Skip to main content

Variation in Oxidative Stress Threats and Hormesis Across Environments

  • Chapter
  • First Online:
  • 1411 Accesses

Abstract

Environmentally driven variation in exposure of organisms to differing oxidative stress threats is of great interest to evolutionary ecologists and physiologists. Understanding the physiological capacities of organisms to environmental stressors is key to predicting their response to changing environments. This chapter provides a synthesis of how organisms manage to withstand oxidative stress induced by a wide variety of environmental abiotic factors, such as temperature, partial pressure of oxygen or ultraviolet radiation. The chapter also discusses how hormesis primes organisms to tolerate variable environmental conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abele D (2012) Temperature adaptation in changing climate: marine fish and invertebrates. In: Storey KB, Tanino KK (eds) Temperature adaptation in a changing climate: nature at risk. Springer, Berlin Heidelberg, pp 67–79

    Google Scholar 

  • Abele D, Heise K, Pörtner HO, Puntarulo S (2002) Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831–1841

    PubMed  CAS  Google Scholar 

  • Abele D, Kruppe M, Brey T, Philipp EER (2010) Mantle cavity water oxygen partial pressure (PO2) in marine molluscs aligns with lifestyle. Can J Fisher Aquat Sci 67:977–986

    CAS  Google Scholar 

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol 138:405–415

    Google Scholar 

  • Abele D, Vázquez-Medina JP, Zenteno-Savín T (2012) Oxidative stress in aquatic ecosystems. Wiley-Blackwell, UK

    Google Scholar 

  • Abele-Oeschger D, Oeschger R, Theede H (1994) Biochemical adaptations of Nereis diversicolor (Polychaeta) to temporarily increased hydrogen peroxide levels in intertidal sandflats. Mar Ecol Progr Ser 106:101–110

    CAS  Google Scholar 

  • Abele-Oeschger D, Oeschger R (1995) Hypoxia-induced autoxidation of haemoglobin in the benthic invertebrates Arenicola marina (Polychaeta) and Astarte borealis (Bivalvia) and the possible effects of sulphide. J Exp Mar Biol Ecol 187:63–80

    CAS  Google Scholar 

  • Adams N, Shick JM (1996) Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin Strongylocentrotus droebachiensis. Photochem Photobiol 64:149–158

    CAS  Google Scholar 

  • Adams N, Shick JM (2001) Mycosporine-like amino acids prevent UVB induced abnormalities during early development of the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 138:267–280

    CAS  Google Scholar 

  • Alaluf S, Heinrich U, Stahl W, Tronnier H, Wiseman S (2002) Dietary carotenoids contribute to normal human skin colour and UV photosensitivity. J Nutr 132:399–403

    PubMed  CAS  Google Scholar 

  • Al-Otaiba A, John A, Al-Belooshi T, Raza H (2010) Redox homeostasis and respiratory metabolism in camels (Camelus dromedaries): comparisons with domestic goats and laboratory rats and mice. J Comp Physiol B 180:1121–1132

    PubMed  CAS  Google Scholar 

  • An KW, Kim NN, Shin HS, Kil GS, Choi CY (2010) Profiles of antioxidant gene expression and physiological changes by thermal and hypoosmotic stresses in black porgy (Acanthopagrus schlegeli). Comp Biochem Physiol Part A 156:262–268

    Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Google Scholar 

  • Bagnara JT, Hadley ME (1973) Chromatophores and color change: the comparative physiology of animal pigmentation. Prentice-Hall, Eaglewood Cliffs, New Jersey

    Google Scholar 

  • Bagnyukova TV, Danyliv SI, Zin’ko OS, Lushchak VI (2007) Heat shock induces oxidative stress in rotan Perccottus glenii tissues. J Therm Biol 32:255–260

    CAS  Google Scholar 

  • Bancroft BA, Baker NJ, Blaustein AR (2007) Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis. Ecol Lett 10:332–345

    PubMed  Google Scholar 

  • Bancroft BA, Baker NJ, Blaustein AR (2008) A meta-analysis of the effects of ultraviolet B radiation and its synergistic interactions with pH, contaminants, and disease on amphibian survival. Cons Biol 22:987–996

    Google Scholar 

  • Bellantuono AJ, Granados-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M (2012) Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7:e50685

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blount JD, Pike TW (2012) Deleterious effects of light exposure on immunity and sexual coloration in birds. Funct Ecol 26:37–45

    Google Scholar 

  • Bosch TCG, Krylow SM, Bode HR, Steele RE (1988) Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuata but absent in Hydra oligactis. Proc Natl Acad Sci USA 85:7927–7931

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brauner CJ, Baker DW (2010) Patterns of acid-base regulation during exposure to hypercarbia in fishes. In: Glass ML, Woods SC (eds) Cardi-respiratory control in vertebrates. Springer, Berlin Heidelberg, pp 43–63

    Google Scholar 

  • Brooks SP, Storey KB (1997) Glycolitic controls in estivation and anoxia: a comparison of metabolic arrest in land and marine molluscs. Comp Biochem Physiol Part A 118:1103–1114

    CAS  Google Scholar 

  • Brown BE, Downs CA, Dunne RP, Gibb SW (2002a) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129

    Google Scholar 

  • Brown BE, Dunne RP, Goodson MS, Douglas AE (2002b) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21:119–126

    Google Scholar 

  • Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chlueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB, Kozumbo WJ, Lettleri T, Liu SZ, Maisseu A, Maynard KI, Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA, Rattan SIS, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM, Mattson MP (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol 222:122–128

    PubMed  CAS  Google Scholar 

  • Cardillo M (2002) The life-history basis of latitudinal diversity gradients: how do species traits vary from the poles to the equator? J Anim Ecol 71:79–87

    Google Scholar 

  • Caro SP, Schaper SV, Hut RA, Ball GF, Visser ME (2013) The case of the missing mechanism: how does temperature influence seasonal timing in endotherms? PLoS Biol 11:e1001517

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cassini A, Favero M, Albergoni V (1993) Comparative studies of antioxidant enzymes in red-blooded and white-blooded Antarctic teleost fish, Pagothenia bernacchii and Chionodraco hamatus. Comp Biochem Physiol Part C 106:333–336

    Google Scholar 

  • Cohen AA, McGraw KJ, Wiersma P, Williams JB, Robinson WD, Robinson TR, Brawn JD, Ricklefs RE (2008) Interspecific associations between circulating antioxidant levels and life-history variation in birds. Am Nat 172:178–193

    PubMed  Google Scholar 

  • Costantini D (2008) Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett 11:1238–1251

    PubMed  Google Scholar 

  • Costantini D, Metcalfe NB, Monaghan P (2010) Ecological processes in a hormetic framework. Ecol Lett 13:1435–1447

    PubMed  Google Scholar 

  • Costantini D, Monaghan P, Metcalfe N (2012) Early life experience primes resistance to oxidative stress. J Exp Biol 215:2820–2826

    PubMed  Google Scholar 

  • Cypser JR, Johnson TE (2002) Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol A 57:B109–B114

    Google Scholar 

  • Czajka M, Lee RE (1990) A rapid cold-hardening protection against cold shock injury in Drosophila melanogaster. J Exp Biol 148:245–254

    PubMed  CAS  Google Scholar 

  • Dabrowski K, Lee KJ, Guz L, Verlhac V, Gabaudan J (2004) Effects of dietary ascorbic acid on oxygen stress (hypoxia or hyperoxia), growth and tissue vitamin concentrations in juvenile rainbow trout (Oncorhynchus mykiss). Aquacult 233:383–392

    CAS  Google Scholar 

  • D’Aoust BG, White R, Wells JM, Olsen DA (1976) Coral-algal associations: capacity for producing and sustaining elevated oxygen tensions in situ. Undersea Biomed Res 3:35–40

    PubMed  Google Scholar 

  • de Oliveira UO, da Rosa Araújo AS, Belló-Klein A, da Silva RSM, Kucharskia LC (2005) Effects of environmental anoxia and different periods of reoxygenation on oxidative balance in gills of the estuarine crab Chasmagnathus granulata. Comp Biochem Physiol Part B 140:51–57

    Google Scholar 

  • Deschaseaux ESM, Taylor AM, Maher WA, Davis AR (2010) Cellular responses of encapsulated gastropod embryos to multiple stressors associated with climate change. J Exp Mar Biol Ecol 383:130–136

    CAS  Google Scholar 

  • Deschaseaux E, Taylor A, Maher W (2011) Measure of stress response induced by temperature and salinity changes on hatched larvae of three marine gastropod species. J Exp Mar Biol Ecol 397:121–128

    CAS  Google Scholar 

  • Dirmeier R, O’Brien KM, Engle M, Dodd A, Spears E, Poyton RO (2002) Exposure of yeast cells to anoxia induces transient oxidative stress implications for the induction of hypoxic genes. J Biol Chem 277:34773–34784

    PubMed  CAS  Google Scholar 

  • Dolci GS, Dias VT, Roversi K, Roversi K, Pase CS, Segat HJ, Teixeira AM, Benvegnú DM, Trevizol F, Barcelos RC, Riffel AP, Nunes MA, Dressler VL, Flores EM, Baldisserotto B, Bürger ME (2013) Moderate hypoxia is able to minimize the manganese-induced toxicity in tissues of silver catfish (Rhamdia quelen). Ecotoxicol Environ Saf 91:103–109

    PubMed  CAS  Google Scholar 

  • Dunn SR, Bythell JC, Le Tessier DA, Burnett WJ, Thomason JC (2002) Programmed cell death and necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp. J Exp Mar Biol Ecol 272:29–53

    Google Scholar 

  • Dykens JA, Shick JM (1982) Oxygen production by endosymbiotic algae controls superoxide dismutase activity in their animal host. Nature 297:579–580

    CAS  Google Scholar 

  • Dykens JA, Shick JM (1984) Photobiology of the symbiotic sea anemone Anthopleura elegantissima: defenses against photodynamic effects and seasonal photoacclimatization. Biol Bull 167:683–697

    CAS  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, New York

    Google Scholar 

  • Ellouzi H, Ben Hamed K, Asensi-Fabado MA, Müller M, Abdelly C, Munné-Bosch S (2013) Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritima. Planta 237:1311–1323

    PubMed  CAS  Google Scholar 

  • Eraud C, Devevey G, Gaillard M, Prost J, Sorci G, Faivre B (2007) Environmental stress affects the expression of a carotenoid-based sexual trait in male zebra finches. J Exp Biol 210:3571–3578

    PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    PubMed  CAS  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica Article ID 512840

    Google Scholar 

  • Flanagan SW, Moseley PL, Buettner GR (1998) Increased flux of free radicals in cells subjected to hyperthermia: detection by electron paramagnetic resonance spin trapping. FEBS Lett 431:285–286

    PubMed  CAS  Google Scholar 

  • Freire CA, Welker AF, Storey JM, Storey KB, Hermes-Lima M (2012) Oxidative stress in estuarine and intertidal environments (temperate and tropical). In: Abele D, Vázquez-Medina JP, Zenteno-Savín T (eds) Oxidative stress in aquatic ecosystems. Wiley-Blackwell, UK, pp 41–57

    Google Scholar 

  • Gianese G, Argos P, Pascarella S (2001) Structural adaptation of enzymes to low temperatures. Prot Engineer 14:141–148

    CAS  Google Scholar 

  • Gibert P, Huey RB, Gilchrist GW (2001) Locomotor performance of Drosophila melanogaster: interactions among developmental and adult temperatures, age, and geography. Evolution 55:205–209

    PubMed  CAS  Google Scholar 

  • González PM, Wilhelms-Dick D, Abele D, Puntarulo S (2012) Iron in coastal marine ecosystems: role in oxidative stress. In: Abele D, Vázquez-Medina JP, Zenteno-Savín T (eds) Oxidative stress in aquatic ecosystems. Wiley-Blackwell, UK, pp 115–126

    Google Scholar 

  • Grubor-Lajsic G, Block W, Telesmanic M, Jovanovic A, Stevanovic D, Baca F (1997) Effect of cold acclimation on the antioxidant defense system of two larval lepidoptera (noctuidae). Arch Insect Biochem Physiol 36:1–10

    CAS  Google Scholar 

  • Halliwell BH, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    PubMed  CAS  Google Scholar 

  • Henshaw RE, Underwood LS, Casey TM (1972) Peripheral thermoregulation: foot temperature in two Arctic canines. Science 175:988–990

    PubMed  CAS  Google Scholar 

  • Hermes-Lima M, Storey KB (1992) Role of antioxidants in the tolerance of freezing and anoxia by garter snakes. Am J Physiol 265:R646–R652

    Google Scholar 

  • Hermes-Lima M, Storey JM, Storey KB (1998) Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comp Biochem Physiol Part B 120:437–448

    CAS  Google Scholar 

  • Hermes-Lima M, Storey JM, Storey KB (2001) Antioxidant defenses and animal adaptation to oxygen availability during environmental stress. In: Storey KB, Storey JM (eds) Cell and molecular responses to stress. Elsevier, Amsterdam, pp 263–287

    Google Scholar 

  • Hermes-Lima M, Zenteno-Savín T (2002) Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol Part C 133:537–556

    Google Scholar 

  • Heupel MR, Whittier JM, Bennett MB (1999) Plasma steroid hormone profiles and reproductive biology of the epaulette shark, Hemiscyllium ocellatum. J Exp Zool 284:586–594

    PubMed  CAS  Google Scholar 

  • Hill RW, Wyse GA, Anderson M (2008) Animal physiology. Sinauer Associates, Sunderland, USA, 2nd edition

    Google Scholar 

  • Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol 203:2331–2339

    PubMed  CAS  Google Scholar 

  • Huey RB, Berrigan DA (1996) Testing evolutionary hypotheses of acclimation. In: Johnston IA, Bennet AF (eds) Animals and temperature: phenotypic and evolutionary adaptation. Society for Experimental Biology Seminar Series. Cambridge University Press, Cambridge, pp 205–237

    Google Scholar 

  • Ibarz A, Martín-Pérez M, Blasco J, Bellido D, de Oliveira E, Fernández-Borràs J (2010) Gilthead sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics 10:963–975

    PubMed  CAS  Google Scholar 

  • Irving L, Krog J (1955) Temperature of skin in the arctic as a regulator of heat. J Appl Physiol 7:355–364

    PubMed  CAS  Google Scholar 

  • Ishimatsu A, Hayashi M, Kikkawa T (2008) Fishes in high-CO2, acidified oceans. Mar Ecol Progr Ser 373:295–302

    CAS  Google Scholar 

  • Issartel J, Hervant F, de Fraipont M, Clobert J, Voituron Y (2009) High anoxia tolerance in the subterranean salamander Proteus anguinus without oxidative stress nor activation of antioxidant defenses during reoxygenation. J Comp Physiol B 179:543–551

    PubMed  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate change experiments: events, not trends. Front Ecol Environm 5:315–324

    Google Scholar 

  • Jimenez AG, Harper JM, Queenborough SA, Williams JB (2013) Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury. J Exp Biol 216:1373–1380

    PubMed  CAS  Google Scholar 

  • Kammer AR, Orczewska JI, O’Brien KM (2011) Oxidative stress is transient and tissue specific during cold acclimation of threespine stickleback. J Exp Biol 214:1248–1256

    PubMed  CAS  Google Scholar 

  • Koštál V, Tollarová-Borovanská M (2009) The 70 kDa heat shock protein assists during the repair of chilling injury in the insect. Pyrrhocoris apterus. PLoS ONE 4:e4546

    Google Scholar 

  • Lagisz M, Hector KL, Nakagawa S (2013) Life extension after heat shock exposure: assessing meta-analytic evidence for hormesis. Ageing Res Rev 12:653–660

    PubMed  Google Scholar 

  • Lamare MD, Baker MF, Lesser MP, Marshall C (2006) DNA photorepair in echinoid embryos: effects of temperature on repair rate in Antarctic and non-Antarctic species. J Exp Biol 209:5017–5028

    PubMed  CAS  Google Scholar 

  • Lamare MD, Baker MF, Lesser MP (2007) In situ rates of DNA damage and abnormal development in Antarctic and non-Antarctic sea urchin embryos. Aquat Biol 1:21–32

    CAS  Google Scholar 

  • Le Bourg E, Valenti P, Lucchetta P, Payre F (2001) Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontol 2:155–164

    Google Scholar 

  • Lee RE, Chen C-P, Denlinger DL (1987) A rapid cold-hardening process in insects. Science 238:1415–1417

    PubMed  Google Scholar 

  • Leroi AM, Bennett AF, Lenski RE (1994) Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc Natl Acad Sci USA 91:1917–1921

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    PubMed  CAS  Google Scholar 

  • Lesser MP (2010) Survivorship, oxidative stress, and DNA damage of sea urchin (Strongylocentrotus droebachiensis) embryos and larvae exposed to ultraviolet radiation (290-400 nm) in the Gulf of Maine. Photochem Photobiol 86:382–388

    PubMed  CAS  Google Scholar 

  • Lesser MP (2012) Oxidative stress in tropical marine ecosystems. In: Abele D, Vázquez-Medina JP, Zenteno-Savín T (eds) Oxidative stress in aquatic ecosystems. Wiley-Blackwell, UK, pp 9–19

    Google Scholar 

  • Lesser MP, Lamare MD, Barker MF (2004) Transmission of ultraviolet radiation through the Antarctic annual sea ice and its biological effects on sea urchin embryos. Limnol Oceanogr 49:1957–1963

    Google Scholar 

  • Lesser MP, Barry TM, Lamare MD, Barker MF (2006) Biological weighting functions for DNA damage in sea urchin embryos exposed to ultraviolet radiation. J Exp Mar Biol Ecol 328:10–21

    CAS  Google Scholar 

  • Letendre J, Chouquet B, Rocher B, Manduzio H, Leboulenger F, Durand F (2008) Differential pattern of Cu/Zn superoxide dismutase isoforms in relation to tidal spatio-temporal changes in the blue mussel Mytilus edulis. Comp Biochem Physiol Part C 148:211–216

    Google Scholar 

  • Lindroth A (1941) Atrnungsventllation der polychaeten. Z vgl Physiol 28:485–532

    Google Scholar 

  • Lord-Fontaine S, Averill-Bates DA (2002) Heat shock inactivates cellular antioxidant defenses against hydrogen peroxide: protection by glucose. Free Rad Biol Med 32:752–765

    PubMed  CAS  Google Scholar 

  • McNab BK (1997) On the utility of uniformity in the definition of basal rate of metabolism. Physiol Zool 70:718–720

    PubMed  CAS  Google Scholar 

  • Meesters EH, Bak RPM (1993) Effects of coral bleaching on tissue regeneration potential and colony survival. Mar Ecol Prog Ser 96:189–198

    Google Scholar 

  • Meng JY, Zhang CY, Zhu F, Wang XP, Lei CL (2009) Ultraviolet light-induced oxidative stress: effects on antioxidant response of Helicoverpa armigera adults. J Insect Physiol 55:588–592

    PubMed  CAS  Google Scholar 

  • Miller GM, Watson SA, Donelson JM, McCormick MI, Munday PL (2012) Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Clim Change 2:858–861

    CAS  Google Scholar 

  • Miller GM, Watson SA, McCormick MI, Munday PL (2013) Increased CO2 stimulates reproduction in a coral reef fish. Global Change Biol 19:3037–3045

    Google Scholar 

  • Mitchelmore CL, Ringwood AH, Weis VM (2003) Differential accumulation of cadmium and changes in glutathione levels as a function of symbiotic state in the sea anemone Anthopleura elegantissima. J Exp Mar Biol Ecol 284:71–85

    CAS  Google Scholar 

  • Mopper K, Kieber DJ (2000) Marine photochemistry and its impact on carbon cycling. In: De Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 101–130

    Google Scholar 

  • Mueller IA, Grim JM, Beers JM, Crockett EL, O’Brien KM (2011) Inter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes. J Exp Biol 214:3732–3741

    PubMed  CAS  Google Scholar 

  • Mueller IA, Devor DP, Grim JM, Beers JM, Crockett EL, O’Brien KM (2012) Exposure to critical thermal maxima increases oxidative stress in hearts of white- but not red-blooded Antarctic notothenioid fishes. J Exp Biol 215:3655–3664

    PubMed  CAS  Google Scholar 

  • Mujahid A, Akiba Y, Toyomizu M (2007) Acute heat stress induces oxidative stress and decreases adaptation in young white Leghorn cockerels by downregulation of avian uncoupling protein. Poult Sci 86:364–371

    PubMed  CAS  Google Scholar 

  • Niehaus AC, Angilletta MJ Jr, Sears MW, Franklin CE, Wilson RS (2012) Predicting the physiological performance of ectotherms in fluctuating thermal environments. J Exp Biol 215:694–701

    PubMed  Google Scholar 

  • Nikinmaa M, McCairns RJS, Nikinmaa MW, Vuori KA, Kanerva M, Leinonen T, Primmer CR, Merilä J, Leder EH (2013) Transcription and redox enzyme activities: comparison of equilibrium and disequilibrium levels in the three-spined stickleback. Proc R Soc Lond B 280:20122974

    CAS  Google Scholar 

  • Nilsson GE, Östlund-Nilsson S (2004) Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes. Proc R Soc Lond B 271:S30–S33

    Google Scholar 

  • Nilsson GE, Renshaw GM (2004) Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol 207:3131–3139

    PubMed  CAS  Google Scholar 

  • O’Brien KM, Mueller IA (2010) The unique mitochondrial form and function of Antarctic channichthyid icefishes. Integr Comp Biol 50:993–1008

    PubMed  Google Scholar 

  • O’Brien KM (2011) Mitochondrial biogenesis in cold-bodied fishes. J Exp Biol 214:275–285

    PubMed  Google Scholar 

  • Olsen A, Vantipalli MC, Lighgow GJ (2006) Lifespan extension of Caenorhabditis elegans following repeated mild hormetic heat treatments. Biogerontol 7:221–230

    Google Scholar 

  • Olsvik PA, Kristensen T, Waagbo R, Tollefsen KE, Rosseland BO, Toften H (2006) Effects of hypo- and hyperoxia on transcription levels of five stress genes and the glutathione system in liver of Atlantic cod Gadus morhua. J Exp Biol 209:2893–2901

    PubMed  CAS  Google Scholar 

  • Pannunzio TM, Storey KB (1998) Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea. J Exp Mar Biol Ecol 221:277–292

    CAS  Google Scholar 

  • Plantivaux A, Furla P, Zoccola D, Garello G, Forcioli D, Richier S, Merle PL, Tambutte E, Tambutte S, Allemand D (2004) Molecular characterization of two CuZn-superoxide dismutases in a sea anemone. Free Rad Biol Med 37:1170–1181

    PubMed  CAS  Google Scholar 

  • Pöhlmann K, Koenigstein S, Alter K, Abele D, Held C (2011) Heat-shock response and antioxidant defense during air exposure in Patagonian shallow-water limpets from different climatic habitats. Cell Stress Chaper 16:621–632

    Google Scholar 

  • Ponganis PJ, Van Dam RP, Knower T, Levenson DH (2001) Temperature regulation in emperor penguins foraging under sea ice. Comp Biochem Physiol Part A 129:811–820

    CAS  Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschlager A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Ocean 60:705–718

    Google Scholar 

  • Poyton RO, Castello PR, Ball KA, Woo DK, Pan N (2009) Mitochondria and hypoxic signaling: a new view. Ann N Y Acad Sci 1177:48–56

    PubMed  CAS  Google Scholar 

  • Przeslawski R, Davis AR, Benkendorff K (2005) Synergistic effects associated with climate change and the development of rocky shore molluscs. Glob Change Biol 11:515–522

    Google Scholar 

  • Regoli F, Cerrano C, Chierici E, Bompadre S, Bavestrello G (2000) Susceptibility to oxidative stress of the Mediterranean domosponge Petrosia ficiformis: role of endosymbionts and solar irradiance. Mar Biol 137:453–461

    CAS  Google Scholar 

  • Regoli F, Cerrano C, Chierici E, Chiantore MC, Bavestrello G (2004) Seasonal variability of prooxidant pressure and antioxidant adaptation to symbiosis in the Mediterranean demosponge Petrosia ficiformis. Mar Ecol Prog Ser 275:129–137

    CAS  Google Scholar 

  • Regoli F, Benedetti M, Krell A, Abele D (2012) Oxidative challenges in polar seas. In: Abele D, Vázquez-Medina JP, Zenteno-Savín T (eds) Oxidative stress in aquatic ecosystems. Wiley-Blackwell, UK, pp 20–40

    Google Scholar 

  • Reischl E (1986) High sulphydryl content in turtle erythrocytes: is there a relation with resistance to hypoxia? Comp Biochem Physiol Part B 85:723–726

    CAS  Google Scholar 

  • Richier S, Merle PL, Furla P, Pigozzi D, Sola F, Allemand D (2003) Characterization of superoxide dismutases in anoxia- and hyperoxia-tolerant symbiotic cnidarians. Biochim Biophys Acta 1621:84–91

    PubMed  CAS  Google Scholar 

  • Ricklefs RE (1976) Growth rates of birds in the humid New World tropics. Ibis 118:179–207

    Google Scholar 

  • Ritola O, Livingstone DR, Peters LD, Lindstrom-Seppa P (2002a) Antioxidant processes are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to ozone and oxygen-supersaturated water. Aquaculr 210:1–19

    CAS  Google Scholar 

  • Ritola O, Peters LD, Livingstone DR, Lindstrom-Seppa P (2002b) Effects of in vitro exposure to ozone and/or hyperoxia on superoxide dismutase, catalase, glutathione and lipid peroxidation in red blood cells and plasma of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquacult Res 33:165–175

    CAS  Google Scholar 

  • Ritola O, Tossavainen K, Kiuru T, Lindstrom-Seppa P, Molsa H (2002c) Effects of continuous and episodic hyperoxia on stress and hepatic glutathione levels in one-summer-old rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 18:159–164

    Google Scholar 

  • Rivera-Ingraham GA, Bickmeyer U, Abele D (2013a) The physiological response of the marine platyhelminth Macrostomum lignano to different environmental oxygen concentrations. J Exp Biol 216:2741–2751

    PubMed  CAS  Google Scholar 

  • Rivera-Ingraham GA, Rocchetta I, Meyer S, Abele D (2013b) Oxygen radical formation in anoxic transgression and anoxia-reoxygenation: foe or phantom? Experiments with a hypoxia tolerant bivalve. Mar Environ Res 92:110–119

    PubMed  CAS  Google Scholar 

  • Rosa R, Pimentel MS, Boavida-Portugal J, Teixeira T, Trübenbach K, Diniz M (2012) Ocean warming enhances malformations, premature hatching, metabolic suppression and oxidative stress in the early life stages of a keystone squid. PLoS ONE 7:e38282

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ross SW, Dalton DA, Kramer S, Christensen BL (2001) Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen. Comp Biochem Physiol Part C 130:289–303

    CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker AC, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    PubMed  CAS  Google Scholar 

  • Schöttler U (1979) On the anaerobic metabolism of three species of Nereis (Annelida). Mar Ecol Prog Ser 1:249–254

    Google Scholar 

  • Selman C, McLaren JS, Himanka MJ, Speakman JR (2000) Effect of long-term cold exposure on antioxidant enzyme activities in a small mammal. Free Rad Biol Med 28:1279–1285

    PubMed  CAS  Google Scholar 

  • Selman C, Grune T, Stolzing A, Jakstadt M, McLaren JS, Speakman JR (2002) The consequences of acute cold exposure on protein oxidation and proteasome activity in short-tailed field voles, Microtus agrestis. Free Radic Biol Med 33:259–265

    PubMed  CAS  Google Scholar 

  • Shaklee JB, Christiansen JA, Sidell BD, Prosser CL, Whitt GS (1977) Molecular aspects of temperature-acclimation in fish - contributions of changes in enzyme activities and isoenzyme patterns to metabolic reorganization in Green Sunfish. J Exp Zool 201:1–20

    PubMed  CAS  Google Scholar 

  • Shama S, Lai C-Y, Antoniazzi JM, Jiang JC, Jazwinski SM (1998) Heat stress-induced life span extension in yeast. Exp Cell Res 245:379–388

    PubMed  CAS  Google Scholar 

  • Shick JM (1990) Diffusion limitation and hyperoxic enhancement of oxygen consumption in zooxanthellate sea anemones, zoanthids and corals. Biol Bull 179:148–158

    Google Scholar 

  • Shick JM, Dykens JA (1985) Oxygen detoxification in algal-invertebrate symbioses from the Great Barrier Reef. Oecologia 66:33–41

    Google Scholar 

  • Shick JM, Lesser MP, Jokiel PL (1996) Effects of ultraviolet radiation on corals and other coral reef organisms. Global Change Biol 2:527–545

    Google Scholar 

  • Shreve SM, Kelty JD, Lee RE (2004) Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response. J Exp Biol 207:1797–1802

    PubMed  Google Scholar 

  • Sies H, Stahl W (2007) Carotenoids and flavonoids contribute to nutritional protection against skin damage from sunlight. Mol Biotech 37:26–30

    Google Scholar 

  • Snow DW, Lill A (1974) Longevity records for some neotropical land birds. Condor 76:262–267

    Google Scholar 

  • Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68

    PubMed  CAS  Google Scholar 

  • Somero GN (2004) Adaptation of enzymes to temperature: searching for basic “strategies”. Comp Biochem Physiol Part B 139:321–333

    Google Scholar 

  • Sørensen JG, Loeschcke V, Kristensen TN (2013) Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster. J Exp Biol 216:809–814

    PubMed  Google Scholar 

  • Stark LR, McLetchie DN, Roberts SP (2009) Gender differences and a new adult eukaryotic record for upper thermal tolerance in the desert moss Syntrichia caninervis. J Therm Biol 34:131–137

    Google Scholar 

  • Storey KB, Storey JM (1990) Facultative metabolic rate depression: molecular regulation and biochemical adaptation in anaerobiosis, hibernation, and estivation. Quart Rev Biol 65:145–174

    PubMed  CAS  Google Scholar 

  • Storey KB, Tanino KK (2012) Temperature adaptation in a changing climate: nature at risk. Springer, Berlin Heidelberg

    Google Scholar 

  • Szmant AM, Gassman NJ (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224

    Google Scholar 

  • Szymczak R, Waite TD (1988) Generation and decay of hydrogen peroxide in estuarine waters. Aust J Freshwat Res 39:289–299

    CAS  Google Scholar 

  • Tanaka M, Mokhtari GK, Terry RD, Balsam LB, Lee KH, Kofidis T, Tsao PS, Robbins RC (2004) Overexpression of human copper/zinc superoxide dismutase (SOD1) suppresses ischemia–reperfusion injury and subsequent development of graft coronary artery disease in murine cardiac grafts. Circulation 110:II200–II206

    Google Scholar 

  • Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK (2012) Coping with thermal challenges: physiological adaptations to environmental temperatures. Compreh Physiol 2:2151–2202

    Google Scholar 

  • Teixeira T, Diniz M, Calado R, Rosa R (2013) Coral physiological adaptations to air exposure: heat shock and oxidative stress responses in Veretillum cynomorium. J Exp Mar Biol Ecol 439:35–41

    CAS  Google Scholar 

  • Tomanek L, Zuzow MJ, Ivanina AV, Beniash E, Sokolova IM (2011) Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. J Exp Biol 214:1836–1844

    PubMed  CAS  Google Scholar 

  • Veselá A, Wilhelm J (2002) The role of carbon dioxide in free radical reactions of the organism. Physiol Res 51:335–339

    PubMed  Google Scholar 

  • Vinagre C, Madeira D, Narciso L, Cabral H, Diniz M (2012) Effect of temperature on oxidative stress in fish: lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecol Indic 23:274–279

    CAS  Google Scholar 

  • Vincenzi S, De Leo GA, Bellingeri M (2012) Consequences of extreme events on population persistence and evolution of a quantitative trait. Ecol Inform 8:20–28

    Google Scholar 

  • Wang P, Chen H, Qin H, Sankarapandi S, Becher MW, Wong PC, Zweier JL (1998) Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc Natl Acad Sci USA 95:4556–4560

    PubMed Central  PubMed  CAS  Google Scholar 

  • Welker AF, Campos EG, Cardoso LA, Hermes-Lima M (2012) Role of catalase on the hypoxia/reoxygenation stress in the hypoxia-tolerant Nile tilapia. Am J Physiol 302:R1111–R1118

    CAS  Google Scholar 

  • Welker AF, Moreira DC, Campos EG, Hermes-Lima M (2013) Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp Biochem Physiol Part A 165:384–404

    CAS  Google Scholar 

  • Wiersma P, Chappell MA, Williams JB (2007a) Cold- and exercise-induced peak metabolic rates in tropical birds. Proc Natl Acad Sci USA 104:20866–20871

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wiersma P, Muñoz-Garcia A, Walker A, Williams JB (2007b) Tropical birds have a slow pace of life. Proc Natl Acad Sci USA 104:9340–9345

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wiersma P, Nowak B, Williams JB (2012) Small organ size contributes to the slow pace of life in tropical birds. J Exp Biol 215:1662–1669

    PubMed  Google Scholar 

  • Wikelski M, Spinney L, Schelsky W, Scheuerlein A, Gwinner E (2003) Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. Proc R Soc Lond B 270:2383–2388

    Google Scholar 

  • Willmore WG, Storey KB (1997a) Antioxidant systems and anoxia tolerance in a freshwater turtle, Trachemys scripta elegans. Mol Cell Biochem 170:177–185

    PubMed  CAS  Google Scholar 

  • Willmore WG, Storey KB (1997b) Glutathione systems and anoxia tolerance in turtles. Am J Physiol 273:R219–R225

    PubMed  CAS  Google Scholar 

  • Wilson RS, Franklin CE (2002) Testing the beneficial acclimation hypothesis. Trends Ecol Evol 17:66–70

    Google Scholar 

  • Witas H, Gabryelak T, Matkovics B (1984) Comparative studies on superoxide dismutase and catalase activities in livers of fish and other Antarctic vertebrates. Comp Biochem Physiol Part C 77:409–411

    CAS  Google Scholar 

  • Wu BS, Lee JK, Thompson KM, Walker VK, Moyes CD, Robertson RM (2002) Anoxia induces thermotolerance in the locust flight system. J Exp Biol 205:815–827

    PubMed  CAS  Google Scholar 

  • Yahav S, McMurtry JP (2001) Thermotolerance acquisition in broiler chickens by temperature conditioning early in life–the effect of timing and ambient temperature. Poult Sci 80:1662–1666

    PubMed  CAS  Google Scholar 

  • Yi S, Moore C, Lee R (2007) Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis 12:1183–1193

    PubMed  Google Scholar 

  • Zambonino-Infante JL, Claireaux G, Ernande B, Jolivet A, Quazuguel P, Sévère A, Huelvan C, Mazurais D (2013) Hypoxia tolerance of common sole juveniles depends on dietary regime and temperature at the larval stage: evidence for environmental conditioning. Proc R Soc Lond B 280:20123022

    Google Scholar 

  • Zamudio KR, Huey RB, Crill WD (1995) Bigger isn’t always better: body size, temperature and male territorial success in Drosophila melanogaster. Anim Behav 49:671–677

    Google Scholar 

  • Zepp RG, Shank GC, Stabenau E, Patterson KW, Cyterski MJ, Fisher WS, Bartels E, Anderson SL (2008) Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: importance of colored dissolved organic matter. Limnol Oceanogr 53:1909–1922

    CAS  Google Scholar 

  • Zika RG, Moffett JW, Petasne RG, Cooper WJ, Saltzman ES (1985) Spatial and temporal variations of hydrogen peroxide in Gulf of Mexico Waters. Geochim Cosmochim Acta 49:1173–1184

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Costantini .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costantini, D. (2014). Variation in Oxidative Stress Threats and Hormesis Across Environments. In: Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54663-1_3

Download citation

Publish with us

Policies and ethics