Skip to main content

Part of the book series: Heat and Mass Transfer ((HMT))

Abstract

The coabsorbent cycles have been disclosed recently by their author in published works on heat pumping and power applications (Staicovici 2006a–2013). In the following chapters, the theoretical research laying down the basis of coabsorbent technology is presented, including the nontruncated and truncated coabsorbent cycles, the theory of truncation, the cooling and heating fractals, the truncation columns and column cycles, the coabsorbent cycles ideal COP estimate, the new cycles with pressure and concentration stages and the multi-effect cycles transposition into the coabsorbent technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenkirch, E. (1950). Kompressionskältemaschine mit Lösungslreislauf. Kältetechnik 2(10–12), 251–259, 279–284, 310–315.

    Google Scholar 

  • Altenkirch, E. (1951). Der Einfluß endlicher Temperaturdifferenzen auf die Betriebskosten von Kompressionskälteanlagen mit und ohne Lösungslreislauf. Kältetechnik 3(8–10), 201–205, 229–234, 255–259.

    Google Scholar 

  • Altenkirch, E., & Tenckhoff, B. (1911). Absorptionkältemaschine zur kontinuierlichen Erzeugung von Kälte und Wärme, oder auch von Arbeit. German Patent No. 278076.

    Google Scholar 

  • Badescu, V., & Staicovici, M. D. (2005). Renewable energy for passive house heating. Model of the active solar heating system. Energy and Buildings, 38, 129–141.

    Article  Google Scholar 

  • Baehr, H. D. (1981). The COP of absorption and resorption heat pumps with ammonia-water as working fluids. International Journal of Refrigeration, 4(2), 83–86.

    Article  Google Scholar 

  • Belozerov, G., Mednikova, N., Pytchenko, V., & Serova, E. (2007). Cascade type refrigeration systems working on CO2/NH3 for technological processes of products freezing and storage. In Proceedings of Ohrid 2007 IIR/IIF conference, Macedonia, 19–21 April 2007.

    Google Scholar 

  • Bliss, R. W. (1961). Athmospheric radiation near the surface of the ground. Solar Energy, 5, 103.

    Article  Google Scholar 

  • Brunt, D., & Quart, J. (1932). Notes on radiation in the atmosphere. Royal Meteorological Society, 58, 389–420.

    Article  Google Scholar 

  • Cox, N., Mazur, V., & Colbourne, D. (2009). The development of azeotropic ammonia refrigerant blends for industrial process applications. In Proceedings of the Ohrid 2009 IIR/IIF conference, Macedonia, 6–8 May 2009.

    Google Scholar 

  • Duffie, J. A., & Beckman, W. A. (1974). Solar energy thermal processes. New York: Wiley.

    Google Scholar 

  • Groll, E. A. (1997a). Current status of absorption/compression cycle technology. In ASHRAE transactions symposia, PH-97-1-1.

    Google Scholar 

  • Groll E. A. (1997b). Modeling of absorption/compression cycles using working pair dioxide/acetone. In ASHRAE transactions symposia, PH-97-12-1.

    Google Scholar 

  • Groll, E. A., & Kruse, H. (1992). Kompressionskältemaschine mit Lösungslreislauf für umweltver-trägliche Kältemittel. KK DIE KÄLTE und Klimatechnik (pp. 206–218). Stuttgart: Gentner.

    Google Scholar 

  • Itard, L. C. M., & Machielsen, C. H. M. (1994). Considerations when modelling compression/resorption heat pumps. Revue Internationale du Froid, 17(7), 453–460.

    Article  Google Scholar 

  • Kashiwagi, T. (1980–1990). Advances in working fluids and cycles for absorption systems. Private communication, Tokyo University of Agriculture and Technology.

    Google Scholar 

  • Kirilin, V. A., Sicev, V. V., & Seindlin, A. E. (1985). Thermodynamics (540 pp.). Bucharest: Scientific and Technical Publishing House (in Romanian).

    Google Scholar 

  • Lund, J., Sanner, B., Rybach, L., Curtis, R., & Hellström, G. (2004, September). Geothermal (ground-source) heat pumps-a world review. GHC Bulletin.

    Google Scholar 

  • Niebergall, W. (1959). Handbuch der Kältetechnik, Band 7, Sorptions-Kältemaschinen (Vol. 7). Berlin, Göttingen, Heidelberg: Springer.

    Book  Google Scholar 

  • Ogriseck, S. (2009). Integration of Kalina cycle in a combined heat and power plant, a case study. Applied Thermal Engineering, 29(14), 2483–2848.

    Google Scholar 

  • Osenbrück, A. (1895). Verfahren zur Kälteerzeugung bei Absorptionsmachinen. Germany: Kaiserliches Patentamt.

    Google Scholar 

  • Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 Mc/s. Astrophysical Journal, 142, 419–421.

    Article  Google Scholar 

  • Perez, B. H. (1993). Conceptual design of high-efficiency absorption cooling cycle. International Journal of Refrigeration, 16(6), 429–433.

    Article  Google Scholar 

  • Popa, B., & Vintila, C. (1977). Thermotechnics and thermal machines. Bucharest: The Didactic and Pedagogic Publishing House (in Romanian).

    Google Scholar 

  • Prosper de Mulder. (2004). Vertical freezers with CO 2 . Glasgow: Star Refrigeration. (Doncaster).

    Google Scholar 

  • Radermacher, R., & Alefeld, G. (1982). Lithiumbromid-Wasser—Lösungen als Absorber für Ammoniak oder Methylamin. Brennstoff-Wärme-Kraft, 34(1), 31–38.

    Google Scholar 

  • Radcenco, V., Florescu, A., Duicu, T., Burchiu, N., Dimitriu, S., Zdrenghea, P., Ghitulescu, M., Dobrovicescu, A., & Dragomir, T. (1985). Heat pump installations. Thermo-cooling series. Bucharest: Technical Publishing House.

    Google Scholar 

  • Risberg, T., Horntvedt, B., Madland, D., Nordtvedt, S. R. (2004). Process dynamics in an industrial prototype compression/absorption heat pump. In Proceedings of the 6th IIR Gustav Lorenzen natural working fluids conference, Glasgow, UK, 29th August–1st September 2004.

    Google Scholar 

  • Sloan, J., & Roncin, E. (1920). Procédé et dispositifs de production des frigories à cicle fermé. French Patent No. 537,438.

    Google Scholar 

  • Staicovici, M. D. (2002). Further research zero CO2 emission power production: The “COOLENERG” process. Energy the International Journal, 27(9), 831–844.

    Article  Google Scholar 

  • Staicovici, M. D. (2004). The “COOLENERG” clean power process—a challenge for the advanced absorption cooling technology. In Proceedings of the 21st international congress of refrigeration, Washington, August 2003.

    Google Scholar 

  • Staicovici, M. D. (2006a). Coabsorbent cycles. In Proceedings of the Gustav Lorentzen natural working fluids conference (pp. 219–222), Trondheim, Norway, 28–31 May 2006.

    Google Scholar 

  • Staicovici, M. D. (2006b). Heat pump. Patent Romania No. 123151/02.03.2006 (in Romanian).

    Google Scholar 

  • Staicovici, M. D. (2006c). Cooling plant. Patent Romania No. 123152/06.07.2006 (in Romanian).

    Google Scholar 

  • Staicovici, M. D. (2006d). Procedure of increasing the effectiveness and feasibility of a nontruncated coabsorbent cooling cycle and installation of application. Patent Romania No. 123082/26. 09.2006 (in Romanian).

    Google Scholar 

  • Staicovici, M. D. (2006e). The coabsorbent cycle technology for heat pumping applications. Presented to the confort, efficiency, energy conservation and environment protection, UTCB conference, Bucharest, Romania, 29–30 November 2006.

    Google Scholar 

  • Staicovici, M. D. (2007a). Coabsorbent heat pumping method by coupling with a thermal power station and application plant. Romanian Patent No. 123405/22.02.2007 (in Romanian).

    Google Scholar 

  • Staicovici, M. D. (2007b). Coabsorbent cycle technology for ammonia/water heat pumping applications. In Proceedings of the ammonia refrigeration technology for today and tomorrow IIR conference, Ohrid, Macedonia, 19–21 April 2007.

    Google Scholar 

  • Staicovici, M. D. (2007c). Coabsorbent heat pumps for the future. IEA-Heat Pumps Newsletter, 25(1), 29–32.

    Google Scholar 

  • Staicovici, M. D. (2007d). Coabsorbent cycle technology for low grade sources thermal recovery. In Proceedings of the technological innovations in air conditioning and refrigeration industry XII European conference (Vol. I–II), Milan, June 2007.

    Google Scholar 

  • Staicovici, M. D. (2007e). Coabsorbent technology for heat pumping applications. In Proceedings of the IIRIIF 22 international congress of refrigeration, E1-2-1039, Beijing.

    Google Scholar 

  • Staicovici, M. D. (2007f). Coabsorbent technology for future cooling applications, Sent to Rajendra Shende, Director of the United Nations Environment Programme (UNEP), July 2007, and Didier Coulomb, Director of the International Institute of Refrigeration, November 2007.

    Google Scholar 

  • Staicovici, M. D. (2007g). Coabsorbent cycles heat pumping and mechanical work producing procedure and applying installation. International patent file deposition No. PCT/RO 2007/000018/24.09.2007.

    Google Scholar 

  • Staicovici, M. D. (2007h). A coabsorbent technology IPAE prospectus presented and offered by the author during a visit which this has paid to Lars Gulev from the Danish Board of the District Heating, in order to cooperate and possibly apply the mentioned technology in Copenhagen to district heating and cooling.

    Google Scholar 

  • Staicovici, M. D. (2008a). Coabsorbent heat pumps. In Proceedings of the 9th IEA heat pumps conference, Zurich, May 2008.

    Google Scholar 

  • Staicovici, M. D. (2008b). Proposals for the nine sigma RPF 11087-1: “Highly efficient low temperature heat driven cooling technologies”, March 2008.

    Google Scholar 

  • Staicovici, M. D. (2008c). Coabsorbent technology for heat pumping and power production. In Proceedings of the 8th IIR Gustav Lorentzen conference on natural working fluids, Copenhagen, 07–10 September 2008.

    Google Scholar 

  • Staicovici, M. D. (2009). Further results in ammonia/water coabsorbent technology district trigeneration. In Proceedings of Ohrid 2009 IIR/IIF conference, Macedonia, 6–8 May 2009.

    Google Scholar 

  • Staicovici, M. D. (2011). Heat exchange analysis of coabsorbent cycle absorption processes. In Proceedings of ISHPC 2011 conference.

    Google Scholar 

  • Staicovici, M.-D., & Staicovici, A.-M. (2013). Hybrid coabsorbent heat pumping cycles. In Proceeding of the 5th IIR conference: Ammonia refrigeration technology, Ohrid 2013.

    Google Scholar 

  • Swinbank, W. C., & Quart, J. (1963). Long-wave radiation from clear skies. Royal Meteorological Society, 89.

    Google Scholar 

  • Whillier, A. (1967). “Design factors influencing solar collectors”, Low temperature engineering applications of solar energy, ASHRAE, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail-Dan Staicovici .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Staicovici, MD. (2014). Coabsorbent Cycles. In: Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54684-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54684-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54683-9

  • Online ISBN: 978-3-642-54684-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics