Skip to main content

Historical and Contemporary Issues of Oxidative Stress, Hormesis and Life-History Evolution

  • Chapter
  • First Online:
Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology

Abstract

The transition from a reducing to an oxidising chemistry in the atmosphere and oceans paved the way for the diversification of life. Oxygen expanded metabolic and biochemical capacities of organisms. Over the incipient stages of evolution of oxidative metabolism, organisms also needed to develop mechanisms to mitigate the toxic effects of oxygen derivatives, such as free radicals and non-radical reactive species. This chapter provides a general historical background, with definitions and information of free radicals, antioxidants and oxidative stress. This chapter also examines how mild doses of stress can have stimulatory effects on organismal performance through hormetic mechanisms and that this may significantly relate to evolutionary fitness and to the ecology of species. Finally, the chapter explains the concept of life-history trade-offs and highlights how the need to manage oxidative stress in an optimal way may be an important mechanism driving the outcome of many of these trade-offs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aledo JC, Li Y, De Magalhães JP, Ruíz-Camacho M, Pérez-Claros JA (2011) Mitochondrially encoded methionine is inversely related to longevity in mammals. Aging Cell 10:198–207

    PubMed  CAS  Google Scholar 

  • Altincicek B, Kovacs JL, Gerardo NM (2011) Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae. Biol Lett 8:253–257

    PubMed Central  PubMed  Google Scholar 

  • Barja G (2007) Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuv Res 10:215–224

    CAS  Google Scholar 

  • Barnes AI, Partridge L (2003) Costing reproduction. Anim Behav 66:199–204

    Google Scholar 

  • Behne D, Kyriakopoulos A (2001) Mammalian selenium-containing proteins. Annu Rev Nutr 21:453–473

    PubMed  CAS  Google Scholar 

  • Bernthsen A (1942) A textbook of organic chemistry. Blackie and Sons, Glasgow

    Google Scholar 

  • Bialek W (2012) Biophysics: searching for principles. Pinceton University Press, Princeton

    Google Scholar 

  • Bielski BHJ, Arudi RL, Sutherland MW (1983) A study of the reactivity of HO2/O2 with unsaturated fatty acids. J Biol Chem 258:4759–4761

    PubMed  CAS  Google Scholar 

  • Bjelland S, Seeberg E (2003) Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res 531:37–80

    PubMed  CAS  Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert A, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Biol Med 37:755–767

    CAS  Google Scholar 

  • Bunn HF, Higgins PJ (1981) Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213:222–224

    PubMed  CAS  Google Scholar 

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474

    PubMed  CAS  Google Scholar 

  • Calabrese EJ (2010a) Hormesis is central to toxicology, pharmacology and risk assessment. Hum Exp Toxicol 29:249–261

    PubMed  Google Scholar 

  • Calabrese EJ (2010b) Hormesis: once marginalized, evidence now supports hormesis as the most fundamental dose response. In: Mattson MP, Calabrese EJ (eds) Hormesis: a revolution in biology, toxicology and medicine. Springer, New York, pp 15–56

    Google Scholar 

  • Calabrese EJ, Baldwin LA (1998) A general classification of U-shaped dose-response relationships. Hum Exp Toxicol 17:353–364

    PubMed  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21:91–97

    PubMed  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) The hormetic dose response model is more common than the threshold model in toxicology. Toxicol Sci 71:414–428

    Google Scholar 

  • Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 202:289–301

    PubMed  CAS  Google Scholar 

  • Calabrese EJ, Blain R (2009) Hormesis and plant biology. Environm Poll 157:42–48

    CAS  Google Scholar 

  • Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chlueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB, Kozumbo WJ, Lettleri T, Liu SZ, Maisseu A, Maynard KI, Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA, Rattan SIS, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM, Mattson MP (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol 222:122–128

    PubMed  CAS  Google Scholar 

  • Cardoso VV, Ferreira MP, Montagner JM, Fernandez CG, Moreira JC, Oliveira AK (2002) The effects of constant and alternating temperatures on the reproductive potential, life span, and life expectancy of Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae). Braz J Biol 62:775–786

    PubMed  CAS  Google Scholar 

  • Cirulli F, Berry A, Alleva E (2003) Early disruption of the mother-infant relationship: effects on brain plasticity and implications for psychopathology. Neurosci Biobehav Rev 27:73–82

    PubMed  CAS  Google Scholar 

  • Cohen AA, McGraw KJ (2009) No simple measures for antioxidant status in birds: complexity in inter- and intraspecific correlations among circulating antioxidant types. Funct Ecol 23:310–320

    Google Scholar 

  • Cohen AA, Martin LB, Wingfield JC, McWilliams SR, Dunne JA (2012) Physiological regulatory networks: ecological roles and evolutionary constraints. Trends Ecol Evol 27:428–435

    PubMed  Google Scholar 

  • Commoner B, Townsend J, Pake GE (1954) Free radicals in biological materials. Nature 174:689–691

    PubMed  CAS  Google Scholar 

  • Copple IM, Goldring CE, Kitteringham NR, Park BK (2008) The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicology 246:24–33

    PubMed  CAS  Google Scholar 

  • Cornelli U (2009) Antioxidant use in nutraceuticals. Clin Dermat 27:175–194

    Google Scholar 

  • Costantini D, Dell’Omo G (2006) Effects of T-cell-mediated immune response on avian oxidative stress. Comp Biochem Physiol A 145:137–142

    Google Scholar 

  • Costantini D (2008) Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett 11:1238–1251

    PubMed  Google Scholar 

  • Costantini D, Møller AP (2008) Carotenoids are minor antioxidants for birds. Funct Ecol 22:367–370

    Google Scholar 

  • Costantini D, Fanfani A, Dell’Omo G (2008) Effects of corticosteroids on oxidative damage and circulating carotenoids in captive adult kestrels (Falco tinnunculus). J Comp Physiol B 178:829–835

    PubMed  CAS  Google Scholar 

  • Costantini D, Verhulst S (2009) Does high antioxidant capacity indicate low oxidative stress? Funct Ecol 23:506–509

    Google Scholar 

  • Costantini D (2010) Redox physiology in animal function: the struggle of living in an oxidant environment. Curr Zool 56:687–702

    Google Scholar 

  • Costantini D, Metcalfe NB, Monaghan P (2010a) Ecological processes in a hormetic framework. Ecol Lett 13:1435–1447

    PubMed  Google Scholar 

  • Costantini D, Rowe M, Butler MW, McGraw KJ (2010b) From molecules to living systems: historical and contemporary issues in oxidative stress and antioxidant ecology. Funct Ecol 24:950–959

    Google Scholar 

  • Costantini D, Marasco V, Møller AP (2011a) A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B 181:447–456

    PubMed  CAS  Google Scholar 

  • Costantini D, Monaghan P, Metcalfe NB (2011b) Biochemical integration of blood redox state in captive zebra finches (Taeniopygia guttata). J Exp Biol 214:1148–1152

    PubMed  CAS  Google Scholar 

  • Costantini D (2013) Oxidative stress and hormetic responses in the early life of birds. In: Laviola G, Macrì S (eds) Adaptive and maladaptive aspects of developmental stress. Current topics in neurotoxicity 3. Springer, New York, pp 257–273

    Google Scholar 

  • Costantini D, Monaghan P, Metcalfe NB (2013) Loss of integration is associated with reduced resistance to oxidative stress. J Exp Biol 216:2213–2220

    PubMed  CAS  Google Scholar 

  • Costantini D, Monaghan P, Metcalfe N (2014) Prior hormetic priming is costly under environmental mismatch. Biol Lett 10:20131010

    Google Scholar 

  • Csermely P, Söti C (2006) Cellular networks and the aging process. Arch Physiol Biochem 112:60–64

    PubMed  CAS  Google Scholar 

  • Cui J, Yuan X, Wang L, Jones G, Zhang S (2011) Recent loss of vitamin C biosynthesis ability in bats. PLoS ONE 6:e27114

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cutler GC, Ramanaidu K, Astatkie T, Isman MB (2009) Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest Manag Sci 65:205–209

    CAS  Google Scholar 

  • Davies JMS, Lowry CV, Davies KJA (1995) Transient adaptation to oxidative stress in yeast. Arch Biochem Biophys 317:1–6

    PubMed  CAS  Google Scholar 

  • Denicola A, Souza JM, Radi R (1998) Diffusion of peroxynitrite across erythrocyte membranes. Proc Natl Acad Sci USA 95:3566–3571

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dotan Y, Lichtenberg D, Pinchuk I (2004) Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Progr Lipid Res 43:200–227

    CAS  Google Scholar 

  • Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc R Soc Lond B 276:1737–1745

    CAS  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22:4103–4110

    PubMed Central  PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol Med 11:81–128

    CAS  Google Scholar 

  • Evans MD, Cooke MS (2004) Factors contributing to the outcome of oxidative damage to nucleic acids. BioEssays 26:533–542

    PubMed  CAS  Google Scholar 

  • Falkowski PG (2006) Tracing oxygen’s imprint on Earth’s metabolic evolution. Science 311:1724–1725

    PubMed  CAS  Google Scholar 

  • Fandrey J, Gassmann M (2009) Oxygen sensing and the activation of the hypoxia inducible factor 1 (HIF-1). Adv Exp Med Biol 648:197–206

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2000) Deacylation and reacylation of neural membrane glycerophospholipids—a matter of life and death. J Mol Neurosci 14:123–135

    PubMed  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    PubMed  CAS  Google Scholar 

  • Flood JF, Smith GE, Cherkin A (1983) Memory retention: potentiation of cholinergic drug combinations in mice. Neurobiol Aging 4:37–43

    PubMed  CAS  Google Scholar 

  • Flood JF, Smith GE, Cherkin A (1985) Memory enhancement: supra-additive effect of subcutaneous cholinergic drug combinations in mice. Psychopharmacol 86:61–67

    CAS  Google Scholar 

  • Forbes VE (2000) Is hormesis an evolutionary expectation? Funct Ecol 14:12–24

    Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Sci 201:875–880

    CAS  Google Scholar 

  • Gaál T, Ribiczeyné-Szabó P, Stadler K, Jakus J, Reiczigel J, Kövér P, Mézes M, Sümeghy L (2006) Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calving. Comp Biochem Physiol B 143:391–396

    PubMed  Google Scholar 

  • Gershman R, Gilbert DL, Nye F, Dwyer P, Fenw MV (1954) Oxygen poisoning and X-irradiation: a mechanism in common. Sci 119:623–626

    Google Scholar 

  • Gianni P, Jan KJ, Douglas MJ, Stuart PM, Tarnopolsky MA (2004) Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp Geront 39:1391–1400

    CAS  Google Scholar 

  • Giesy JP, Pierens SL, Snyder EM, Miles-Richardson S, Kramer VJ, Snyder SA, Nichols KM, Villeneuve DA (2000) Effects of 4-nonylphenol on fecundity and biomarkers of estrogenicity in fathead minnows (Pimephales promelas). Environ Toxicol Chem 19:1368–1377

    CAS  Google Scholar 

  • Giles GI (2009) Redox-controlled transcription factors and gene expression. In: Jacob C, Winyard PG (eds) Redox signalling and regulation in biology and medicine. Wiley-VCH Verlag, Germany, pp 245–270

    Google Scholar 

  • Giuliani A, Zbilut JP, Conti F, Manetti C, Miccheli A (2004) Invariant features of metabolic networks: a data analysis application on scaling properties of biochemical pathways. Phys A 337:157–170

    CAS  Google Scholar 

  • Gomberg M (1900) An instance of trivalent carbon: triphenyl-methyl. J Am Chem Soc 22:757–771

    Google Scholar 

  • Gorban AN, Smirnova EV, Tyukina TA (2010) Correlations, risk and crisis: from physiology to finance. Phys A 389:3193–3217

    Google Scholar 

  • Haber A (2011) A comparative analysis of integration indices. Evol Biol 38:476–488

    Google Scholar 

  • Halliwell BH, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8:950–988

    PubMed Central  CAS  Google Scholar 

  • Han D, Canali E, Rettori D, Kaplowitz N (2003) Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol Pharmacol 64:1136–1144

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Geront A 11:298–300

    CAS  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    PubMed  CAS  Google Scholar 

  • Hasty J, McMillen D, Isaacs F, Collins JJ (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nat Rev Genet 2:268–279

    PubMed  CAS  Google Scholar 

  • Hausladen A, Gow AJ, Stamler JS (1998) Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc Natl Acad Sci USA 95:14100–14105

    PubMed Central  PubMed  CAS  Google Scholar 

  • Herzberg G (1971) The spectra and structures of simple free radicals. Dover Phoenix Editions

    Google Scholar 

  • Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    PubMed  CAS  Google Scholar 

  • Hoffmann GR (2009) A perspective on the scientific, philosophical, and policy dimensions of hormesis. Dose-Response 7:1–51

    PubMed Central  PubMed  CAS  Google Scholar 

  • Holmes RS, Moxon LN, Parsons PA (1980) Genetic variability of alcohol dehydrogenase among Australian Drosophila species: correlation of ADH biochemical phenotype with ethanol resource utilization. J Exp Zool 214:199–204

    PubMed  CAS  Google Scholar 

  • Howard AC, McNeil AK, McNeil PL (2011) Promotion of plasma membrane repair by vitamin E. Nat Commun 2:597

    PubMed Central  PubMed  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    PubMed  CAS  Google Scholar 

  • Iqbal M, Probert LL, Alhumadi ND, Klandorf H (1999) Protein glycosylation and advanced glycosylated endproducts (AGEs) accumulation: an avian solution? J Geront A 54:B171–B176

    CAS  Google Scholar 

  • Isakkson C, Sheldon BC, Uller T (2011) The challenges of integrating oxidative stress into life-history biology. Biosci 61:194–202

    Google Scholar 

  • Jenness R, Birney E, Ayaz K (1980) Variation of L-gulonolactone oxidase activity in placental mammals. Comp Biochem Physiol B 67:195–204

    Google Scholar 

  • Jessup CM, Bohannan BJM (2008) The shape of an ecological trade-off varies with environment. Ecol Lett 11:947–959

    PubMed  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    PubMed  CAS  Google Scholar 

  • Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biol Med 47:1304–1309

    CAS  Google Scholar 

  • Katsu M, Niizuma K, Yoshioka H, Okami N, Sakata H, Chan PH (2010) Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood-brain barrier dysfunction in vivo. J Cereb Blood Flow Metab 30:1939–1950

    PubMed Central  PubMed  CAS  Google Scholar 

  • Klandorf H, Probert LL, Iqbal M (1999) In the defense against hyperglycaemia: an avian strategy. World’s Poult Sci J 55:251–268

    Google Scholar 

  • Klingenberg CP (2008) Morphological integration and developmental modularity. Annu Rev Ecol Evol System 39:115–132

    Google Scholar 

  • Kovacic P, Wakelin LPG (2001) DNA molecular electrostatic potential: novel perspectives for the mechanism of action of anticancer drugs involving electron transfer and oxidative stress. Anticancer Drug Des 16:175–184

    PubMed  CAS  Google Scholar 

  • Krinski I (1993) Micronutrients and their influence on mutagenicity and malignant transformation. Ann NY Acad Sci USA 686:229–242

    Google Scholar 

  • Kristensen TN, Sørensen JG, Loeschcke V (2003) Mild heat stress at a young age in Drosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life. J Genet 82:89–94

    PubMed  CAS  Google Scholar 

  • Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P) + oxidation reduction state. Biochem J 368:545–553

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6:607–618

    PubMed  CAS  Google Scholar 

  • Laviola G, Macrì S (2013) Adaptive and maladaptive aspects of developmental stress. Current topics in neurotoxicity 3. Springer, New York

    Google Scholar 

  • Lebold KM, Löhr CV, Barton CL, Miller GW, Labut EM, Tanguay RL, Traber MG (2013) Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior. Comp Biochem Physiol C 157:382–389

    CAS  Google Scholar 

  • Le Bourg E (2005) Hormetic protection of Drosophila melanogaster middle-aged male flies from heat stress by mildly stressing them at young age. Naturwissenschaften 92:293–296

    PubMed  CAS  Google Scholar 

  • Le Bourg E, Valenti P, Lucchetta P, Payre F (2001) Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontology 2:155–164

    PubMed  Google Scholar 

  • Lee IM, Cook NR, Manson JE, Buring JE, Hennekens CH (1999) Betacarotene supplementation and incidence of cancer and cardiovascular disease: the women’s health study. J Natl Cancer Inst 91:2102–2106

    PubMed  CAS  Google Scholar 

  • Levine S, Haltmeyer GC, Karas GG (1967) Physiological and behavioral effects of infantile stimulation. Physiol Behav 2:55–59

    CAS  Google Scholar 

  • Lin H, Decuypere E, Buyse J (2004) Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus) 2. Short-term effect. Comp Biochem Physiol B 139:745–751

    PubMed  CAS  Google Scholar 

  • Lin H, De Vos D, Decuypere E, Buyse J (2008) Dynamic changes in parameters of redox balance after mild heat stress in aged laying hens (Gallus gallus domesticus). Comp Biochem Physiol C 147:30–35

    CAS  Google Scholar 

  • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis DD, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    PubMed  CAS  Google Scholar 

  • López-Torres M, Pérez-Campo R, Cadenas S, Rojas C, Barja G (1993) A comparative study of free radicals in vertebrates—II. Non-enzymatic antioxidants and oxidative stress. Comp Biochem Physiol B 105:757–763

    PubMed  Google Scholar 

  • Luckey TD (1968) Insecticide hormoligosis. J Econ Entomol 61:7–12

    PubMed  CAS  Google Scholar 

  • Maellaro E, Del Bello B, Sugherini L, Santucci A, Comporti M, Casini AF (1994) Purification and characterization of glutathione-dependent dehydroascorbate reductase from rat liver. Biochem J 301:471–476

    PubMed Central  PubMed  CAS  Google Scholar 

  • Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2008) Glutathione peroxidase family—an evolutionary overview. FEBS J 275:3959–3970

    PubMed  CAS  Google Scholar 

  • Marla SS, Lee J, Groves JT (1997) Peroxynitrite rapidly permeates phospholipid membranes. Proc Natl Acad Sci USA 94:14243–14248

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martínez del Rio C (1997) Can Passerines synthesize vitamin C? Auk 114:513–516

    Google Scholar 

  • Mattson MP, Calabrese EJ (2010) Hormesis: a revolution in biology, toxicology and medicine. Springer, New York

    Google Scholar 

  • Maynard Smith J (1958) The effects of temperatures and of egg-laying on the longevity of Drosophila subobscura. J Exp Biol 35:832–842

    Google Scholar 

  • McCord JM, Fridovich I (1968) The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243:5753–5760

    PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • McFarland CA, Talent LG, Quinn MJ Jr, Bazar MA, Wilbanks MS, Nisanian M, Gogal RM Jr, Johnson MS, Perkins EJ, Gust KA (2012) Multiple environmental stressors elicit complex interactive effects in the western fence lizard (Sceloporus occidentalis). Ecotoxicology 21:2372–2390

    PubMed  CAS  Google Scholar 

  • McGraw KJ, Cohen AA, Costantini D, Hõrak P (2010) The ecological significance of antioxidants and oxidative stress: a marriage between mechanistic and functional perspectives. Funct Ecol 24:947–949

    Google Scholar 

  • Metcalfe NB, Alonso-Alvarez C (2010) Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct Ecol 24:984–996

    Google Scholar 

  • Mitsui A, Hamuro J, Nakamura H, Kondo N, Hirabayashi Y, Ishizaki-Koizumi S, Hirakawa T, Inoue T, Yodoi J (2002) Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antiox Redox Sign 4:693–696

    CAS  Google Scholar 

  • Mitteroecker P, Bookstein F (2007) The conceptual and statistical relationship between modularity and morphological integration. Syst Biol 56:818–836

    PubMed  Google Scholar 

  • Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92

    PubMed  Google Scholar 

  • Monaghan P, Costantini D (2014) Free radicals: an evolutionary perspective. In: Laher I (ed) Systems biology of free radicals and anti-oxidants. Springer, Heidelberg

    Google Scholar 

  • Monnier VM, Sell DR, Nagaraj RH, Miyata S (1991) Mechanisms of protection against damage mediated by the Maillard reaction in aging. Gerontol 37:152–165

    CAS  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    PubMed  CAS  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: crosstalk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    PubMed  CAS  Google Scholar 

  • Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci USA 98:12920–12925

    PubMed Central  PubMed  CAS  Google Scholar 

  • Muntwyler J, Hennekens CH, Manson JE, Buring JE, Gaziano JM (2002) Vitamin supplement use in a low-risk population of US male physicians and subsequent cardiovascular mortality. Arch Intern Med 62:1472–1476

    Google Scholar 

  • Navas P, Villalba JM, Cordoba F (1994) Ascorbate function at the plasma membrane. Biochim Biophys Acta 1197:1–13

    PubMed  CAS  Google Scholar 

  • Nelson RJ (2005) An introduction to behavioral endocrinology. Sinauer Associates, Inc. Publishers, Sunderland

    Google Scholar 

  • Niki E, Komuro E, Takahashi M, Urano S, Ito E, Terao K (1988) Oxidative hemolysis of erythrocytes and its inhibition by free radical scavengers. J Biol Chem 263:19809–19814

    PubMed  CAS  Google Scholar 

  • Niki E (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radical Biol Medic 66:3–12

    CAS  Google Scholar 

  • Nishi H, Inagi R, Kato H, Tanemoto M, Kojima I, Son D, Fujita T, Nangaku M (2008) Hemoglobin is expressed by mesangial cells and reduces oxidant stress. J Am Soc Nephrol 19:1500–1508

    PubMed Central  PubMed  CAS  Google Scholar 

  • O’Connor TP, Lee A, Jarvis JU, Buffenstein R (2002) Prolonged longevity in naked mole-rats: age-related changes in metabolism, body composition and gastrointestinal function. Comp Biochem Physiol A 133:835–842

    Google Scholar 

  • Oomen CA, Soeters H, Audureau N, Vermunt L, van Hasselt FN, Manders EMM, Joels M, Lucassen PJ, Krugers H (2010) Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood. J Neurosci 30:6635–6645

    PubMed  CAS  Google Scholar 

  • Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta-Bioenerget 1777:1249–1262

    CAS  Google Scholar 

  • Pamplona R, Portero-Otín M, Sanz A, Ayala V, Ilieva EV, Barja G (2005) Protein and lipid oxidative damage and complex I content are lower in the brain of budgerigards and canaries than in mice. Relation to aging rate. Age 27:267–280

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta-Bioenerget 1757:496–508

    CAS  Google Scholar 

  • Pamplona R, Barja G (2007) Highly resistant macromolecular components and low rate of generation of endogenous damage: two key traits of longevity. Ageing Res Rev 6:189–210

    PubMed  CAS  Google Scholar 

  • Pamplona R, Costantini D (2011) Molecular and structural antioxidant defences against oxidative stress in animals. Am J Physiol 301:R843–R863

    CAS  Google Scholar 

  • Papin JA, Reed JL, Palsson BO (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci 29:641–647

    PubMed  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2001) Reactive oxygen species generated by the mitochondrial respiratory chain affect the complex III activity via cardiolipin peroxidation in beef heart submitochondrial particles. Mitochondrion 1:151–159

    PubMed  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141

    PubMed  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326

    PubMed  CAS  Google Scholar 

  • Parkhurst BR, Bradshaw AS, Forte JL, Wright GP (1981) The chronic toxicity to Daphnia magna of acridine, a representative azaarene present in synthetic fossil fuel products and wastewaters. Environ Poll 24:21–30

    CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    PubMed  CAS  Google Scholar 

  • Parsons PA (2001) The hormetic zone: an ecological and evolutionary perspective based upon habitat characteristics and fitness selection. Quart Rev Biol 76:459–467

    PubMed  CAS  Google Scholar 

  • Parsons PA (2007) The ecological stress theory of aging and hormesis: an energetic evolutionary model. Biogerontology 8:233–242

    PubMed  Google Scholar 

  • Parter M, Kashtan N, Alon U (2007) Environmental variability and modularity of bacterial metabolic networks. BMC Evol Biol 7:169

    PubMed Central  PubMed  Google Scholar 

  • Patarnello T, Battaglia B (1992) Glucosephosphate isomerase and fitness: effects of temperature on genotype dependent mortality and enzyme activity in two species of the genus Gammarus (Crustacea: Amphipoda). Evolution 46:1568–1573

    CAS  Google Scholar 

  • Pavlicev M, Cheverud JM, Wagner GP (2009) Measuring morphological integration using eigenvalue variance. Evol Biol 36:157–170

    Google Scholar 

  • Pérez-Campo R, López-Torres M, Rojas C, Cadenas S, Barja G (1993) A comparative study of free radicals in vertebrates—I. Antioxidants enzymes. Comp Biochem Physiol B 105:749–755

    PubMed  Google Scholar 

  • Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290

    PubMed  CAS  Google Scholar 

  • Portero-Otin M, Bellmunt MJ, Ruiz MC, Barja G, Pamplona R (2001) Correlation of fatty acid unsaturation of the major liver mitochondrial phospholipid classes in mammals to their maximum life span potential. Lipids 36:491–498

    PubMed  CAS  Google Scholar 

  • Portero-Otín M, Requena JR, Bellmunt MJ, Ayala V, Pamplona R (2004) Protein nonenzymatic modifications and proteasome activity in skeletal muscle from the short-lived rat and long-lived pigeon. Exp Gerontol 39:1527–1535

    PubMed  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    PubMed  CAS  Google Scholar 

  • Raymond J, Segrè D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–1767

    PubMed  CAS  Google Scholar 

  • Rees JF, de Wergifosse B, Noiset O, Dubuisson M, Janssens B, Thompson EM (1998) The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools. J Exp Biol 201:1211–1221

    PubMed  CAS  Google Scholar 

  • Reischl E, Dafre AL, Franco JL, Filho DW (2007) Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comp Biochem Physiol C 146:22–53

    Google Scholar 

  • Reznick DA, Bryga H, Endler JA (1990) Experimentally induced life-history evolution in a natural population. Nature 346:357–359

    Google Scholar 

  • Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468

    Google Scholar 

  • Rietjens IMCM, Boersma MG, de Haan L, Spenkelink B, Awad HM, Cnubben NHP, van Zanden JJ, van der Woude H, Alink GM, Koeman JH (2002) The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ Toxicol Pharmacol 11:321–333

    PubMed  CAS  Google Scholar 

  • Rodriguez M, Basten Snoek L, Riksen JAG, Bevers RP, Kammenga JE (2012) Genetic variation for stress-response hormesis in C. elegans lifespan. Exp Gerontol 47:581–587

    PubMed  CAS  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapman & Hall, New York

    Google Scholar 

  • Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255

    PubMed  Google Scholar 

  • Rose RC, Bode AM (1993) Biology of free radical scavengers: an evaluation of ascorbate. FASEB J 7:1135–1142

    PubMed  CAS  Google Scholar 

  • Ruiz MC, Ayala V, Portero-Otin M, Requena JR, Barja G, Pamplona R (2005) Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals. Mech Ageing Dev 126:1106–1114

    PubMed  CAS  Google Scholar 

  • Samuels DC (2005) Life span is related to the free energy of mitochondrial DNA. Mech Ageing Dev 126:1123–1129

    PubMed  CAS  Google Scholar 

  • Schlosser G, Wagner GP (2004) Modularity in development and evolution. The University of Chicago Press, Chicago

    Google Scholar 

  • Schopf JW, Klein C (1992) The proterozoic biosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Schulz H (1888) Uber hefegifte. Pfugers Archiv fur die Gesamte Physiologie des Menschem und der Tiere 42:517−541

    Google Scholar 

  • Schwenk K (2002) Constraint. In: Pagel M (ed) Encyclopedia of evolution. Oxford University Press, Oxford, pp 196–199

    Google Scholar 

  • Selman C, McLaren JS, Meyer C, Duncan JS, Redman P, Collins AR, Duthie GG, Speakman JR (2006) Life-long vitamin C supplementation in combination with cold exposure does not affect oxidative damage or lifespan in mice, but decreases expression of antioxidant protection genes. Mech Ageing Devel 127:897–904

    CAS  Google Scholar 

  • Selman C, Blount D, Nussey DH, Speakman JR (2012) Oxidative damage, ageing and life history evolution: where now? Trends Ecol Evol 27:570–577

    PubMed  Google Scholar 

  • Sepp T, Sild E, Blount JD, Männiste M, Karu U, Hõrak P (2012) Individual consistency and covariation of measures of oxidative status in greenfinches. Physiol Biochem Zool 85:299–307

    PubMed  Google Scholar 

  • Sessions AL, Doughty DM, Welander PV, Summons RE, Newman DK (2009) The continuing puzzle of the great oxidation event. Curr Biol 19:567–574

    Google Scholar 

  • Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. London Academic Press, London, pp 1–8

    Google Scholar 

  • Sies H (1991) Oxidative stress: oxidants and antioxidants. Academic Press, London

    Google Scholar 

  • Simons MJP, Cohen AA, Verhulst S (2012) What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds–a meta-analysis. PLoS ONE 7:e43088

    PubMed Central  PubMed  CAS  Google Scholar 

  • Singh AH, Wolf DM, Wang P, Arkin AP (2008) Modularity of stress response evolution. Proc Natl Acad Sci USA 105:7500–7505

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radical Biol Medic 52:539–555

    CAS  Google Scholar 

  • Soltow QA, Jones DP, Promislow DEL (2010) A network perspective on metabolism and aging. Integr Comp Biol 50:844–854

    PubMed Central  PubMed  Google Scholar 

  • Sørensen JG, Kristensen TN, Kristensen KV, Loeschcke V (2007) Sex specific effects of heat induced in Hsf-deficient Drosophila melanogaster. Exp Gerontol 42:1123–1129

    PubMed  Google Scholar 

  • Sørensen JG, Sarup P, Kristensen TN, Loeschcke V (2008) Temperature-induced hormesis in Drosophila. In: Le Bourg E, Rattan SIS (eds) Mild stress and healthy aging. Springer, Netherlands, pp 65–79

    Google Scholar 

  • Sørensen J (2010) Application of heat shock protein expression for detecting natural adaptation and exposure to stress in natural populations. Curr Zool 56:703–713

    Google Scholar 

  • Southam CM, Ehrlich J (1943) Effects of extracts of western red cedar heartwood on certain wood-decaying fungi in culture. Phytopathology 33:517–524

    Google Scholar 

  • Southworth LK, Owen AB, Kim SK (2009) Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet 5:e1000776

    PubMed Central  PubMed  Google Scholar 

  • Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Sign 5:577–582

    CAS  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the respiratory chain. J Biol Chem 277:44490–44784

    Google Scholar 

  • Sun Y, MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci 62:2460–2476

    PubMed  CAS  Google Scholar 

  • Surai P (2002) Natural antioxidants in avian nutrition and reproduction. Nottingham University Press, Nottingham

    Google Scholar 

  • Tang X-Q, Feng J-Q, Chen J, Chen P-X, Zhi J-L, Cui Y, Guo R-X, Yum H-M (2005) Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC 12 cells: mechanisms via MMP, ROS, and Bcl-2. Brain Res 1057:57–64

    PubMed  CAS  Google Scholar 

  • Tappel AL (1955) Unsaturated lipide oxidation catalyzed by hematin compounds. J Biol Chem 217:721–733

    PubMed  CAS  Google Scholar 

  • Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, Murphy MP (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278:19603–19610

    PubMed  CAS  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol 279:L1005–L1028

    CAS  Google Scholar 

  • The Age-Related Eye Disease Research Group (2001) A randomized, placebocontrolled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related cataract and vision loss. Arch Ophthalmol 119:1439–1452

    Google Scholar 

  • Tun K, Dhar PK, Palumbo MC, Giuliani A (2006) Metabolic pathways variability and sequence/networks comparisons. BMC Inform 7:24

    Google Scholar 

  • Turpaev KT (2002) Reactive oxygen species and regulation of gene expression. Biochemistry 67:281–292

    Google Scholar 

  • Wang X, Quinn PJ (1999) Vitamin E and its function in membranes. Prog Lipid Res 38:309–336

    PubMed  CAS  Google Scholar 

  • Webster Marketon JI, Glaser R (2008) Stress hormones and immune function. Cell Immunol 252:16–26

    PubMed  CAS  Google Scholar 

  • Wells WW, Xu DP (1994) Dehydroascorbate reduction. J Bioenerg Biomembr 26:369–377

    PubMed  CAS  Google Scholar 

  • Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone—behavior interactions: the emergency life history stage. Am Zool 38:191–206

    CAS  Google Scholar 

  • Wingfield JC, Hunt KE (2002) Arctic spring: hormone-behavior interactions in a severe environment. Comp Biochem Physiol B 132:275–286

    PubMed  Google Scholar 

  • Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han JDH (2007) A modular network model of aging. Mol Syst Biol 3:147

    PubMed Central  PubMed  Google Scholar 

  • Zhang J, Liu S-S, Yu Z-Y, Liu H-L, Zhang J (2013) The time-dependent hormetic effects of 1-alkyl-3-methylimidazolium chloride and their mixtures on Vibrio qinghaiensis sp.-Q67. J Hazard Mater 258–259:70–76

    PubMed  Google Scholar 

  • Zalizniak L, Nugegoda N (2006) Roundup bioactive modifies cadmium toxicity to Daphnia carinata. Bull Envir Contam Toxic 77:748–754

    CAS  Google Scholar 

  • Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Costantini .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costantini, D. (2014). Historical and Contemporary Issues of Oxidative Stress, Hormesis and Life-History Evolution. In: Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54663-1_1

Download citation

Publish with us

Policies and ethics