Skip to main content

Integrating Oxidative Stress and Hormesis into Research on Senescence and Survival Perspectives

  • Chapter
  • First Online:
Book cover Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology

Abstract

Progressive deterioration in performance with age is what we refer to as senescence or ageing. It varies greatly among species, but also among conspecific individuals because of the influence of genetic, environmental and stochastic factors. The recent emergence of long-term field studies has provided widespread evidence that animals in nature do senesce, a finding that has opened new horizons for research on causes and consequences of senescence. Empirical evidence is often supportive of the prediction that long-lived species produce less reactive species, have lower oxidative damage levels and antioxidants and have molecules more resistant to oxidative damage. However, full understanding of mechanisms underlying ageing is still elusive. This chapter reviews briefly the main mechanistic and evolutionary theories of senescence that may be linked to oxidative stress, and discusses comparative studies that tested the link between oxidative status parameters and senescence. The chapter ends with an examination of how mild doses of oxidative stress or other forms of stress experienced during sensitive windows of life may increase longevity through hormetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele D, Brey T, Philipp E (2009) Bivalve models of aging and the determination of molluscan lifespans. Exp Geront 44:307–315

    Google Scholar 

  • Aledo JC, Li Y, De Magalhães JP, Ruíz-Camacho M, Pérez-Claros JA (2011) Mitochondrially encoded methionine is inversely related to longevity in mammals. Aging Cell 10:198–207

    PubMed  CAS  Google Scholar 

  • Andrews AB, Horvath TL (2009) Uncoupling protein-2 regulates lifespan in mice. Amer J Physiol Endocrinol Metab 296:E621–E627

    CAS  Google Scholar 

  • Andziak B, O’Connor TB, Buffenstein R (2005) Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole rat. Mech Ageing Dev 126:1206–1212

    PubMed  CAS  Google Scholar 

  • Andziak B, O’Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Van Remmen H, Buffenstein R (2006) High oxidative damage levels in the longest-living rodent, the naked mole rat. Aging Cell 5:463–471

    PubMed  CAS  Google Scholar 

  • Angelier F, Vleck CM, Holberton RL, Marra PP (2013) Telomere length, non-breeding habitat and return rate in male American redstarts. Funct Ecol 27:342–350

    Google Scholar 

  • Archer CR, Sakaluk SK, Selman C, Royle NJ, Hunt J (2013) Oxidative stress and the evolution of sex differences in life span and ageing in the decorated cricket, Gryllodes sigillatus. Evolution 67:620–634

    PubMed  CAS  Google Scholar 

  • Argüelles S, García S, Maldonado M, Machado A, Ayala A (2004) Do the serum oxidative stress biomarkers provide a reasonable index of the general oxidative stress status? Biochim Biophys Acta 1674:251–259

    PubMed  Google Scholar 

  • Austad SN (1993) Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). J Zool 229:695–708

    Google Scholar 

  • Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects and confounding concepts. Antioxid Redox Signal 19:1420–1445

    PubMed  CAS  Google Scholar 

  • Beaulieu M, Reichert S, Le Maho Y, Ancel A, Criscuolo F (2011) Oxidative status and telomere length in a long-lived bird facing a costly reproductive event. Funct Ecol 25:577–585

    Google Scholar 

  • Beaulieu M, Thierry AM, González-Acuña D, Polito MJ (2013) Integrating oxidative ecology into conservation physiology. Conser Physiol 1:cot004

    Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Begum S, Basova L, Strahl J, Sukhotin A, Heilmayer O, Philipp E, Brey T, Abele D (2009) A metabolic model for the ocean quahog Arctica islandica—Effects of animal mass and age, temperature, salinity and geography on respiration rate. J Shellfish Res 28:1–7

    Google Scholar 

  • Bender A, Hajieva P, Moosmann B (2008) Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc Natl Acad Sci USA 105:16496–16501

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bize P, Devevey G, Monaghan P, Doligez B, Christe P (2008) Fecundity and survival in relation to resistance to oxidative stress in a free-living bird. Ecology 89:2584–2593

    PubMed  Google Scholar 

  • Bize P, Criscuolo F, Metcalfe NB, Nasir L, Monaghan P (2009) Telomere dynamics rather than age predict life expectancy in the wild. Proc R Soc Lond B 276:1679–1683

    CAS  Google Scholar 

  • Bjelland S, Seeberg E (2003) Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res 531:37–80

    PubMed  CAS  Google Scholar 

  • Blanco MA, Sherman PW (2005) Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mech Ageing Dev 126:794–803

    PubMed  CAS  Google Scholar 

  • Bouwhuis S, Charmantier A, Verhulst S, Sheldon BC (2010) Individual variation in rates of senescence: natal origin effects and disposable soma in a wild bird population. J Anim Ecol 79:1251–1261

    PubMed  Google Scholar 

  • Brand MD (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Geront 35:811–820

    CAS  Google Scholar 

  • Brand MD, Turner N, Ocloo A, Else PL, Hulbert AJ (2003) Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochem J 376:741–748

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brenner RR (1984) Effect of unsaturated fatty acids on membrane structure and enzyme kinetics. Prog Lipid Res 23:69–96

    PubMed  CAS  Google Scholar 

  • Brink TC, Demetrius L, Lehrach H, Adjaye J (2009) Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging. Biogerontology 10:549–564

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brunet-Rossinni AK (2004) Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech Ageing Dev 125:11–20

    PubMed  CAS  Google Scholar 

  • Buffenstein R (2005) The naked mole rat: a new long-living model for human aging research? J Geront Ser A 60:1369–1377

    Google Scholar 

  • Butler PG Jr, Wanamaker AD, Scourse JD, Richardson CA, Reynolds DJ (2013) Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archived based on growth increments in the bivalve Arctica islandica. Palaeogeogr Palaeocl 373:141–151

    Google Scholar 

  • Buttemer W, Battam H, Hulbert AJ (2008) Fowl play and the price of petrel: long-living Procellariformes have peroxidation resistant membrane composition compared with short-living Galliformes. Biol Lett 4:351–354

    PubMed Central  PubMed  Google Scholar 

  • Buttemer W, Abele D, Costantini D (2010) From bivalves to birds: oxidative stress and longevity. Funct Ecol 24:971–983

    Google Scholar 

  • Calabrese EJ (2013) Low doses of radiation can enhance insect lifespans. Biogerontology 14:365–381

    PubMed  CAS  Google Scholar 

  • Caratero A, Courtade M, Bonnet L, Planel H, Caratero C (1998) Effect of continuous gamma irradiation at a very low dose on the life span of mice. Gerontology 44:272–276

    PubMed  CAS  Google Scholar 

  • Carranza J, Alarcos S, Sánchez-Prieto CB, Valencia J, Mateos C (2004) Disposable-soma senescence mediated by sexual selection in an ungulate. Nature 432:215–218

    PubMed  CAS  Google Scholar 

  • Casagrande S, Dell’Omo G, Costantini D, Tagliavini J, Groothuis T (2011) Variation of a carotenoid-based trait in relation to oxidative stress and endocrine status during the breeding season in the Eurasian kestrel: a multi-factorial study. Comp Biochem Physiol Part A 160:16–26

    CAS  Google Scholar 

  • Chaudhuri AR, de Waal EM, Pierce A, van Remmen H, Ward WF, Richardson A (2006) Detection of protein carbonyls in aging liver tissue: a fluorescence-based proteomic approach. Mech Ageing Dev 127:849–861

    PubMed  CAS  Google Scholar 

  • Clutton-Brock TH, Isvaran K (2007) Sex differences in ageing in natural populations of vertebrates. Proc R Soc Lond B 274:3097–3104

    CAS  Google Scholar 

  • Cohen AA, McGraw KJ, Wiersma P, Williams JB, Robinson WD, Robinson TR, Brawn JD, Ricklefs RE (2008) Interspecific associations between circulating antioxidant levels and life-history variation in birds. Am Nat 172:178–193

    PubMed  Google Scholar 

  • Cohen AA, Milot E, Yong J, Seplaki CL, Fülöp T, Bandeen-Roche K, Fried LP (2013) A novel statistical approach shows evidence for multi-system physiological dysregulation during aging. Mech Ageing Dev 134:110–117

    PubMed  PubMed Central  Google Scholar 

  • Costantini D, Dell’Omo G, De Filippis PS, Marquez C, Snell H, Snell H, Tapia W, Brambilla G, Gentile G (2009) Temporal and spatial covariation of gender and oxidative stress in the Galápagos land iguana Conolophus subcristatus. Physiol Biochem Zool 82:430–437

    PubMed  CAS  Google Scholar 

  • Costantini D (2010) Effects of diet quality on serum oxidative status and body mass in male and female pigeons during reproduction. Comp Biochem Physiol Part A 156:294–299

    Google Scholar 

  • Costantini D, Marasco V, Moller AP (2011) A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B 181:447–456

    PubMed  CAS  Google Scholar 

  • Costantini D, Ferrari C, Pasquaretta C, Cavallone E, Carere C, von Hardenberg A, Réale D (2012) Interplay between plasma oxidative status, cortisol and coping styles in wild alpine marmots, Marmota marmota. J Exp Biol 215:374–383

    PubMed  CAS  Google Scholar 

  • Costantini D, Monaghan P, Metcalfe N (2014) Prior hormetic priming is costly under environmental mismatch. Biol Lett (in press)

    Google Scholar 

  • Cracraft J (1987) DNA hybridization and avian phylogenetics. Evol Biol 21:47–96

    Google Scholar 

  • Criscuolo F, Font-Sala C, Bouillaud F, Poulin N, Trabalon M (2010) Increased ROS production: a component of the longevity equation in the male Mygalomorph, Brachypelma albopilosa. PLoS One 5:e13104

    PubMed Central  PubMed  Google Scholar 

  • Csermely P, Soti C (2006) Cellular networks and the aging process. Arch Physiol Biochem 112:60–64

    PubMed  CAS  Google Scholar 

  • Cypser JR, Johnson TE (2002) Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol A 57:B109–B114

    Google Scholar 

  • Dagg AI (2009) The social behavior of older animals. The Johns Hopkins University Press, USA

    Google Scholar 

  • De Coster G, De Neve L, Verhulst S, Lens L (2012) Maternal effects reduce oxidative stress in female nestlings under high parasite load. J Avian Biol 43:177–185

    Google Scholar 

  • De Loof A, De Haes W, Boerjan B, Schoofs L (2013) The fading electricity theory of ageing: the missing biophysical principle? Ageing Res Rev 12:58–66

    PubMed  Google Scholar 

  • de Magalhães JP, Cabral JA, Magalhães D (2005) The influence of genes on the aging process of mice: a statistical assessment of the genetics of aging. Genetics 169:265–274

    PubMed Central  PubMed  Google Scholar 

  • de Magalhães JP, Costa J, Church GM (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Geront A 62:149–160

    Google Scholar 

  • Descamps S, Boutin S, Berteaux D, Gaillard JM (2006) Best squirrels trade a long life for an early reproduction. Proc R Soc Lond B 273:2369–3237

    Google Scholar 

  • Du C, Anderson A, Lortie M, Parsons R, Bodnar A (2013) Oxidative damage and cellular defense mechanisms in sea urchin models of aging. Free Radic Biol Med 63C:254–263

    Google Scholar 

  • Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101:17312–17315

    PubMed Central  PubMed  CAS  Google Scholar 

  • Filho DW, Althoff SL, Dafré AL, Boveris A (2007) Antioxidant defenses, longevity and ecophysiology of South American bats. Comp Biochem Physiol Part C 146:214–220

    Google Scholar 

  • Finch CE, Pike MC (1996) Maximum life span predictions from the Gompertz mortality model. J Gerontol A 51:B183–B194

    Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    PubMed  CAS  Google Scholar 

  • Francis N, Gregg T, Owen R, Ebert T, Bodnar A (2006) Lack of age-associated telomere shortening in long-lived and short-lived species of sea urchins. FEBS Lett 580:4713–4717

    PubMed  CAS  Google Scholar 

  • Freeman-Gallant CR, Amidon J, Berdy B, Wein S, Taff CC, Haussmann MF (2011) Oxidative damage to DNA related to survivorship and carotenoid-based sexual ornamentation in the common yellowthroat. Biol Lett 7:429–432

    PubMed Central  PubMed  Google Scholar 

  • Furness LJ, Speakman JR (2008) Energetics and longevity in birds. Age 30:75–87

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gems D, Guardia YD (2013) Alternative perspectives on aging in Caenorhabditis elegans: reactive oxygen species or hyperfunction? Antioxid Redox Signal 19:321–329

    PubMed  CAS  Google Scholar 

  • Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644

    PubMed  CAS  Google Scholar 

  • Gershman R, Gilbert DL, Nye F, Dwyer P, Fenw MV (1954) Oxygen poisoning and X-irradiation: a mechanism in common. Science 119:623–626

    Google Scholar 

  • Gorbunova V, Seluanov A (2009) Coevolution of telomerase activity and body mass in mammals: from mice to beavers. Mech Ageing Dev 130:3–9

    PubMed Central  PubMed  CAS  Google Scholar 

  • Guerra C, Zenteno-Savín T, Maeda-Martínez AN, Philipp EE, Abele D (2012) Changes in oxidative stress parameters in relation to age, growth and reproduction in the short-lived catarina scallop Argopecten ventricosus reared in its natural environment. Comp Biochem Physiol Part A 162:421–430

    CAS  Google Scholar 

  • Hall ME, Nasir L, Daunt F, Gault EA, Croxall JP, Wanless S, Monaghan P (2004) Telomere loss in relation to age and early environment in long-lived birds. Proc R Soc Lond B 271:1571–1576

    CAS  Google Scholar 

  • Han ES, Muller FL, Pérez VI, Qi W, Liang H, Xi L, Fu C, Doyle E, Hickey M, Cornell J, Epstein CJ, Roberts LJ, Van Remmen H, Richardson A (2008) The in vivo gene expression signature of oxidative stress. Physiol Genom 34:112–126

    CAS  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol A 11:298–300

    CAS  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Ger Soc 20:145–147

    CAS  Google Scholar 

  • Harper JM, Wang M, Galecki AT, Ro J, Williams JB, Miller RA (2011) Fibroblasts from long-lived bird species are resistant to multiple forms of stress. J Exp Biol 214:1902–1910

    PubMed Central  PubMed  Google Scholar 

  • Hatakeyama H, Nakamura KI, Izumiyama-Shimomura N, Ishii A, Tsuchida S, Takubo K, Ishikawa N (2008) The teleost Oryzias latipes shows telomere shortening with age despite considerable telomerase activity throughout life. Mech Ageing Dev 129:550–557

    PubMed  CAS  Google Scholar 

  • Haussmann MF, Winkler DW, Vleck CM (2005) Longer telomeres associated with higher survival in birds. Biol Lett 1:212–214

    PubMed Central  PubMed  CAS  Google Scholar 

  • Haussmann MF, Winkler DW, Huntington CE, Nisbet ICT, Vleck CM (2007) Telomerase activity is maintained throughout the lifespan of long-lived birds. Exp Geront 42:610–618

    CAS  Google Scholar 

  • Haussmann MF, Marchetto NM (2010) Telomeres: linking stress and survival, ecology and evolution. Curr Zool 56:714–727

    CAS  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    PubMed  CAS  Google Scholar 

  • Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P (2012) Telomere length in early life predicts lifespan. Proc Natl Acad Sci USA 109:1743–1748

    PubMed Central  PubMed  CAS  Google Scholar 

  • Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419:808–814

    PubMed  CAS  Google Scholar 

  • Herrero A, Barja G (1997a) ADP-regulation of mitochondrial free radical production is different with complex I- and complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism. J Bioener Biomembr 29:241–249

    CAS  Google Scholar 

  • Herrero A, Barja G (1997b) Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech Ageing Dev 98:95–111

    PubMed  CAS  Google Scholar 

  • Herrero A, Barja G (1998) H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech Ageing Dev 103:133–146

    PubMed  CAS  Google Scholar 

  • Holman RT (1954) Autoxidation of fats and related substances. In: Holman RT, Lundberg WO, Malkin T (eds) Progress in chemistry of fats and other lipids, vol 2. Pergamon Press, London, pp 51–98

    Google Scholar 

  • Hornsby PJ (2003) Replicative senescence of human and mouse cells in culture: significance for aging research. Mech Ageing Dev 124:853–855

    PubMed  Google Scholar 

  • Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ (2008) Telomere length assessment: biomarker of chronic oxidative stress? Free Rad Biol Med 44:235–246

    PubMed  CAS  Google Scholar 

  • Hulbert AJ (2005) On the importance of fatty acid composition of membranes for aging. J Theor Biol 234:277–288

    PubMed  CAS  Google Scholar 

  • Hulbert AJ (2008) Explaining longevity of different animals: is membrane fatty acid composition the missing link? Age 30:89–97

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hulbert AJ, Rana T, Couture P (2002a) The acyl composition of mammalian phospholipids: an allometric analysis. Comp Biochem Physiol Part B 132:515–527

    CAS  Google Scholar 

  • Hulbert AJ, Faulks S, Buttemer WA, Else PL (2002b) Acyl composition of muscle membranes varies with body size in birds. J Exp Biol 205:3561–3569

    PubMed  CAS  Google Scholar 

  • Hulbert AJ, Faulks SC, Buffenstein R (2006) Oxidation-resistant membrane phospholipids can explain longevity differences among the longest-living rodents and similarly-sized mice. J Gerontol 61:1009–1018

    CAS  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    PubMed  CAS  Google Scholar 

  • Hulbert AJ, Beard LA, Grigg GC (2008) The exceptional longevity of an egg-laying mammal, the short-beaked echidna (Tachyglossus aculeatus) is associated with peroxidation-resistant membrane composition. Exp Geront 43:729–733

    CAS  Google Scholar 

  • Ilmonen P, Kotrschal A, Penn DJ (2008) Telomere attrition due to infection. PLoS ONE 3:e2143

    PubMed Central  PubMed  Google Scholar 

  • Isaksson C (2010) Pollution and its impact on wild animals: a meta-analysis on oxidative stress. EcoHealth 7:342–350

    PubMed  Google Scholar 

  • Isaksson C, While GM, Olsson M, Komdeur J, Wapstra E (2011) Oxidative stress physiology in relation to life history traits of a free-living vertebrate: the spotted snow skink, Niveoscincus ocellatus. Integr Zool 6:140–149

    PubMed  Google Scholar 

  • Issartel J, Hervant F, de Fraipont M, Clobert J, Voituron Y (2009) High anoxia tolerance in the subterranean salamander Proteus anguinus without oxidative stress nor activation of antioxidant defenses during reoxygenation. J Comp Physiol B 179:543–551

    PubMed  Google Scholar 

  • Jennings BJ, Ozanne SE, Dorling MW, Hales CN (1999) Early growth determines longevity in male rats and may be related to telomere shortening in the kidney. FEBS Lett 448:4–8

    PubMed  CAS  Google Scholar 

  • Jobson RW, Nabholz B, Galtier N (2010) An evolutionary genome scan for longevity-related natural selection in mammals. Mol Biol Evol 27:840–847

    PubMed  CAS  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antiox Redox Signal 8:1865–1879

    CAS  Google Scholar 

  • Jones OR, Gaillard JM, Tuljapurkar S, Alho JS, Armitage KB, Becker PH, Bize P, Brommer J, Charmantier A, Charpentier M, Clutton-Brock T, Dobson FS, Festa-Bianchet M, Gustafsson L, Jensen H, Jones CG, Lillandt BG, McCleery R, Merilä J, Neuhaus P, Nicoll MA, Norris K, Oli MK, Pemberton J, Pietiäinen H, Ringsby TH, Roulin A, Saether BE, Setchell JM, Sheldon BC, Thompson PM, Weimerskirch H, Jean Wickings E, Coulson T (2008) Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol Lett 11:664–673

    PubMed  Google Scholar 

  • Jones OR, Scheuerlein A, Salguero-Gómez R, Camarda CG, Schaible R, Casper BB, Dahlgren JP, Ehrlén J, García MB, Menges ES, Quintana-Ascencio PF, Caswell H, Baudisch A, Vaupel JW (2014) Diversity of ageing across the tree of life. Nature 505:169–173

    PubMed  CAS  Google Scholar 

  • Kamper EF, Chatzigeorgiou A, Tsimpoukidi O, Kamper M, Dalla C, Pitychoutis PM, Papadopoulou-Daifoti Z (2009) Sex differences in oxidant/antioxidant balance under a chronic mild stress regime. Physiol Behav 98:215–222

    PubMed  CAS  Google Scholar 

  • Keipert S, Voigt A, Klaus S (2011) Dietary effects on body composition, glucose metabolism, and longevity are modulated by skeletal muscle mitochondrial uncoupling in mice. Aging Cell 10:122–136

    PubMed Central  PubMed  CAS  Google Scholar 

  • Keipert S, Ost M, Chadt A, Voigt A, Ayala V, Portero-Otin M, Pamplona R, Al-Hasani H, Klaus S (2013) Skeletal muscle uncoupling-induced longevity in mice is linked to increased substrate metabolism and induction of the endogenous antioxidant defense system. Am J Physiol Endocrinol Metab 304:E495–E506

    PubMed  CAS  Google Scholar 

  • Kern B, Ivanina AV, Piontkivska H, Sokolov EP, Sokolova IM (2009) Molecular characterization and expression of a novel homolog of uncoupling protein 5 (UCP5) from the eastern oyster Crassostrea virginica (Bivalvia: Ostreidae). Comp Biochem Physiol Part D 4:121–127

    Google Scholar 

  • Kirkwood TBL (1977) Evolution of ageing. Nature 270:301–304

    PubMed  CAS  Google Scholar 

  • Kirkwood TBL, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Phil Trans R Soc Lond B 332:15–24

    CAS  Google Scholar 

  • Kirkwood TBL, Feder M, Finch CE, Franceschi C, Globerson A, Klingenberg CP, LaMarco K, Omholt S, Westendorp RGJ (2005) What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? Mech Ageing Dev 126:439–443

    PubMed  Google Scholar 

  • Klepsatel P, Gáliková M, De Maio N, Ricci S, Schlötterer C, Flatt T (2013) Reproductive and post-reproductive life history of wild-caught Drosophila melanogaster under laboratory conditions. J Evol Biol 26:1508–1520

    PubMed  CAS  Google Scholar 

  • Koivula MJ, Kanerva M, Salminen JP, Nikinmaa M, Eeva T (2011) Metal pollution indirectly increases oxidative stress in great tit (Parus major) nestlings. Environ Res 111:362–370

    PubMed  CAS  Google Scholar 

  • Kotrschal A, Ilmonen P, Penn DJ (2007) Stress impacts telomere dynamics. Biol Lett 3:128–130

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kowald A, Kirkwood TBL (1996) A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutat Res 316:209–236

    PubMed  CAS  Google Scholar 

  • Kowald A (2002) Lifespan does not measure ageing. Biogerontology 3:187–190

    PubMed  Google Scholar 

  • Lagisz M, Hector KL, Nakagawa S (2013) Life extension after heat shock exposure: assessing meta-analytic evidence for hormesis. Ageing Res Rev 12:653–660

    PubMed  Google Scholar 

  • Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6:607–618

    PubMed  CAS  Google Scholar 

  • Lanner RM, Connor KF (2001) Does bristlecone pine senesce? Exp Geront 36:675–685

    CAS  Google Scholar 

  • Le Bourg E (2005) Hormetic protection of Drosophila melanogaster middle-aged male flies from heat stress by mildly stressing them at young age. Naturwissenschaften 92:293–296

    PubMed  CAS  Google Scholar 

  • Lebovitz RM, Zhang H, Vogel H, Cartwright J, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegradation, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 93:9782–9787

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lionaki E, Markaki M, Tavernarakis N (2013) Autophagy and ageing: insights from invertebrate model organisms. Ageing Res Rev 12:413–428

    PubMed  CAS  Google Scholar 

  • Lopez-Torres M, Perez-Campo R, Rojas C, Cadenas S, Barja G (1993) Maximum lifespan in vertebrates: relationship with liver antioxidant enzymes, glutathione system, ascorbate, urate, sensitivity to peroxidation, true malondialdehyde, in vivo H2O2, and basal and maximum aerobic capacity. Mech Ageing Dev 70:177–199

    PubMed  CAS  Google Scholar 

  • Loschen G, Flohé L, Chance B (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 18:261–264

    PubMed  CAS  Google Scholar 

  • Losdat S, Helfenstein F, Blount JD, Marri V, Maronde L, Richner H (2013) Nestling erythrocyte resistance to oxidative stress predicts fledging success but not local recruitment in a wild bird. Biol Lett 9:20120888

    PubMed Central  PubMed  Google Scholar 

  • Lund TC, Glass TJ, Tolar J, Blazar BR (2009) Expression of telomerase and telomere length are unaffected by either age or limb regeneration in Danio rerio. PLoS ONE 4:e7688

    PubMed Central  PubMed  Google Scholar 

  • Maklakov AA, Fricke C, Arnqvist G (2007) Sexual selection affects lifespan and aging in the seed beetle. Aging Cell 6:739–744

    PubMed  CAS  Google Scholar 

  • Maklakov AA, Lummaa V (2013) Evolution of sex differences in lifespan and aging: causes and constraints. BioEssays 35:717–724

    PubMed  Google Scholar 

  • Martin JG, Festa-Bianchet M (2011) Age-independent and age-dependent decreases in reproduction of females. Ecol Lett 14:576–581

    PubMed  Google Scholar 

  • Martinez DE (1998) Mortality patterns suggest lack of senescence in hydra. Exp Geront 33:217–225

    CAS  Google Scholar 

  • Medawar PB (1952) An unsolved problem of biology. HK Lewis and Co

    Google Scholar 

  • Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, Wallace DC (1998) A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 18:159–163

    PubMed  CAS  Google Scholar 

  • Melov S, Coskun P, Patel M, Tuinstra R, Cottrell B, Jun AS, Zastawny TH, Dizdaroglu M, Goodman SI, Huang TT, Miziorko H, Epstein CJ, Wallace DC (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 96:846–851

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Geront 15:579–591

    Google Scholar 

  • Moe B, Rønning B, Verhulst S, Bech C (2009) Metabolic ageing in individual zebra finches. Biol Lett 5:86–89

    PubMed Central  PubMed  Google Scholar 

  • Møller AP (2006) Sociality, age at first reproduction and senescence: comparative analyses of birds. J Evol Biol 19:682–689

    PubMed  Google Scholar 

  • Møller AP (2008) Relative longevity and field metabolic rate in birds. J Evol Biol 21:1379–1386

    PubMed  Google Scholar 

  • Møller AP, de Lope F, Saino N (2005) Reproduction and migration in relation to senescence in the barn swallow Hirundo rustica: a study of avian ‘centenarians’. Age 27:307–318

    PubMed Central  PubMed  Google Scholar 

  • Monaghan P, Haussmann MF (2006) Do telomere dynamics link lifestyle and lifespan? Trends Ecol Evol 21:47–53

    PubMed  Google Scholar 

  • Monaghan P, Charmantier A, Nussey DH, Ricklefs RE (2008) The evolutionary ecology of senescence. Funct Ecol 22:371–378

    Google Scholar 

  • Monaghan P (2010) Telomeres and life histories: the long and the short of it. Ann NY Acad Sci 1206:130–142

    PubMed  Google Scholar 

  • Montgomery MK, Hulbert AJ, Buttemer WA (2011) The long life of birds: the rat-pigeon comparison revisited. PLoS ONE 6:e24138

    PubMed Central  PubMed  CAS  Google Scholar 

  • Montgomery MK, Hulbert AJ, Buttemer WA (2012) Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production. Exp Geront 47:203–210

    CAS  Google Scholar 

  • Moosmann B, Behl C (2008) Mitochondrially encoded cysteine predicts animal lifespan. Aging Cell 7:32–46

    PubMed  CAS  Google Scholar 

  • Munro D, Pichaud N, Paquin F, Kemeid V, Blier PU (2013) Low hydrogen peroxide production in mitochondria of the long-lived Arctica islandica: underlying mechanisms for slow aging. Aging Cell 12:584–592

    PubMed  CAS  Google Scholar 

  • Munshi-South J, Wilkinson GS (2006) Diet influences life span in parrots. Auk 123:108–118

    Google Scholar 

  • Nabholz B, Glémin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol Biol Evol 25:120–130

    PubMed  CAS  Google Scholar 

  • Nakagawa S, Gemmell NJ, Burke T (2004) Measuring vertebrate telomeres: applications and limitations. Mol Ecol 13:2523–2533

    PubMed  CAS  Google Scholar 

  • Noguera JC, Kim S-Y, Velando A (2011) Pre-fledgling oxidative damage predicts recruitment in a long-lived bird. Biol Lett 8:61–63

    PubMed Central  PubMed  Google Scholar 

  • Norte AC, Ramos JA, Araújo PM, Sousa JP, Sheldon BC (2008) Health-state variables and enzymatic biomarkers as survival predictors in nestling great tits (Parus major): effects of environmental conditions. Auk 125:1–11

    Google Scholar 

  • Nussey DH, Kruuk LEB, Donald A, Fowlie M, Clutton-Brock TH (2006) The rate of senescence in maternal performance increases with early-life fecundity in red deer. Ecol Lett 9:1342–1350

    PubMed  Google Scholar 

  • Nussey DH, Kruuk LEB, Morris A, Clutton-Brock TH (2007) Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr Biol 17:R1000–R1001

    PubMed  CAS  Google Scholar 

  • Nussey DH, Coulson T, Festa-Bianchet M, Gaillard JM (2008) Measuring senescence in wild animal populations: towards a longitudinal approach. Funct Ecol 22:393–406

    Google Scholar 

  • Nussey DH, Kruuk LE, Morris A, Clements MN, Pemberton JM, Clutton-Brock TH (2009) Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. Am Nat 174:342–357

    PubMed  Google Scholar 

  • Nussey DH, Froy H, Lemaitre J-F, Gaillard J-M, Austad SN (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res Rev 12:214–225

    PubMed  Google Scholar 

  • O’Connor TP, Lee A, Jarvis JU, Buffenstein R (2002) Prolonged longevity in naked mole rats: age-related changes in metabolism, body composition and gastrointestinal function. Comp Biochem Physiol Part A 133:835–842

    Google Scholar 

  • Ogburn CE, Carlberg K, Ottinger MA, Holmes DJ, Martin GM, Austad SN (2001) Exceptional cellular resistance to oxidative damage in long-lived birds requires active gene expression. J Gerontol A 56:468–474

    Google Scholar 

  • Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta-Bioenerg 1777:1249–1262

    CAS  Google Scholar 

  • Pamplona R, Barja G (2003) Aging rate, free radical production, and constitutive sensitivity to lipid peroxidation: insights from comparative studies. In: Van Zglinicki T (ed) Biology of aging and its modulation series. Aging at the molecular level, vol 1. Kluwer Academic Publisher, New York, pp 47–64

    Google Scholar 

  • Pamplona R, Costantini D (2011) Molecular and structural antioxidant defences against oxidative stress in animals. Am J Physiol 301:R843–R863

    CAS  Google Scholar 

  • Pamplona R, Barja G, Portero-Otin M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann NY Acad Sci 959:475–490

    PubMed  CAS  Google Scholar 

  • Pamplona R, Prat J, Cadenas S, Rojas C, Perez-Campo R, Lopez-Torres M, Barja G (1996) Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from long-lived species: the pigeon and the human case. Mech Ageing Dev 86:53–66

    PubMed  CAS  Google Scholar 

  • Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TB, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:e110

    PubMed Central  PubMed  Google Scholar 

  • Pauliny A, Wagner RH, Augustin J, Szep T, Blomqvist D (2006) Age-independent telomere length predicts fitness in two bird species. Mol Ecol 15:1681–1687

    PubMed  CAS  Google Scholar 

  • Pearl R (1928) The rate of living. Alfred A. Knopf, New York

    Google Scholar 

  • Pérez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole rat. Proc Natl Acad Sci USA 106:3059–3064

    PubMed Central  PubMed  Google Scholar 

  • Perez-Campo R, Lopez-Torres M, Rojas C, Cadenas S, Barja G (1994) Longevity and antioxidant enzymes, non-enzymatic antioxidants and oxidative stress in the vertebrate lung: a comparative study. J Comp Physiol B 163:682–689

    PubMed  CAS  Google Scholar 

  • Peterson RO, Vucetich JA, Fenton G, Drummer TD, Spencer Larsen C (2010) Ecology of arthritis. Ecol Lett 13:1124–1128

    PubMed  Google Scholar 

  • Philipp E, Brey T, Heilmayer O, Abele D, Pörtner HO (2006) Physiological ageing in a polar and a temperate swimming scallop. Mar Ecol Prog Ser 307:187–198

    Google Scholar 

  • Philipp EER, Strahl J, Sukhotin AA (2012) Aging in marine animals. In: Abele D, Vázquez-Medina JP, Zenteno-Savín T (eds) Oxidative stress in aquatic ecosystems. Wiley-Blackwell, UK, pp 193–207

    Google Scholar 

  • Porter RK, Brand MD (1993) Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate. Nature 362:628–630

    PubMed  CAS  Google Scholar 

  • Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78

    PubMed  Google Scholar 

  • Reed T, Kruuk LEB, Wanless S, Frederiksen M, Cunningham EJM, Harris MP (2008) Reproductive senescence in a long-lived seabird: rates of decline in late life performance are associated with varying costs of early reproduction. Am Nat 171:E89–E101

    PubMed  Google Scholar 

  • Reynolds RM, Phillips PC (2013) Natural variation for lifespan and stress response in the nematode Caenorhabditis remanei. PLoS ONE 8:e58212

    PubMed Central  PubMed  CAS  Google Scholar 

  • Reznick D, Bryant M, Holmes D (2006) The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata). PLoS Biol 4:e7

    PubMed Central  PubMed  Google Scholar 

  • Ricklefs RE (2010) Life-history connections to rates of aging in terrestrial vertebrates. Proc Natl Acad Sci USA 107:10314–10319

    PubMed Central  PubMed  CAS  Google Scholar 

  • Robert KA, Brunet-Rossinni A, Bronikowski AM (2007) Testing the ‘free radical theory of aging’ hypothesis: physiological differences in long-lived and short-lived colubrid snakes. Aging Cell 6:395–404

    PubMed  CAS  Google Scholar 

  • Rodriguez M, Basten Snoek L, Riksen JAG, Bevers RP, Kammenga JE (2012) Genetic variation for stress-response hormesis in C. elegans lifespan. Exp Geront 47:581–587

    CAS  Google Scholar 

  • Rose MR, Charlesworth B (1981) Genetics of life-history in Drosophila melanogaster. 2. Exploratory selection experiments. Genetics 97:187–196

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rottenberg H (2006) Longevity and the evolution of the mitochondrial DNA-coded proteins in mammals. Mech Ageing Dev 127:748–760

    PubMed  CAS  Google Scholar 

  • Rottenberg H (2007a) Coevolution of exceptional longevity, exceptionally high metabolic rates, and mitochondrial DNA-coded proteins in mammals. Exp Geront 42:364–373

    CAS  Google Scholar 

  • Rottenberg H (2007b) Exceptional longevity in songbirds is associated with high rates of evolution of cytochrome b, suggesting selection for reduced generation of free radicals. J Exp Biol 210:2170–2180

    PubMed  CAS  Google Scholar 

  • Rubner M (1908) Das problem der lebensdauer und seine beziehunger zum wachstum und ernaibrung, Oldenburg, Munchen

    Google Scholar 

  • Rubolini D, Colombo G, Ambrosini R, Caprioli M, Clerici M, Colombo R, Dalle-Donne I, Milzani A, Romano A, Romano M, Saino N (2012) Sex-related effects of reproduction on biomarkers of oxidative damage in free-living barn swallows (Hirundo rustica). PLoS One 7:e48955

    Google Scholar 

  • Ruggiero C, Metter EJ, Melenovsky V, Cherubini A, Najjar SS, Ble A, Senin U, Longo DL, Ferrucci L (2008) High basal metabolic rate is a risk factor for mortality: the Baltimore longitudinal study of aging. J Geront A 63:698–706

    Google Scholar 

  • Saino N, Caprioli M, Romano M, Boncoraglio G, Rubolini D, Ambrosini R, Bonisoli-Alquati A, Romano A (2011) Antioxidant defenses predict long-term survival in a passerine bird. PLoS ONE 6:e19593

    PubMed Central  PubMed  CAS  Google Scholar 

  • Salmon AB, Marx DB, Harshman LG (2001) A cost of reproduction in Drosophila melanogaster: stress susceptibility. Evolution 55:1600–1608

    PubMed  CAS  Google Scholar 

  • Salmon AB, Leonard S, Masamsetti V, Pierce A, Podlutsky AJ, Podlutskaya N, Richardson A, Austad SN, Chaudhuri A (2009) The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J 23:2317–2326

    PubMed Central  PubMed  CAS  Google Scholar 

  • Salmon AB, Richardson A, Pérez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Rad Biol Medic 48:642–655

    CAS  Google Scholar 

  • Salomons HM, Mulder GA, van de Zande L, Haussmann MF, Linskens MH, Verhulst S (2009) Telomere shortening and survival in free-living corvids. Proc R Soc Lond B 276:3157–3165

    CAS  Google Scholar 

  • Salway KD, Gallagher EJ, Page MM, Stuart JA (2011) Higher levels of heat shock proteins in longer-lived mammals and birds. Mech Ageing Dev 132:287–297

    PubMed  CAS  Google Scholar 

  • Samuels DC (2005) Life span is related to the free energy of mitochondrial DNA. Mech Ageing Dev 126:1123–1129

    PubMed  CAS  Google Scholar 

  • Sanz A, Pamplona R, Barja G (2006) Is the mitochondrial free radical theory of aging intact? Antiox Redox Sign 8:582–599

    CAS  Google Scholar 

  • Sasaki T, Unno K, Tahara S, Shimada A, Chiba Y, Hoshino M, Kaneko T (2008) Age-related increase of superoxide generation in the brains of mammals and birds. Aging Cell 7:459–469

    PubMed  CAS  Google Scholar 

  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911

    PubMed  CAS  Google Scholar 

  • Selman C, McLaren JS, Collins AR, Duthie GG, Speakman JR (2008) The impact of experimentally elevated energy expenditure on oxidative stress and lifespan in the short-tailed field vole Microtus agrestis. Proc R Soc Lond B 275:1907–1916

    Google Scholar 

  • Snell TW, Fields AM, Johnston RK (2012) Antioxidants can extend lifespan of Brachionus manjavacas (Rotifera), but only in a few combinations. Biogerontology 13:261–275

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sohal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Rad Biol Med 33:575–586

    PubMed  CAS  Google Scholar 

  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Rad Biol Med 52:539–555

    PubMed Central  PubMed  CAS  Google Scholar 

  • Soltow QA, Jones DP, Promislow DEL (2010) A network perspective on metabolism and aging. Integr Comp Biol 50:844–854

    PubMed Central  PubMed  Google Scholar 

  • Sørensen JG, Kristensen TN, Kristensen KV, Loeschcke V (2007) Sex specific effects of heat induced in Hsf-deficient Drosophila melanogaster. Exp Gerontol 42:1123–1129

    PubMed  Google Scholar 

  • Sosnowska D, Richardson C, Sonntag WE, Csiszar A, Ungvari Z, Ridgway I (2014) A heart that beats for 500 years: age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal. J Gerontol A (in press)

    Google Scholar 

  • Southworth LK, Owen AB, Kim SK (2009) Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet 5:e1000776

    PubMed Central  PubMed  Google Scholar 

  • Speakman JR (2005a) Body size, energy metabolism and lifespan. J Exp Biol 208:1717–1730

    PubMed  Google Scholar 

  • Speakman JR (2005b) Correlations between physiology and lifespan–two widely ignored problems with comparative studies. Aging Cell 4:167–175

    PubMed  CAS  Google Scholar 

  • Speakman JR, Talbot DA, Selman C, Snart S, McLaren JS, Redman P, Krol E, Jackson DM, Johnson MS, Brand MD (2004) Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3:87–95

    PubMed  CAS  Google Scholar 

  • Stadtman ER, Moskovitz J, Berlett B, Levine RL (2002) Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol Cell Biochem 234–235:3–9

    PubMed  Google Scholar 

  • Storer JB (1967) Relation of lifespan to brain weight, body weight and metabolic rate among inbred mouse strains. Exp Geront 2:173–182

    Google Scholar 

  • Strecker V, Mai S, Muster B, Beneke S, Bürkle A, Bereiter-Hahn J, Jendrach M (2010) Aging of different avian cultured cells: lack of ROS-induced damage and quality control mechanisms. Mechan Ageing Dev 131:48–59

    CAS  Google Scholar 

  • Talbot DA, Lambert AJ, Brand MD (2004) Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. FEBS Lett 556:111–115

    PubMed  CAS  Google Scholar 

  • Tanaka Y (1993) A genetic mechanism for the evolution of senescence in Callosobruchus chinensis (the Azuki Bean Weevil). Heredity 70:318–321

    Google Scholar 

  • Torres-Barceló C, Cabot G, Oliver A, Buckling A, MacLean RC (2013) A trade-off between oxidative stress resistance and DNA repair plays a role in the evolution of elevated mutation rates in bacteria. Proc R Soc Lond B 280:20130007

    Google Scholar 

  • Tower J (2006) Sex-specific regulation of aging and apoptosis. Mech Ageing Dev 127:705–718

    PubMed  Google Scholar 

  • Trivers R (1985) Social evolution. Benjamin/Cummings Publishing, Menlo Park, California

    Google Scholar 

  • Unterluggauer H, Hütter E, Voglauer R, Grillari J, Vöth M, Bereiter-Hahn J, Jansen-Dürr P, Jendrach M (2007) Identification of cultivation-independent markers of human endothelial cell senescence in vitro. Biogerontology 8:383–397

    PubMed  CAS  Google Scholar 

  • Valencak TG, Ruf T (2007) N-3 polyunsaturated fatty acids impair lifespan but have no role for metabolism. Aging Cell 6:15–25

    PubMed  CAS  Google Scholar 

  • Vaanholt LM, Daan S, Schubert KA, Visser GH (2009) Metabolism and aging: effects of cold exposure on metabolic rate, body composition, and longevity in mice. Physiol Biochem Zool 82:314–324

    PubMed  CAS  Google Scholar 

  • Vaanholt LM, Daan S, Garland T Jr, Visser GH (2010) Exercising for life? Energy metabolism, body composition, and longevity in mice exercising at different intensities. Physiol Biochem Zool 83:239–251

    PubMed  Google Scholar 

  • van de Crommenacker J (2011) Hard times in paradise? Oxidative status, physiology and fitness in the tropical Seychelles warbler. PhD Thesis, University of Groningen

    Google Scholar 

  • Veskoukis AS, Nikolaidis MG, Kyparos A, Kouretas D (2009) Blood reflects tissue oxidative stress depending on biomarker and tissue studied. Free Rad Biol Med 47:1371–1374

    PubMed  CAS  Google Scholar 

  • Vina J, Gambini J, Lopez-Grueso R, Abdelaziz KM, Jove M, Borras C (2011) Females live longer than males: role of oxidative stress. Curr Pharm Des 17:3959–3965

    PubMed  CAS  Google Scholar 

  • Voituron Y, de Fraipont M, Issartel J, Guillaume O, Clobert J (2011) Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms. Biol Lett 7:105–107

    PubMed Central  PubMed  Google Scholar 

  • von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Google Scholar 

  • Wang Y, Pot D, Kachman SD, Nuzhdin SV, Harshman LG (2006) A quantitative trait locus analysis of natural genetic variation for Drosophila melanogaster oxidative stress survival. J Hered 97:355–366

    PubMed  CAS  Google Scholar 

  • Wasser DE, Sherman PW (2010) Avian longevities and their interpretation under evolutionary theories of senescence. J Zool 280:103–155

    Google Scholar 

  • Webb RE, Leslie DM Jr, Lochmiller RL, Masters RE (2005) Impact of food supplementation and methionine on high densities of cotton rats: support of the amino-acid-quality hypothesis? J Mammal 86:46–55

    Google Scholar 

  • Weinert BT, Timiras PS (2003) Theories of aging. J Appl Physiol 95:1706–1716

    PubMed  CAS  Google Scholar 

  • Weirsma P, Nowak B, Williams JB (2012) Small organ size contributes to the slow pace of life in tropical birds. J Exp Biol 215:1662–1669

    Google Scholar 

  • Weissman A (1889) Essays upon heredity and kindred biological problems. Clarendon Press, Oxford

    Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Google Scholar 

  • Wright WE, Shay JW (2001) Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr Opin Genet Dev 11:98–103

    PubMed  CAS  Google Scholar 

  • Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han J-DJ (2007) A modular network model of aging. Mol Syst Biol 3:147

    PubMed Central  PubMed  Google Scholar 

  • Yarian CS, Rebrin I, Sohal RS (2005) Aconitase and ATP synthase are targets of malondialdeyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem Biophys Res Commun 330:151–156

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yu BP, Yang R (1996) Critical evaluation of the free radical theory of aging. A proposal for the oxidative stress hypothesis. Ann NY Acad Sci 786:1–11

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Costantini .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costantini, D. (2014). Integrating Oxidative Stress and Hormesis into Research on Senescence and Survival Perspectives. In: Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54663-1_10

Download citation

Publish with us

Policies and ethics