PubMed  Google Scholar 

  • Rubinstein JLR, Beachy PA (1998) Patterning of the embryonic forebrain. Curr Opin Neurobiol 8:18–26

    Google Scholar 

  • Rubinstein JLR, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477

    Google Scholar 

  • Ruggieri PM (1997) Metabolic and neurodegenerative disorders and disorders with abnormal myelination. In: Ball WS (ed) Pediatric neuroradiology. Lippincott, Philadelphia, pp 175–237

    Google Scholar 

  • Rutherford MA, Supramaniam V, Ederies A, Chew A, Bassi L, Groppo M et al (2010) Magnetic resonance imaging of white matter disease of prematurity. Neuroradiology 52:505–521

    PubMed  Google Scholar 

  • Sadler TW, Feldkamp ML (2008) The embryology of body wall closure: relevance to gastroschisis and other ventral body wall defects. Am J Med Genet C Semin Med Genet 148C:180–185

    CAS  PubMed  Google Scholar 

  • Salas E, Ziyal IM, Sekhar LN, Wright DC (1998) Persistent trigeminal artery: an anatomic study. Neurosurgery 43:557–562

    CAS  PubMed  Google Scholar 

  • Salihagic-Kadic A, Predojevic M, Kurjak A (2009) Advances in fetal neurophysiology. In: Pooh RK, Kurjak A (eds) Fetal neurology. Jaypee, St. Louis, pp 161–219

    Google Scholar 

  • Sarnat HB (2000) Molecular genetic classification of central nervous system malformations. J Child Neurol 15:675–687

    CAS  PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L (2001) Neuropathologic research strategies in holoprosencephaly. J Child Neurol 16:918–931

    CAS  PubMed  Google Scholar 

  • Schuurmans C, Guillemot F (2002) Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr Opin Neurobiol 12:26–34

    CAS  PubMed  Google Scholar 

  • Sensenig EC (1951) The early development of the meninges of the spinal cord in human embryos. Contrib Embryol Carnegie Instn 34:145–157

    Google Scholar 

  • Seress L, Ábrahám H, Tornóczky T, Kosztolányi G (2001) Cell formation in the human hippocampal formation from mid-gestation to the late postnatal period. Neuroscience 105:831–843

    CAS  PubMed  Google Scholar 

  • Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubinstein JLR (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121:3923–3933

    CAS  PubMed  Google Scholar 

  • Shiota K, Yamada S, Nakatsu-Komatsu T, Uwabe C, Kose K, Matsuda Y et al (2007) Visualization of human prenatal development by magnetic resonance imaging (MRI). Am J Med Genet Part A 143A:3121–3126

    PubMed  Google Scholar 

  • Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Thomas, Springfield, pp 3–145

    Google Scholar 

  • Sie LTL, van der Knaap MS, van Wezel-Meijler G, Valk J (1997) MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Neuropediatrics 28:97–105

    CAS  PubMed  Google Scholar 

  • Siegenthaler JA, Pleasure SJ (2011) We have got you ‘covered’: how the meninges control brain development. Curr Opin Genet Dev 21:249–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53

    PubMed Central  PubMed  Google Scholar 

  • Spreafico R, Arcelli P, Frassoni C, Canetti P, Giaccone G, Rizzutti T et al (1999) Development of layer I of the human cerebral cortex after midgestation: architectonic findings, immunocytochemical identification of neurons and glia, and in situ labeling of apoptotic cells. J Comp Neurol 410:126–142

    CAS  PubMed  Google Scholar 

  • Squier W (2002) Pathology of fetal and neonatal brain development: identifying the timing. In: Squier W (ed) Acquired damage to the developing brain: timing and causation. Arnold, London, pp 110–127

    Google Scholar 

  • Staudt M, Niemann G, Grodd W, Krägeloh-Mann I (2000) The pyramidal tract in congenital hemiparesis: relationship between morphology and function in periventricular lesions. Neuropediatrics 31:257–264

    CAS  PubMed  Google Scholar 

  • Stephan H (1975) Allocortex. Handbuch der mikroskopischen Anatomie des Menschen, Band 4, Teil 9. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Streeter GL (1911) Die Entwicklung des Nervensystems. In: Keibel F, Mall FP (eds) Handbuch der Entwicklungsgeschichte des Menschen. Zweiter Band. Hirzel, Leipzig, pp 1–156

    Google Scholar 

  • Streeter GL (1912) The development of the nervous system. In: Keibel F, Mall FP (eds) Manual of human embryology, vol 2. Lippincott, Philadelphia, pp 1–156

    Google Scholar 

  • Streeter GL (1915) The development of the venous sinuses in the dura mater in the human embryo. Am J Anat 18:145–178

    Google Scholar 

  • Streeter GL (1918) The developmental alterations in the vascular system of the brain of the human embryo. Contrib Embryol Carnegie Instn 8:5–38

    Google Scholar 

  • Streeter GL (1951) Developmental horizons in human embryos. Age groups XI to XXIII. Carnegie Institution of Washington, Washington

    Google Scholar 

  • Supèr H, Soriano E, Uylings HBM (1998) The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Res Rev 27:40–64

    PubMed  Google Scholar 

  • Suttner N, Mura J, Tedeschi H, Ferreira MAT, Wen HT, de Oliveira E, Rhoton AL Jr (2000) Persistent trigeminal artery: a unique anatomic specimen – analysis and therapeutic implications. Neurosurgery 47:428–434

    CAS  PubMed  Google Scholar 

  • Takashima S, Tanaka K (1978) Development of cerebrovascular architecture and its relationship to periventricular leukomalacia. Arch Neurol 35:11–16

    CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ (2000) Development and regenerative capacity of descending supraspinal pathways in tetrapods: a comparative approach. Adv Anat Embryol Cell Biol 154:1–145

    Google Scholar 

  • ten Donkelaar HJ, Lammens M (2009) Development of the human cerebellum and its disorders. Clin Perinatol 36:513–530

    PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HOM, Renier WO (2003) Development and developmental disorders of the human cerebellum. J Neurol 250:1025–1036

    PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Rotteveel J (2004) Development and malformations of the human pyramidal tract. J Neurol 251:1429–1442

    PubMed  Google Scholar 

  • Tsuboi K, Maki Y, Hori A, Ebihara R (1984) Accessory ventricles of the posterior horn. Prog Comp Tomogr 6:529–534

    Google Scholar 

  • Van den Bergh R, Vander Eecken H (1968) Anatomy and embryology of cerebral circulation. Prog Brain Res 30:1–25

    Google Scholar 

  • van der Knaap MS, Valk J (1988) Classification of congenital abnormalities of the CNS. AJNR Am J Neuroradiol 9:315–326

    PubMed  Google Scholar 

  • van der Knaap MS, Valk J (1990) MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 31:459–470

    PubMed  Google Scholar 

  • van der Knaap MS, Valk J (1995) Magnetic resonance of myelin, myelination and myelin disorders, 2nd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • van Wezel-Meijler G, van der Knaap MS, Sie LTL, Oosting J, Taets van Amerongen AHM, Cranendonk A, Lafeber HN (1998) Magnetic resonance imaging of the brain in premature infants during the neonatal period. Normal phenomena and reflection of mild ultrasound abnormalities. Neuropediatrics 29:89–96

    PubMed  Google Scholar 

  • van Zalen-Sprock RM, van Vugt JMG, van Geijn HPM (1996) First-trimester sonographic detection of neurodevelopmental abnormalities in some single-gene defects. Prenat Diagn 16:199–202

    PubMed  Google Scholar 

  • Vasung L, Huang H, Jovanov-Milošević N, Pletikos M, Mori S, Kostović I (2010) Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat (Lond) 217:400–407

    Google Scholar 

  • Vieille-Grosjean I, Hunt P, Gulisano M, Boncinelli E, Thorogood P (1997) Branchial HOX gene expression and human craniofacial development. Dev Biol 183:49–60

    CAS  PubMed  Google Scholar 

  • Volpe JJ (1987) Neurology of the newborn, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  • Volpe JJ (1998) Neurologic outcome of prematurity. Arch Neurol 55:297–300

    CAS  PubMed  Google Scholar 

  • Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553–562

    CAS  PubMed  Google Scholar 

  • Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructions and developmental disturbances. Lancet Neurol 8:110–124

    PubMed Central  PubMed  Google Scholar 

  • von Baer KE (1828) Über die Entwickelungsgeschichte der Thiere, Beobachtung und Reflexion. Bornträger, Königsberg

    Google Scholar 

  • Wahl M, Mukherjee P (2009) Diffusion imaging of congenital brain malformations. Semin Ped Neurol 16:111–119

    Google Scholar 

  • Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484–491

    CAS  PubMed  Google Scholar 

  • Wang WZ, Hoerder-Suabedissen A, Oeschger FM, Bayatti N, Ip BK, Lindsay S et al (2010) Subplate in the developing cortex of mouse and human. J Anat (Lond) 217:368–386

    Google Scholar 

  • Watson C (2012) Hindbrain. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 398–423

    Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron 22:103–114

    CAS  PubMed  Google Scholar 

  • Weindling M (2002) Clinical aspects of brain injury of the preterm brain. In: Lagercrantz H, Hanson M, Evrard P, Rodeck CH (eds) The newborn brain – neuroscience and clinical applications. Cambridge University Press, Cambridge, pp 443–478

    Google Scholar 

  • Weninger WJ, Mohun T (2002) Phenotypic transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing. Nat Genet 30:59–65

    CAS  PubMed  Google Scholar 

  • Wigglesworth JS, Pape KE (1980) Pathophysiology of intracranial haemorrhage in the newborn. J Perinat Med 8:119–133

    CAS  PubMed  Google Scholar 

  • Wilkie AOM, Morriss-Kay GM (2001) Genetics of craniofacial development and malformation. Nat Rev Genet 2:458–468

    CAS  PubMed  Google Scholar 

  • Windle WF (1970) Development of neural elements in human embryos of four to seven weeks gestation. Exp Neurol Suppl 5:44–83

    Google Scholar 

  • Windle WF, Fitzgerald JE (1937) Development of the spinal reflex mechanism in human embryos. J Comp Neurol 67:493–509

    Google Scholar 

  • Wingate RJT (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88

    CAS  PubMed  Google Scholar 

  • Witters I, Moerman P, Devriendt K, Braet P, Van Schoubroeck D, Van Assche FA, Fryns JP (2002) Two siblings with early onset fetal akinesia deformation wequence and hydranencephaly: further evidence for autosomal recessive inheritance of hydranencephaly, fowler type. Am J Med Genet 108:41–44

    CAS  PubMed  Google Scholar 

  • Wollschlaeger G, Wollschlaeger PB (1964) The primitive trigeminal artery as seen angiographically and at postmortem examination. AJR Am J Roentgenol 92:761–768

    CAS  Google Scholar 

  • Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE (2006) Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 355:685–694

    CAS  PubMed  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    CAS  PubMed  Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

  • Yamada S, Uwabe C, Nakatsu-Komatsu T, Minekura Y, Iwakura M, Motoki T et al (2006) Graphic and movie illustrations of human prenatal development and their application to embryological education based on the human embryo specimens in the Kyoto collection. Dev Dyn 235:468–477

    PubMed  Google Scholar 

  • Yamada S, Samtani RR, Lee ES, Lockett E, Uwabe C, Shiota K et al (2010) Developmental atlas of the early first trimester human embryo. Dev Dyn 239:1585–1595

    PubMed Central  PubMed  Google Scholar 

  • Yamadori T (1965) Die Entwicklung des Thalamuskerns mit ihren ersten Fasersystemen bei menschlichen Embryonen. J Hirnforsch 7:393–413

    CAS  PubMed  Google Scholar 

  • Zecevic N, Milosevic A, Rakic S, Marín-Padilla M (1999) Early development and composition of the human primordial plexiform layer: an immunohistochemical study. J Comp Neurol 412:241–254

    CAS  PubMed  Google Scholar 

  • Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical ventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122

    PubMed Central  PubMed  Google Scholar 

  • Zecevic N, Hu F, Jakovcevski I (2011) Interneurons in the developing human neocortex. Dev Neurobiol 71:18–33

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar M.D., Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J., Yamada, S., Shiota, K., van der Vliet, T. (2014). Overview of the Development of the Human Brain and Spinal Cord. In: Clinical Neuroembryology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54687-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54687-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54686-0

  • Online ISBN: 978-3-642-54687-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics