Errata to: M.-D. Staicovici, Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies, DOI 10.1007/978-3-642-54684-6

Corrections to be made to the book “Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies, author Mihail-Dan Staicovici

Page

Present text

Corrections to be made = the text which the “Present text” must be replaced with

viii,

row 12 from top

The discharge gas superheat recovery is converted…

The recovered discharge gas superheat is converted…

17,

row 14 from bottom

elaborated it 1824.

elaborated it in 1824.

21,

row 10 from bottom

Than,

Then,

22,

row 2 from bottom

in eqn. (1.98)

inequality (1.98)

22,

row 5 from bottom

In in eqn. (1.98)

In inequality (1.98)

23,

1st row from top

In eqn. (1.100)

inequality (1.100)

23,

row 8 from top

in eqn. (1.101)

inequality (1.101)

23,

row 10 from top

In eqn. (1.102)

Inequality (1.102)

23,

row 2 from bottom

in eqn. (1.108)

inequality (1.108)

23,

row 3 from bottom

ineqn. (1.105)

Inequality (1.105)

23,

row 12 from bottom

In in eqn. (1.105)

In inequality (1.105)

23,

row 15 from bottom

In eqn. (1.103)

Inequality (1.103)

27,

row 3 from top

calculated with the help the arithmetical mean

calculated with the help of the arithmetical mean

29,

row 18 from bottom

where \( - \left( {dE} \right)_{irrev} \) is the exergy dissipation

where \( - \frac{\partial E}{\partial t}dt \) is the exergy dissipation

36,

row 12 from bottom

free energy relationship as \( U = F + TS \), Eq. (1.155),

free energy relationship as \( U = F + TS \), Eq. (1.164),

45,

row 7 from top

Eq. (1.208) partial derivatives are given by Eqs. (1.160) and (1.161) of Table 1.1, …

Eq. (1.208) partial derivatives are given by Eqs. (1.169) and (1.170) of Table 1.1, …

61,

row 6 from top

Introducing Eq. (1.244) in Eq. (1.243), it is obtained:

Introducing Eqs. (1.244) and (1.243) in Eq. (1.242), it is obtained:

61,

Eq. (1.248)

\( \left[ {\frac{{\partial q_{mix} }}{{\partial \left( {1 - y} \right)}}} \right]_{{m_{1} }} \left[ {\frac{{\partial \left( {1 - y} \right)}}{{\partial m_{2} }}} \right]_{{m_{1} }} = - y\left[ {\frac{{\partial q_{mix} }}{\partial y}} \right]_{{m_{2} }} \)

\( \left[ {\frac{{\partial q_{mix} }}{{\partial \left( {1 - y} \right)}}} \right]_{{m_{1} }} \left[ {\frac{{\partial \left( {1 - y} \right)}}{{\partial m_{2} }}} \right]_{{m_{1} }} = - y\left[ {\frac{{\partial q_{mix} }}{\partial y}} \right]_{{m_{1} }} \)

61,

Eq. (1.249)

\( q_{d2} = q_{mix} - y\left[ {\frac{{\partial q_{mix} }}{\partial y}} \right]_{{m_{2} }} \)

\( q_{d2} = q_{mix} - y\left[ {\frac{{\partial q_{mix} }}{\partial y}} \right]_{{m_{1} }} \)

61,

rows 4 and 5 from bottom

Eqs. (1.243) and (1.246)

Eqs. (1.242) and (1.249)

Fig.1.21

62,

Eq. (1.252)

\( \left( {1 - y} \right)\left[ {\frac{{\partial q_{{d_{1} }} }}{\partial y}} \right]_{{m_{2} }} + y\left[ {\frac{{\partial q_{{d_{2} }} }}{\partial y}} \right]_{{m_{1} }} = 0 \)

\( \left( {1 - y} \right)\left[ {\frac{{\partial q_{{d_{1} }} }}{\partial y}} \right]_{{m_{1} }} + y\left[ {\frac{{\partial q_{{d_{2} }} }}{\partial y}} \right]_{{m_{2} }} = 0 \)

62,

rows 9 and 10 from bottom

Eqs. (1.245) and (1.249) of \( q_{d1} \) and \( q_{d2} \) are further partially derived with respect to \( y \) for \( m_{2} = const. \) and with respect to \( \left( {1 - y} \right) \) for \( m_{1} = const. \), respectively.

Eqs. (1.245) and (1.249) of \( q_{d1} \) and \( q_{d2} \) are further partially derived with respect to \( y \) for \( m_{1} = const. \) and with respect to \( \left( {1 - y} \right) \) for \( m_{2} = const. \), respectively.

62,

Eq. (1.253)

\( \left[ {\frac{{\partial q_{{d_{1} }} }}{\partial y}} \right]_{{m_{2} }} + \left[ {\frac{{\partial q_{{d_{2} }} }}{\partial y}} \right]_{{m_{1} }} = 0 \)

\( \left[ {\frac{{\partial q_{{d_{1} }} }}{\partial y}} \right]_{{m_{1} }} + \left[ {\frac{{\partial q_{{d_{2} }} }}{\partial y}} \right]_{{m_{2} }} = 0 \)

62,

Eq. (1.254)

\( \left[ {\frac{{\partial q_{{d_{1} }} }}{\partial y}} \right]_{{m_{2} }} - \left[ {\frac{{\partial q_{{d_{2} }} }}{\partial y}} \right]_{{m_{1} }} = - 2\left[ {\left[ {\frac{{\partial q_{mix} }}{\partial y}} \right]_{{m_{1} }} - \left[ {\frac{{\partial q_{mix} }}{\partial y}} \right]_{{m_{2} }} } \right] \)

\( \left[ {\frac{{\partial q_{{d_{1} }} }}{\partial y}} \right]_{{m_{1} }} - \left[ {\frac{{\partial q_{{d_{2} }} }}{\partial y}} \right]_{{m_{2} }} = 2\left[ {\left[ {\frac{{\partial q_{mix} }}{\partial y}} \right]_{{m_{1} }} - \left[ {\frac{{\partial q_{mix} }}{\partial y}} \right]_{{m_{2} }} } \right] \)

62,

row 3 from bottom

Equations (1.252) and (1.253) are solved together for \( \left[ {\frac{{\partial q_{{d_{1} }} }}{\partial y}} \right]_{{m_{2} }} \) and \( \left[ {\frac{{\partial q_{{d_{2} }} }}{\partial y}} \right]_{{m_{1} }} \), obtaining:

Equations (1.252) and (1.253) are solved together for \( \left[ {\frac{{\partial q_{{d_{1} }} }}{\partial y}} \right]_{{m_{1} }} \) and \( \left[ {\frac{{\partial q_{{d_{2} }} }}{\partial y}} \right]_{{m_{2} }} \), obtaining:

62,

Eq. (1.255)

\( \left[ {\frac{{\partial q_{{d_{1} }} }}{\partial y}} \right]_{{m_{2} }} = \left[ {\frac{{\partial q_{{d_{2} }} }}{\partial y}} \right]_{{m_{1} }} = 0 \)

\( \left[ {\frac{{\partial q_{{d_{1} }} }}{\partial y}} \right]_{{m_{1} }} = \left[ {\frac{{\partial q_{{d_{2} }} }}{\partial y}} \right]_{{m_{2} }} = 0 \)

70,

row 7 from bottom

The specific Gibbs free enthalpy is at the same time the chemical potential of the system, \( \varphi = \left( {\frac{\partial \varPhi }{\partial G}} \right)_{T,p} \), according to eqn. (1.163).

The specific Gibbs free enthalpy is at the same time the chemical potential of the system, \( \varphi = \left( {\frac{\partial \varPhi }{\partial G}} \right)_{T,p} \), according to eqn. (1.172).

70,

row 9 from bottom

specific Gibbs free enthalpy assessment, \( \varphi \), \( \varphi = \frac{\varPhi }{G} \), (\( \varPhi \left( {T,\,p} \right) = H - TS \), Table 1.1, eqn. (1.159))…

specific Gibbs free enthalpy assessment, \( \varphi \), \( \varphi = \frac{\varPhi }{G} \), (\( \varPhi \left( {T,\,p} \right) = H - TS \), Table 1.1, eqn. (1.168))…

73,

row 12 from bottom

In eqn. (1.283), the last bracket of the right member can be calculated from eqns. (1.276) and (1.277)…

In eqn. (1.283), the last bracket of the right member can be calculated from gas phase eqns. (1.276) and (1.277)…

75,

row 3 from bottom

Gas phase:

\(c_{p}^{l}\left( T,{{p}_{0}} \right)={{b}_{1}}+{{b}_{2}}T+{{b}_{3}}{{T}^{2}}\) (1.294)

\({{v}^{g}}\left( T,p \right)=\frac{RT}{p}+{{c}_{1}}+\frac{{{c}_{2}}}{{{T}^{3}}}+\frac{{{c}_{3}}}{{{T}^{11}}}+\frac{{{c}_{4}}{{p}^{2}}}{{{T}^{11}}}\) (1.295)

\(c_{p}^{l}\left( T,{{p}_{0}} \right)={{b}_{1}}+{{b}_{2}}T+{{b}_{3}}{{T}^{2}}\) (1.294)

Gas phase:

\({{v}^{g}}\left( T,p \right)=\frac{RT}{p}+{{c}_{1}}+\frac{{{c}_{2}}}{{{T}^{3}}}+\frac{{{c}_{3}}}{{{T}^{11}}}+\frac{{{c}_{4}}{{p}^{2}}}{{{T}^{11}}}\) (1.295)

75,

row 5 from top

\( \left( {y = 0;Y = 0} \right) \)

\( \left( {y = 0;Y = 1} \right) \)

78,

1st row from top

Introducing eqns. (1.295), (1.296) and (1.306) in eqn. (1.304), the analytical expression of the gas phase free enthalpy results:

Introducing eqns. (1.295), (1.296) and (1.306) in eqn. (1.307), the analytical expression of the gas phase free enthalpy results:

128,

row 8 from the bottom

This time, temperature is the internal heating temperature….

This time, \( T_{M} \) temperature is the internal heating temperature….

186,

row 6 from top

for seen

foreseen

208,

Caption of Fig. 417

Fig. 4.44

Fig. 4.45

208,

row 2 from top

(see Fig. 4.44 of Sect. 4.3.2)

(see Fig. 4.45 of Sect. 4.3.1)

209,

row 2 from the top

Fig. 4.44

Fig. 4.43

210,

row 5 from bottom

y GO,1

ΔT gax,R

211,

row 6 from top

\(\Delta {{T}_{R,i,gax\left( \Delta {{T}_{gax,R,\max }} \right)}}\)

\({{y}_{R,i,gax}}={{y}_{R,i,gax}}\left( \Delta {{T}_{gax,R,\max }} \right)\)

212, row 3 from the bottom

\( \Delta T_{gax,R,\hbox{max} } \le \Delta T_{gax,R} \le \Delta T_{gax,R,\hbox{max} } \)

\( \Delta T_{gax,R,\hbox{min} } \le \Delta T_{gax,R} \le \Delta T_{gax,R,\hbox{max} } \)

214,

4th row down from Eq. (4.122)

\(y_{{G,j,gax}^{e}} \)

\( y_{G,j,gax}^{e} \)

215,

7th row down from Eq. (4.129)

Fig. 4.37a of Sect. 4.2.3

Fig. 4.38a of Sect. 4.2.3

215,

GHE-Gax problem study cases

GHE-Gax problem study cases

215, row 3 from the bottom

Resorber Heat Excess (RHE) Gax Operation Model

Generator Heat Excess (GHE) Gax Operation Model

215,

row 12 from the bottom

Results of the RHE-Gax Model Run with \( \varDelta T_{gax,R,\hbox{min} } \)- Infinite Equivalent Solutions to A GHE-Gax Problem

Results of the GHE-Gax Model Run with an intermediate \( \varDelta T_{gax,G} \)- Infinite Equivalent Solutions to a GHE-Gax Problem

216,

row 12 down from the top

\( q_{{G,1,gax}^{e}} = 574.6 \)

\( q_{G,1,gax}^{e} = 574.6 \)

218,

row 5 from the bottom

According to the 6th study case, running the 4.2.1.3.2. sub-sub-paragraph model for the configuration…

According to the 6th study case, running the Sect. Generator Heat Excess (GHE) Gax Operation Model for the configuration…

250,

row 13 from top

Equations (5.6) and (1.214)…

Equations (5.6) and (1.223)…

251,

row 2 from bottom

Eq. (1.217)…

Eq. (1.226)…

265,

row 3 from top

Important properties of the cascades at hand is emphasized next

Important properties of the cascades at hand are emphasized next

266,

row 2 from top

Eq. (1.81)…

Eq. (1.65)…

266,

row 6 from top

Eqs. (5.81) (5.82), (5.76) and (5.77)

Eqs. (5.81) and (5.82), Eqs. (5.76) and (5.77)

267,

row 7 from top

Eqs. (1.208) and (1.209)…

Eqs. (1.217) and (1.218)…

267,

row 6 from bottom

Eqs. (1.208) and (1.209)…

Eqs. (1.217) and (1.218)…

268,

1st row from bottom

(last column, the CO2-NH3 known cascade). Table 5.3.

(last column, the CO2-NH3 known cascade).

300,

row 18 from bottom

Appendix 1

Appendix 7

309,

row 12 from bottom

, it results that in Eq. …

, it results that inequality …

309,

row 13 from bottom

Indeed, from the obvious in equations

Indeed, from the obvious inequalities

315,

1st row from bottom

Appendix 2

Appendix 7

324,

row 7 from top

Appendix 1

Appendix 7

324,

row 8 from top

Equation (7.34) …

i)Equation (7.34) …

324,

row 11 from top

Considering in Eqs. (A7.1, 7.20, 7.28) …

Considering in Eq. (A7.1), Eqs. (7.19, 7.28) …

324,

row 13 from top

Appendix 2

 

324,

row 14 from top

A simple, yet not simplistic, explanation …

ii)A simple, yet not simplistic, explanation …

331,

row 12 from top

Appendix 1

Appendix 8

334,

row 2 from top

(see Appendix 1 of this chapter)

(see Appendix 8 of this chapter)

338,

row 13 from bottom

Appendix 1

Appendix 8

338,

row 16 from bottom

Appendix 1

Appendix 8

369,

1st row from bottom

Appendix 1

Appendix 8

369,

row 7 from bottom

\( 1 > \frac{n\,+\,1}{n\,+\,2}x < 1 \)

\( \frac{n\,+\,1}{n\,+\,2}x < 1 \)

373,

row 4 from bottom

Appendix 1

Appendix 8

375,

1st row

 

\( \begin{gathered} \eta_{C} \left( \xi \right) = 1 - \frac{{\ln \frac{{T_{2a} }}{{T_{1} }}}}{{\frac{{T_{2a} }}{{T_{1} }} - 1}} \equiv \eta_{C,TFC} = \hfill \\ = 1 - \frac{{2T_{1} }}{{T_{2a} - T_{1} }}\frac{{T_{2a} - T_{1} }}{{T_{2a} + T_{1} }} \hfill \\ \end{gathered} \)(A8.4)

378,

row 4 from top

\({{T}_{ax}}-{{T}_{{{T}_{2a}}}}\)

\({{T}_{ax}}-{{T}_{2a}}\)

391,

row 6 from top

(see Appendix of this chapter)

(see Appendix 9 of this chapter)

403,

row 2 from top

Eqs. (9.57) and (9.70)

Eqs. (9.56) and (9.70)

430,

row 2 from bottom

(see Appendix)

(see Appendix 9)

431,

row 10 from top

(see Appendix)

(see Appendix 9)

449, Eq. (9.180)

\( \begin{gathered} \frac{{h_{1} - h_{2} }}{{T_{{f,w}} }} +\frac{{h_{3} - h_{4} }}{{T_{{f,s}} }} + \left( {h_{{ep,w,2}} -h_{{ep,w,1}} } \right)\left( {\frac{1}{{T_{{f,w}} }} -\frac{1}{{T_{{ep,w}} }}} \right) \hfill \\ + \left( {h_{{f,s,4}}- h_{{f,s,3}} } \right)\left( {\frac{1}{{T_{{f,s}} }} -\frac{1}{{T_{{ep,s}} }}} \right) \hfill \\ \end{gathered}\)

\( \begin{gathered} \frac{{h_{1} - h_{2} }}{{T_{{f,w}} }} +\frac{{h_{3} - h_{4} }}{{T_{{f,s}} }} + \left( {h_{{ep,w,2}} -h_{{ep,w,1}} } \right)\left( {\frac{1}{{T_{{f,w}} }} -\frac{1}{{T_{{ep,w}} }}} \right) \hfill \\ + \left( {h_{{f,s,4}}- h_{{f,s,3}} } \right)\left( {\frac{1}{{T_{{f,s}} }} -\frac{1}{{T_{{ep,s}} }}} \right) = 0 \hfill \\ \end{gathered} \)

451,

row 12 from top

Appendix 1

Appendix 9

451,

row 13 from top

The natural …

i)The natural …

452,

row 3 from top

Appendix 1

 

452,

row 3 from top

Using the vector …

ii)Using the vector …

463,

row 2 from top

Appendix

Appendix 10

465,

row 14 from top

Appendix

Appendix 10

495,

row 3 from bottom

The Heat/sink sources…

The heat/sink sources…