Skip to main content

Biosafety Assessment of Silicon Nanomaterials

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Biosafety assessment of nanomaterials is of essential importance and regarded as a critical precondition for practical applications. Silicon nanomaterials have shown great promise for myriad biological and biomedical applications, including biosensing, bioimaging, cancer diagnosis and therapy, etc. It is worthwhile to point out that, while favorable biocompatibility is accredited to silicon, systematic and reliable biosafety assessment of silicon nanomaterials is required to be carried out for practical applications. Scientists have made pioneer work to investigate in vitro and in vivo behaviors (e.g., cellular viability, biodistribution, pharmacokinetics, etc.) of two typical kinds of silicon nanomaterials (i.e., silicon nanoparticles (SiNPs) and silicon nanowires (SiNWs)). These primary results suggest favorable biocompatibility of silicon nanomaterials in general; notwithstanding, potential safety concerns are also addressed by several studies, based on investigation of detectable in vitro and in vivo toxicity induced by silicon nanomaterials. This chapter intends to take SiNPs and SiNWs as models and discuss topics concerning silicon materials-related biosafety investigation, with the hope to outline these pioneer studies as the starting points for risk assessment of silicon nanostructures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343

    Article  Google Scholar 

  2. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Delivery Rev 64(2):129–137

    Article  Google Scholar 

  3. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352

    Article  Google Scholar 

  4. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2(1):10

    Article  Google Scholar 

  5. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  Google Scholar 

  6. Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Delivery Rev 62(3):362–374

    Article  Google Scholar 

  7. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Delivery Rev 61(6):457–466

    Article  Google Scholar 

  8. Lu YM, Zhong YL, Wang J, Su YY, Peng F, Zhou YF, Jiang XX, He Y (2013) Aqueous synthesized near-infrared-emitting quantum dots for RGD-based in vivo active tumour targeting. Nanotechnol 24 (13). doi:10.1088/0957-4484/24/13/135101

  9. Winnik FM, Maysinger D (2013) Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res 46(3):672–680

    Article  Google Scholar 

  10. Andón FT, Fadeel B (2013) Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials. Acc Chem Res 46(3):733–742

    Article  Google Scholar 

  11. Boer WDAM de, Timmerman D, Dohnalova K, Yassievich IN, Zhang H, Buma WJ, Gregorkiewicz T (2010) Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat Nanotechnol 5 (12):878–884

    Google Scholar 

  12. Chrobak D, Tymiak N, Beaber A, Ugurlu O, Gerberich WW, Nowak R (2011) Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat Nanotechnol 6(8):480–484

    Article  Google Scholar 

  13. Erogbogbo F, Lin T, Tucciarone PM, LaJoie KM, Lai L, Patki GD, Prasad PN, Swihart MT (2013) On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity. Nano Lett 13(2):451–456

    Article  Google Scholar 

  14. Alsharif NH, Berger CEM, Varanasi SS, Chao Y, Horrocks BR, Datta HK (2009) Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis. Small 5(2):221–228

    Article  Google Scholar 

  15. Choi J, Zhang Q, Reipa V, Wang NS, Stratmeyer ME, Hitchins VM, Goering PL (2009) Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micron-sized particles in RAW 264.7 macrophages. J Appl Toxicol 29(1):52–60

    Article  Google Scholar 

  16. Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim TH, Yamamoto K, Northcote PT, Tilley RD (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132(1):248–253

    Article  Google Scholar 

  17. Bhattacharjee S, de Haan LH, Evers NM, Jiang X, Marcelis AT, Zuilhof H, Rietjens IM, Alink GM (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7(1):25

    Article  Google Scholar 

  18. Erogbogbo F, Yong K-T, Roy I, Hu R, Law W-C, Zhao W, Ding H, Wu F, Kumar R, Swihart MT (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5(1):413–423

    Article  Google Scholar 

  19. Erogbogbo F, Tien C-A, Chang C-W, Yong K-T, Law W-C, Ding H, Roy I, Swihart MT, Prasad PN (2011) Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjugate Chem 22(6):1081–1088

    Article  Google Scholar 

  20. Tu C, Ma X, House A, Kauzlarich SM, Louie AY (2011) PET imaging and biodistribution of silicon quantum dots in mice. ACS Med Chem Lett 2(4):285–288

    Article  Google Scholar 

  21. Sato K, Yokosuka S, Takigami Y, Hirakuri K, Fujioka K, Manome Y, Sukegawa H, Iwai H, Fukata N (2011) Size-tunable silicon/iron oxide hybrid nanoparticles with fluorescence, superparamagnetism, and biocompatibility. J Am Chem Soc 133(46):18626–18633

    Article  Google Scholar 

  22. Wang Q, Bao Y, Zhang X, Coxon PR, Jayasooriya UA, Chao Y (2012) Uptake and toxicity studies of poly-acrylic acid functionalized silicon nanoparticles in cultured mammalian cells. Adv Healthcare Mater 1(2):189–198

    Article  Google Scholar 

  23. Ivanov S, Zhuravsky S, Yukina G, Tomson V, Korolev D, Galagudza M (2012) In vivo toxicity of intravenously administered silica and silicon nanoparticles. Materials 5(10):1873–1889

    Article  Google Scholar 

  24. Ohta S, Inasawa S, Yamaguchi Y (2012) Real time observation and kinetic modeling of the cellular uptake and removal of silicon quantum dots. Biomaterials 33(18):4639–4645

    Article  Google Scholar 

  25. Ohta S, Shen P, Inasawa S, Yamaguchi Y (2012) Size- and surface chemistry-dependent intracellular localization of luminescent silicon quantum dot aggregates. J Mater Chem 22(21):10631–10638

    Article  Google Scholar 

  26. Ahire JH, Wang Q, Coxon PR, Malhotra G, Brydson R, Chen R, Chao Y (2012) Highly luminescent and nontoxic amine-capped nanoparticles from porous silicon: synthesis and their use in biomedical imaging. ACS Appl Mater Interfaces 4(6):3285–3292

    Article  Google Scholar 

  27. Bhattacharjee S, Rietjens IMCM, Singh MP, Atkins TM, Purkait TK, Xu Z, Regli S, Shukaliak A, Clark RJ, Mitchell BS, Alink GM, Marcelis ATM, Fink MJ, Veinot JGC, Kauzlarich SM, Zuilhof H (2013) Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale 5(11):4870–4883

    Article  Google Scholar 

  28. Liu J, Erogbogbo F, Yong K-T, Ye L, Liu J, Hu R, Chen H, Hu Y, Yang Y, Yang J, Roy I, Karker NA, Swihart MT, Prasad PN (2013) Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano 7(8):7303–7310

    Article  Google Scholar 

  29. Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee S-T, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135(22):8350–8356

    Article  Google Scholar 

  30. Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Delivery Rev 60(11):1266–1277

    Article  Google Scholar 

  31. Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336

    Article  Google Scholar 

  32. Gu L, Hall DJ, Qin Z, Anglin E, Joo J, Mooney DJ, Howell SB, Sailor MJ (2013) In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun 4. doi:10.1038/ncomms3326

  33. Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 7(12):1033–1037

    Article  Google Scholar 

  34. Canham LT, Reeves CL, Newey JP, Houlton MR, Cox TI, Buriak JM, Stewart MP (1999) Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv Mater 11(18):1505–1507

    Article  Google Scholar 

  35. Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Mäkilä E, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J, Salonen J (2010) Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4(6):3023–3032

    Article  Google Scholar 

  36. Bimbo LM, Mäkilä E, Laaksonen T, Lehto V-P, Salonen J, Hirvonen J, Santos HA (2011) Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32(10):2625–2633

    Article  Google Scholar 

  37. Shahbazi M-A, Hamidi M, Mäkilä EM, Zhang H, Almeida PV, Kaasalainen M, Salonen JJ, Hirvonen JT, Santos HA (2013) The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 34(31):7776–7789

    Article  Google Scholar 

  38. Tao Z, Toms BB, Goodisman J, Asefa T (2009) Mesoporosity and functional group dependent endocytosis and cytotoxicity of silica nanomaterials. Chem Res Toxicol 22(11):1869–1880

    Article  Google Scholar 

  39. Sarparanta M, Bimbo LM, Rytkönen J, Mäkilä E, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ (2012) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharma 9(3):654–663

    Article  Google Scholar 

  40. Hakanpää J, Paananen A, Askolin S, Nakari-Setälä T, Parkkinen T, Penttilä M, Linder MB, Rouvinen J (2004) Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem 279(1):534–539

    Article  Google Scholar 

  41. Linder MB (2009) Hydrophobins: proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci 14(5):356–363

    Article  Google Scholar 

  42. Shao MW, Shan YY, Wong NB, Lee S-T (2005) Silicon nanowire sensors for bioanalytical applications: glucose and hydrogen peroxide detection. Adv Funct Mater 15(9):1478–1482

    Article  Google Scholar 

  43. Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790):1100–1104

    Article  Google Scholar 

  44. Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, Mooney DJ, Reed MA, Fahmy TM (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5(2):138–142

    Article  Google Scholar 

  45. Wei X, Su S, Guo Y, Jiang X, Zhong Y, Su Y, Fan CH, Lee S-T, He Y (2013) A molecular beacon-based signal-off surface-enhanced raman scattering strategy for highly sensitive, reproducible, and multiplexed DNA detection. Small 9(15):2493–2499

    Article  Google Scholar 

  46. Schmidt V, Wittemann JV, Senz S, Gösele U (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21(25–26):2681–2702

    Article  Google Scholar 

  47. Su Y, Wei X, Peng F, Zhong Y, Lu Y, Su S, Xu T, Lee S-T, He Y (2012) Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett 12(4):1845–1850

    Article  Google Scholar 

  48. Peng K-Q, Wang X, Li L, Hu Y, Lee S-T (2013) Silicon nanowires for advanced energy conversion and storage. Nano Today 8(1):75–97

    Article  Google Scholar 

  49. Nagesha DK, Whitehead MA, Coffer JL (2005) Biorelevant calcification and non-cytotoxic behavior in silicon nanowires. Adv Mater 17(7):921–924

    Article  Google Scholar 

  50. Jiang K, Fan D, Belabassi Y, Akkaraju G, Montchamp J-L, Coffer JL (2009) Medicinal surface modification of silicon nanowires: impact on calcification and stromal cell proliferation. ACS Appl Mater Interfaces 1(2):266–269

    Article  Google Scholar 

  51. Qi S, Yi C, Chen W, Fong CC, Lee S-T, Yang M (2007) Effects of silicon nanowires on HepG2 cell adhesion and spreading. Chem Bio Chem 8(10):1115–1118

    Article  Google Scholar 

  52. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P (2007) Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 129(23):7228–7229

    Article  Google Scholar 

  53. Qi S, Yi C, Ji S, Fong C-C, Yang M (2009) Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl Mater Interfaces 1(1):30–34

    Article  Google Scholar 

  54. Garipcan B, Odabas S, Demirel G, Burger J, Nonnenmann SS, Coster MT, Gallo EM, Nabet B, Spanier JE, Piskin E (2011) In vitro biocompatibility of n-type and undoped silicon nanowires. Adv Eng Mater 13(1–2):B3–B9

    Article  Google Scholar 

  55. Yang C-Y, Huang L-Y, Shen T-L, Yeh JA (2010) Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces. Eur Cell Mater 20:415–430

    Google Scholar 

  56. Piret G, Galopin E, Coffinier Y, Boukherroub R, Legrand D, Slomianny C (2011) Culture of mammalian cells on patterned superhydrophilic/superhydrophobic silicon nanowire arrays. Soft Matter 7(18):8642–8649

    Article  Google Scholar 

  57. Roberts JR, Mercer RR, Chapman RS, Cohen GM, Bangsaruntip S, Schwegler-Berry D, Scabilloni JF, Castranova V, Antonini JM, Leonard SS (2012) Pulmonary toxicity, distribution, and clearance of intratracheally instilled silicon nanowires in rats. J Nanomater 2012:17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao He .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, Y., Su, Y. (2014). Biosafety Assessment of Silicon Nanomaterials. In: Silicon Nano-biotechnology. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54668-6_6

Download citation

Publish with us

Policies and ethics