Skip to main content

A Thermodynamic Approach of Mechanical Vapor Compression Refrigeration and Heating COP Increase

  • Chapter
  • First Online:
  • 1206 Accesses

Part of the book series: Heat and Mass Transfer ((HMT))

Abstract

The mechanical vapour compression (mvc) technology is laying down the basis of many important industrial, agricultural and household applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Belozerov, G., Mednikova, N., Pytchenko, V., & Serova, E. (2007). Cascade type refrigeration systems working on CO2/NH3 for technological processes of products freezing and storage. In Proceedings of Ohrid 2007 IIR/IIF Conference, April 19–21, Macedonia.

    Google Scholar 

  • Bryson, M. J. (2007). The conversion of low grade heat into electricity using the thermosyphon rankine engine and trilateral flash cycle. PhD. thesis, School of Aerospace, Mechanical and Manufacturing Engineering Science, Engineering and Technology Portfolio RMIT University, August 2007.

    Google Scholar 

  • Chicco, G., & Mancarella, P. (2009). Distributed multi-generation: A comprehensive view. Renewable and Sustainable Energy Reviews, 13, 535–551.

    Article  Google Scholar 

  • Cox, N., Mazur, V., & Colbourne, D. (2009). The development of azeotropic ammonia refrigerant blends for industrial process applications. In Proceedings of Ohrid 2009 IIR/IIF Conference, May 6–8, Macedonia.

    Google Scholar 

  • Gaina, S., Campu, E., & Bucur, G. (1966). Collection of problems of differential and integral calculus (Vol. 2). Bucharest (in Romanian): Technical Publishing House.

    Google Scholar 

  • Kirilin, V. A., Sicev, V. V., & Seindlin, A. E. (1985). Thermodynamics. Bucharest: Scientific and Technical Publishing House, 540p (in Romanian).

    Google Scholar 

  • Kotthoff, S., & Gorenflo, D. (2008). Pool boiling heat transfer to hydrocarbons and ammonia: A state of the art review. International Journal of Refrigeration, 31(4), 573–602.

    Article  Google Scholar 

  • Popa, B., & Vintila, C. (1977). Thermotechnics and thermal machines. Bucharest: The Didactic and Pedagogic Publishing House. (in Romanian).

    Google Scholar 

  • de Mulder, P. (2004). Vertical freezers with CO2, Doncaster, Star Refrigeration, Glasgow, U.K.

    Google Scholar 

  • Radcenco, V., Florescu, A., Duicu, T., et al. (1985). Heat Pump Installations. Bucharest: The Technical Publishing House. (in Romanian).

    Google Scholar 

  • Nicolescu, M. (1977–1980). Mathematical Analysis Vol. I, II. Bucharest: The Didactic and Pedagogic Publishing House.

    Google Scholar 

  • Niebergall, W. (1959). Handbuch der Kältetechnik, Band 7, Sorptions—Kältemaschinen. Berlin: Springer.

    Google Scholar 

  • Smith, I. K. (1993). Development of the trilateral flash cycle system part 1: Fundamental consideration. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 207(3), 179–194.

    Google Scholar 

  • Smith, I. K., & da Silva, R. P. M. (1994). Development of the trilateral flash cycle system part 2: Increasing power output with working fluid mixtures. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 208, 135–144.

    Google Scholar 

  • Smith, I. K. (1997). Energy recovery from two-phase expansion by means of twin screw machines. In Private Conference.

    Google Scholar 

  • Staicovici, M. D. (2006) Coabsorbent cycles. In Proceedings of Gustav Lorentzen Conference on Natural Refrigerants (pp. 219–222), Trondheim, Norway, May 28–31.

    Google Scholar 

  • Staicovici, M. D. (2009a). Coabsorbent cycles. Part one: Theory. International Journal of Thermal Sciences, 48, 626–644.

    Article  Google Scholar 

  • Staicovici, M. D. (2009b). IPAE & VE offer prospectus I–IV—proposal for cooperation, Sent to the GRASSO GEA (Holland), AXIMA Refrigeration (France), BITZER (Germany), DORIN (Italy), EMBRACO (Brasil), SABROE (Danemark) and HOWDEN (UK) compressor manufacturers on 08.10.2009, Stuttgart, Germany.

    Google Scholar 

  • Staicovici, M. D. (2011a). A method of improving the effectiveness of a mechanical vapor compression process and of its applications in refrigeration. International Journal of Heat Mass Transfer, 54(2011), 1752–1762. doi: 10.1016/j.ijheatmasstransfer.2011.01.016.

    Article  MATH  Google Scholar 

  • Staicovici, M. D. (2011b). A thermodynamic approach of mechanical vapor compression refrigeration COP increase. Part I: Methods and ideal limits. In Proceedings of the 4th IIR Conference: Ammonia Refrigeration Technology, Ohrid.

    Google Scholar 

  • Staicovici, M. D. (2011c). A thermodynamic approach of mechanical vapor compression refrigeration COP increase. Part II: Thermal to work recovery method applications. In Proceedings of the 4th IIR Conference: Ammonia Refrigeration Technology, Ohrid.

    Google Scholar 

  • Staicovici, M. D. (2011d). Climbing the thermodynamic effectiveness summits of mechanical vapor compression cooling through discharge gas heat conversion: a theoretical approach. In Proceedings of the ICR 2011, Prague.

    Google Scholar 

  • Staicovici, M. D. (2012). Thermal-to-work and thermal-to-thermal recovery compression heat pumping. In Proceedings of the Gustav Lorenzen Conference on Natural Refrigerants, Delft, The Netherlands.

    Google Scholar 

  • Stamatescu, C. (1972). The cooling technique (Vol. 1). Bucharest: The Technical Publishing House. (in Romanian).

    Google Scholar 

  • Stamatescu, C., Peculea, M., Radcenco, V., Porneala, S., & Barbu, H. (1982). Technical cryogenics. Bucharest: The Technical Publishing House.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail-Dan Staicovici .

Appendix 1

Appendix 1

  1. (i)

    First, we shall derive an equivalent expression of \( \eta_{C} \left( \xi \right) \), Eq. (8.9), following the way covered in Appendix 1. In our case, Eqs. (A1.1) and (A1.2) become:

$$ ln\frac{{T_{2a} }}{{T_{1} }} = ln\frac{1 + x}{1 - x} = f\left( x \right) $$
(A8.1)

and

$$ x = \frac{{T_{2a} - T_{1} }}{{T_{2a} + T_{1} }},\quad x \in \left[ {0,1} \right),\;x \ll 1. $$
(A8.2)

respectively. Bearing in mind Eq. (A1.7), Eq. (A1.8) becomes in this case:

$$ ln\frac{{T_{2a} }}{{T_{1} }} = 2\frac{{T_{2a} - T_{1} }}{{T_{2a} + T_{1} }} $$
(A8.3)

and Eq. (8.9) is rewritten in an equivalent form as follows:

$$ \eta_{C} \left( \xi \right) = 1 - \frac{{ln\frac{{T_{2a} }}{{T_{1} }}}}{{\frac{{T_{2a} }}{{T_{1} }} - 1}} \equiv \eta_{C,TFC} = 1 - \frac{{2T_{1} }}{{T_{2a} - T_{1} }}\frac{{T_{2a} - T_{1} }}{{T_{2a} + T_{1} }} $$
(A8.4)

or

$$ \eta_{C,TFC} = 1 - \frac{{T_{1} }}{{\frac{{T_{2a} + T_{1} }}{2}}} $$
(A8.5)

Equation (A8.5) can be arranged also as:

$$ \eta_{C,TFC} = \frac{{T_{2a} - T_{1} }}{{T_{2a} + T_{1} }} $$
(A8.6)

which is nothing else but the ideal thermal efficiency of the motor (direct) cycle named Trilateral Flash Cycle (TFC) (see Sect. 8.2.1).

  1. (ii)

    Second, let us consider the ideal TFC, which recovers from the heat source the discharge gas superheat \( q_{a} \), rejects to the sink source the amount of heat \( - \left| {q_{i} } \right| = - \left| {l_{i} } \right| \) (Popa and Vintila 1977, p. 373, Table 15.3) and produces the work \( l_{a,r} = \left| {l_{a} } \right| - \left| {l_{i} } \right| \), Eq. (8.26). Combining Eq. (8.10), written as:

$$ l_{a,r} = \eta_{C,TFC} q_{a} $$
(A8.9)

with Eqs. (A8.5) and (8.26), it results:

$$ \left( {1 - \frac{{T_{1} }}{{\frac{{T_{2a} + T_{1} }}{2}}}} \right)q_{a} = \;\left| {l_{a} } \right| - \left| {l_{i} } \right| $$
(A8.10)

Taking into account that \( \left| {l_{a} } \right| = \left| {q_{a} } \right| \), Eq. (8.25), and that \( - \left| {q_{i} } \right| = - \left| {l_{i} } \right| \) (see above), Eq. (A8.10) becomes:

$$ \frac{{q_{a} }}{{\frac{{T_{1} + T_{2a} }}{2}}} - \frac{{\left| {q_{i} } \right|}}{{T_{1} }} = 0 $$
(A8.11)

which proves that TFC entropy variation is null when is completely covered, \( \Delta s = s_{h} - s_{s} = 0 \), therefore the considered TFC is reversible [see Eqs. (1.86) and (1.88) as well]. From Eq. (A8.11) it results also that the heat source delivers in an equivalent way the heat \( q_{a} \) to the arithmetical mean temperature \( \frac{{T_{1} + T_{2a} }}{2} \), as we expected.

  1. (iii)

    Third, in order to proof simpler the Theorem 4 of this chapter, Eq. (8.98) is rewritten in the new form with Eq. (A8.12) as:

$$ \frac{{COP_{c} }}{{COP_{c,TWRC} }} = \frac{{\left| {l_{a,TWRC} } \right|}}{{\left| {l_{a} } \right|}} = 1 - \varepsilon \eta_{C} \left( \xi \right) = 1 - \varepsilon \left( {1 - \frac{{T_{1} }}{{\frac{{T_{2a} + T_{1} }}{2}}}} \right) = f\left( {T_{1} ,T_{2a} } \right) $$
(A8.12)

and it suffices to show that \( \frac{{\partial f\left( {T_{1} ,T_{2a} } \right)}}{{\partial T_{2a} }} = - \varepsilon \frac{{\partial \eta_{C} \left( {T_{1} ,T_{2a} } \right)}}{{\partial T_{2a} }} < 0 \). Indeed, performing the last derivative, it results that:

$$ - \varepsilon \frac{{\partial \eta_{C} \left( {T_{1} ,T_{2a} } \right)}}{{\partial T_{2a} }} = \varepsilon \frac{\partial }{{\partial T_{2a} }}\left( {\frac{{2T_{1} }}{{T_{2a} + T_{1} }}} \right) = - \varepsilon \frac{{2T_{1} }}{{\left( {T_{2a} + T_{1} } \right)^{2} }} < 0\;{\text{q}}.{\text{e}}.{\text{d}}. $$
(A8.13)
  1. (iv)

    The classic compression saves input work, practicing staged compression with interstage cooling of the discharge gas (Popa and Vintila 1977). In Fig. 8.30 we plotted a compression process benefiting of two stages, with intermediary cooling, instead of a single one. The intermediary pressure \( p_{x} ,\;p_{1} < p_{x} < p_{2} \) is established according to the known relation:

    Fig. 8.30
    figure 30

    Single-stage versus two-stage compression

$$ p_{x} = \sqrt {p_{1} p_{2} } , $$
(A8.14)

which ensures the minimum work consumption in two-stage compression (Popa and Vintila 1977). The single-stage compression is the adiabatic transformation, represented in Fig. 8.30 by the adiabat \( T_{1} - T_{2a} \). In case of the two-stage compression, the first and second stage compressions are the adiabatic transformations \( T_{1} - T_{ax} \) and \( T_{ix} - T_{2ax} \), respectively. The work savings is that corresponding to the \( T_{ax} - T_{ix} - T_{2ax} - T_{2a} - T_{ax} \) area comprised between the two adiabats \( T_{ax} - T_{{T_{2a} }} \) and \( T_{ix} - T_{2ax} \) and the two isobar \( p_{x} \) and \( p_{2} \) in the \( p - V \) diagram. The relationship (A8.14) is valid for the compression practiced so far, without TWRC. The next lemma will prove that Eq. (A8.14) remains valid even in case of TWRC.

Lemma 2

A two-stage adiabatic mechanical vapor compression process, provided with TWRC and operating between the initial and final pressures \( p_{1} \) and \( p_{2} \) , respectively, has the same value of the intermediary pressure ensuring the minimum work consumption as that of the compression process without TWRC, that is \( p_{x} = \sqrt {p_{1} p_{2} } ,\;p_{1} < p_{x} < p_{2} \).

Proof

From considering Eqs. (8.27)–(8.30), the work of the single-stage compression provided with TWRC results in:

$$ \left| {l_{a,TWRC} } \right| = \left| {l_{a} } \right|\left[ {1 - \varepsilon \left( {1 - \frac{{\ln \frac{{T_{2a} }}{{T_{1} }}}}{{\frac{{T_{2a} }}{{T_{1} }} - 1}}} \right)} \right] $$
(A8.15)

where \( \left| {l_{a} } \right| \) is given by Eq. (8.14):

$$ \left| {l_{a} } \right| = \frac{k}{k - 1}p_{1} V_{1} \left[ {\left( {\frac{{p_{2a} }}{{p_{1} }}} \right)^{{\frac{k - 1}{k}}} - 1} \right] $$
(A8.16)

Combining the two Eqs. (A8.15) and (A8.16), it is obtained:

$$ \left| {l_{a,TWRC} } \right| = \frac{k}{k - 1}p_{1} V_{1} \left[ {\left( {\frac{{p_{2a} }}{{p_{1} }}} \right)^{{\frac{k - 1}{k}}} - 1} \right]\left[ {1 - \varepsilon \left( {1 - \frac{{\ln \frac{{T_{2a} }}{{T_{1} }}}}{{\frac{{T_{2a} }}{{T_{1} }} - 1}}} \right)} \right] $$
(A8.17)

The single-stage TWRC provided compression work of Eq. (A8.17) is written in case of the first and second TWRC provided stages works as follows:

$$ \left| {l_{a,TWRC,I} } \right| = \frac{k}{k - 1}p_{1} V_{1} \left[ {\left( {\frac{{p_{x} }}{{p_{1} }}} \right)^{{\frac{k - 1}{k}}} - 1} \right]\left[ {1 - \varepsilon \left( {1 - \frac{{ln\frac{{T_{ax} }}{{T_{1} }}}}{{\frac{{T_{ax} }}{{T_{1} }} - 1}}} \right)} \right] $$
(A8.18)

and

$$ \left| {l_{a,TWRC,II} } \right| = \frac{k}{k - 1}p_{1} V_{1} \left[ {\left( {\frac{{p_{2a} }}{{p_{x} }}} \right)^{{\frac{k - 1}{k}}} - 1} \right]\left[ {1 - \varepsilon \left( {1 - \frac{{ln\frac{{T_{ax} }}{{T_{ix} }}}}{{\frac{{T_{ax} }}{{T_{ix} }} - 1}}} \right)} \right] $$
(A8.19)

respectively. In Eq. (A8.19), the product \( p_{1} V_{1} \) was used instead of \( p_{x} V_{ix} \) because the points \( \left( {T_{1} ,p_{1} } \right) \) and \( \left( {T_{ix} ,p_{x} } \right) \) belong to the same isothermal curve \( T_{1} = T_{ix} = T_{2i} = const. \), and along of which we have \( p_{1} V_{1} = p_{x} V_{ix} \), Fig. 8.30. The ratios of temperatures in Eqs. (A8.18) and (A8.19) are written with the help of Eq. (8.18), valid along of an adiabat:

$$ \frac{{T_{ax} }}{{T_{1} }} = \left( {\frac{{p_{x} }}{{p_{1} }}} \right)^{{\frac{k - 1}{k}}} $$
(A8.20)

and

$$ \frac{{T_{2ax} }}{{T_{ix} }} = \left( {\frac{{p_{2a} }}{{p_{x} }}} \right)^{{\frac{k - 1}{k}}} $$
(A8.21)

respectively. Introducing Eqs. (A8.20) and (A8.21) in Eqs. (A8.18) and (A8.19), it is obtained;

$$ \left| {l_{a,TWRC,I} } \right| = \frac{{p_{1} V_{1} }}{y}\left[ {\left( {\frac{{p_{x} }}{{p_{1} }}} \right)^{y} - 1} \right]\left[ {1 - \varepsilon \left( {1 - \frac{{yln\left( {\frac{{p_{x} }}{{p_{1} }}} \right)}}{{\left( {\frac{{p_{x} }}{{p_{1} }}} \right)^{y} - 1}}} \right)} \right] $$
(A8.22)

and

$$ \left| {l_{a,TWRC,II} } \right| = \frac{{p_{1} V_{1} }}{y}\left[ {\left( {\frac{{p_{2a} }}{{p_{x} }}} \right)^{y} - 1} \right]\left[ {1 - \varepsilon \left( {1 - \frac{{yln\left( {\frac{{p_{2a} }}{{p_{x} }}} \right)}}{{\left( {\frac{{p_{2a} }}{{p_{x} }}} \right)^{y} - 1}}} \right)} \right] $$
(A8.23)

where \( \frac{k - 1}{k} = y \). Further, Eqs. (A8.22) and (A8.23) are added term by term, resulting:

$$ \left| {l_{a,TWRC,I + II} } \right| = \left| {l_{a,TWRC,I} } \right| + \left| {l_{a,TWRC,II} } \right| = \frac{{p_{1} V_{1} }}{y}\left\{ {\left( {1 - \varepsilon } \right)\left[ {\left( {\frac{{p_{x} }}{{p_{1} }}} \right)^{y} + \left( {\frac{{p_{2a} }}{{p_{x} }}} \right)^{y} } \right] + \varepsilon yln\frac{{p_{2a} }}{{p_{1} }}} \right\} $$
(A8.23)

The searched value of \( p_{x} \) is found solving equation below:

$$ \frac{d}{{dp_{x} }}\left| {l_{a,TWRC,I + II} } \right| = 0 $$
(A8.24)

or,

$$ \frac{d}{{dp_{x} }}\left| {l_{a,TWRC,I + II} } \right| = \frac{d}{{dp_{x} }}\left[ {\left( {\frac{{p_{x} }}{{p_{1} }}} \right)^{y} + \left( {\frac{{p_{2a} }}{{p_{x} }}} \right)^{y} } \right] = 0 $$
(A8.25)

Performing the derivation in Eq. (A8.25), it results:

$$ y\left( {\frac{{p_{x} }}{{p_{1} }}} \right)^{y - 1} \frac{1}{{p_{1} }} - y\left( {\frac{{p_{2a} }}{{p_{x} }}} \right)^{y - 1} \frac{{p_{2a} }}{{p_{x}^{2} }} = 0 $$
(A8.26)

wherefrom the lemma is proved, \( \left( {p_{2a} = p_{2} } \right) \):

$$ p_{x} = \sqrt {p_{1} p_{2} } ,\;{\text{q}}.{\text{e}}.{\text{d}}. $$
(A8.27)

Bearing in mind that both mechanical vapor compression processes, without and with TTRC method application, have the same work input [see Eq. (8.3)], and taking into account the lemma 2 result, it is concluded that:

Corollary 4

Both TWRC and TTRC methods preserve the same relationship of the intermediary pressure calculus, in two-stage mechanical vapor compression, Eq. (A8.27), in order to minimize the work input.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Staicovici, MD. (2014). A Thermodynamic Approach of Mechanical Vapor Compression Refrigeration and Heating COP Increase. In: Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54684-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54684-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54683-9

  • Online ISBN: 978-3-642-54684-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics