Skip to main content

CO2 Capture via Cyclic Calcination and Carbonation Reactions

  • Chapter
  • First Online:
Porous Materials for Carbon Dioxide Capture

Abstract

The reversible carbonation and calcination reactions of, respectively, CaO and CaCO3 have very promising CO2 capture characteristics with regard to CO2 capture costs, theoretical CO2 uptake per gram of sorbent and material availability. However, CaO derived from naturally occurring Ca-based materials, predominantly limestone, shows a rapid decrease in its CO2 capture capacity with number of carbonation/calcination cycles. The loss of the CO2 capture capacity of unsupported CaO has been attributed to dramatic changes in the material’s morphology due to sintering and pore blockage. However, since the molar volume of CaCO3 is more than twice as large as that of CaO, accessible pore volume in pores of diameter <100 nm is critical to yield high CO2 uptakes. In this chapter, we review the fundamentals of the carbonation and calcination reaction, with a particular focus on the morphology of CaO and changes thereof. Furthermore, a detailed overview over kinetic models to describe the carbonation and calcination reaction is provided, followed by a critical review of the effect of typical flue gas impurities such as H2O and SO2 on the CO2 capture characteristics of CaO. We conclude the chapter with a presentation of recent advances in the development of synthetic CaO-based CO2 sorbents which substantially exceed the cyclic CO2 capture capacity of limestone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuinier MJ, Hamers HP, van Sint Annaland M (2011) Techno-economic evaluation of cryogenic CO2 capture: a comparison with absorption and membrane technology. Int J Greenhouse Gas Control 5:1559–1565

    Google Scholar 

  2. Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40:321–348

    Article  Google Scholar 

  3. Müller CR, Pacciani R, Bohn CD, Scott SA, Dennis JS (2009) Investigation of the enhanced water gas shift reaction using natural and synthetic sorbents for the capture of CO2. Ind Eng Chem Res 48:10284–10291

    Article  Google Scholar 

  4. Duan Y, Sorescu DC (2010) CO2 capture properties of alkaline earth metal oxides and hydroxides: a combined density functional theory and lattice phonon dynamics study. J Chem Phys 133:074508–074511

    Article  Google Scholar 

  5. Kierzkowska AM, Pacciani R, Müller CR (2013) CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials. ChemSusChem 6:1130–1148

    Article  Google Scholar 

  6. Barin I, Platzki G (1995) Thermochemical data of pure substances. VCH Verlagsgesellschaft, Weinheim, Germany

    Google Scholar 

  7. Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K (1999) A twin fluid-bed reactor for removal of CO2 from combustion processes. Chem Eng Res Des 77:62–68

    Article  Google Scholar 

  8. Maciejewski M, Reller A (1987) How unreliable are kinetic data of reversible solid-state decomposition processes? Thermochim Acta 110:145–152

    Article  Google Scholar 

  9. Bhatia SK, Perlmutter DD (1983) Effect of the product layer on the kinetics of the CO2-lime reaction. AlChE J 29:79–86

    Article  Google Scholar 

  10. Dedman AJ, Owen AJ (1962) Calcium cyanamide synthesis. Part 4—the reaction CaO + CO2 = CaCO3. Trans Faraday Soc 58:2027–2035

    Article  Google Scholar 

  11. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854

    Article  Google Scholar 

  12. Barker R (1973) The reversibility of the reaction CaCO3 \( \rightleftarrows \) CaO + CO2. J Appl Chem Biotechnol 23:733–742

    Google Scholar 

  13. Grasa GS, Abanades JC (2006) CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Ind Eng Chem Res 45:8846–8851

    Article  Google Scholar 

  14. Dennis JS, Pacciani R (2009) The rate and extent of uptake of CO2 by a synthetic, CaO-containing sorbent. Chem Eng Sci 64:2147–2157

    Article  Google Scholar 

  15. Mess D, Sarofim AF, Longwell JP (1999) Product layer diffusion during the reaction of calcium oxide with carbon dioxide. Energy Fuels 13:999–1005

    Article  Google Scholar 

  16. Alvarez D, Abanades JC (2005) Determination of the critical product layer thickness in the reaction of CaO with CO2. Ind Eng Chem Res 44:5608–5615

    Article  Google Scholar 

  17. Alvarez D, Abanades JC (2005) Pore-size and shape effects on the recarbonation performance of calcium oxide submitted to repeated calcination/recarbonation cycles. Energy Fuels 19:270–278

    Article  Google Scholar 

  18. Abanades JC, Alvarez D (2003) Conversion limits in the reaction of CO2 with lime. Energy Fuels 17:308–315

    Article  Google Scholar 

  19. Lysikov AI, Salanov AN, Okunev AG (2007) Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles. Ind Eng Chem Res 46:4633–4638

    Article  Google Scholar 

  20. Wang J, Anthony EJ (2005) On the decay behavior of the CO2 absorption capacity of CaO-based sorbents. Ind Eng Chem Res 44:627–629

    Article  Google Scholar 

  21. Pacciani R, Torres J, Solsona P, Coe C, Quinn R, Hufton J, Golden T, Vega LF (2011) Influence of the concentration of CO2 and SO2 on the absorption of CO2 by a lithium orthosilicate-based absorbent. Environ Sci Technol 45:7083–7088

    Article  Google Scholar 

  22. Dennis JS, Hayhurst AN (1990) Mechanism of the sulphation of calcined limestone particles in combustion gases. Chem Eng Sci 45:1175–1187

    Article  Google Scholar 

  23. Anthony EJ, Granatstein DL (2001) Sulfation phenomena in fluidized bed combustion systems. Prog Energy Combust Sci 27:215–236

    Article  Google Scholar 

  24. Anthony EJ, Bulewicz EM, Jia L (2007) Reactivation of limestone sorbents in FBC for SO2 capture. Prog Energy Combust Sci 33:171–210

    Article  Google Scholar 

  25. Hartman M, Pata J, Coughlin RW (1978) Influence of porosity of calcium carbonates on their reactivity with sulfur dioxide. Ind Eng Chem Process Des Dev 17:411–419

    Article  Google Scholar 

  26. Yrjas P, Iisa K, Hupa M (1995) Comparison of SO2 capture capacities of limestones and dolomites under pressure. Fuel 74:395–400

    Article  Google Scholar 

  27. Dennis JS, Hayhurst AN (1989) Alternative sorbents for flue-gas desulfurization, especially in fluidized-bed combustors. J Energy Inst 62:202–207

    Google Scholar 

  28. Dennis JS, Hayhurst AN (1986) A simplified analytical model for the rate of reaction of SO2 with limestone particles. Chem Eng Sci 41:25–36

    Article  Google Scholar 

  29. Laursen K, Duo W, Grace JR, Lim J (2000) Sulfation and reactivation characteristics of nine limestones. Fuel 79:153–163

    Article  Google Scholar 

  30. Wu Y, Sun P, Anthony EJ, Jia L, Grace J (2006) Reinvestigation of hydration/reactivation characteristics of two long-term sulphated limestones which previously showed uniformly sulphating behaviour. Fuel 85:2213–2219

    Article  Google Scholar 

  31. Manovic V, Anthony EJ (2007) SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles. Environ Sci Technol 41:4435–4440

    Article  Google Scholar 

  32. Montagnaro F, Nobili M, Salatino P, Telesca A, Valenti GL (2008) Hydration products of FBC wastes as SO2 sorbents: comparison between ettringite and calcium hydroxide. Fuel Process Technol 89:47–54

    Article  Google Scholar 

  33. Manovic V, Anthony EJ, Lu DY (2008) Sulphation and carbonation properties of hydrated sorbents from a fluidized bed CO2 looping cycle reactor. Fuel 87:2923–2931

    Article  Google Scholar 

  34. Jozewicz W, Kirchgessner DA (1989) Activation and reactivity of novel calcium-based sorbents for dry SO2 control in boilers. Powder Technol 58:221–229

    Article  Google Scholar 

  35. Wang C, Shen X, Xu Y (2002) Investigation on sulfation of modified Ca-based sorbent. Fuel Process Technol 79:121–133

    Article  Google Scholar 

  36. Wei S-H, Mahuli SK, Agnihotri R, Fan L-S (1997) High surface area calcium carbonate: pore structural properties and sulfation characteristics. Ind Eng Chem Res 36:2141–2148

    Article  Google Scholar 

  37. Wolff EHP, Gerritsen AW, van Bleek CMD (1993) Multiple reactor testing of a synthetic sorbent for regenerative sulfur capture in fluidized bed combustion of coal. Can J Chem Eng 71:83–93

    Article  Google Scholar 

  38. Gavaskar VS, Abbasian J (2006) Dry regenerable metal oxide sorbents for SO2 removal from flue gases. 1. Development and evaluation of copper oxide sorbents. Ind Eng Chem Res 45:5859–5869

    Article  Google Scholar 

  39. Chen Q, Yoshida K, Yamamoto H, Uchida M, Sadakata M (2007) Investigation on the application of C12A7 in flue gas desulfurization at low–moderate temperature. Energy Fuels 21:3264–3269

    Article  Google Scholar 

  40. Pacciani R, Muller CR, Davidson JF, Dennis JS, Hayhurst AN (2009) Performance of a novel synthetic Ca-based solid sorbent suitable for desulfurizing flue gases in a fluidized bed. Ind Eng Chem Res 48:7016–7024

    Article  Google Scholar 

  41. Borgwardt RH (1989) Calcium oxide sintering in atmospheres containing water and carbon dioxide. Ind Eng Chem Res 28:493–500

    Article  Google Scholar 

  42. Sun P, Grace JR, Lim CJ, Anthony EJ (2008) Investigation of attempts to improve cyclic CO2 capture by sorbent hydration and modification. Ind Eng Chem Res 47:2024–2032

    Article  Google Scholar 

  43. Manovic V, Anthony EJ (2010) Carbonation of CaO-based sorbents enhanced by steam addition. Ind Eng Chem Res 49:9105–9110

    Article  Google Scholar 

  44. Donat F, Florin NH, Anthony EJ, Fennell PS (2012) Influence of high-temperature steam on the reactivity of CaO sorbent for CO2 capture. Environ Sci Technol 46:1262–1269

    Article  Google Scholar 

  45. Arias B, Grasa G, Abanades JC, Manovic V, Anthony EJ (2012) The effect of steam on the fast carbonation reaction rates of CaO. Ind Eng Chem Res 51:2478–2482

    Article  Google Scholar 

  46. Manovic V, Anthony EJ (2007) Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Environ Sci Technol 41:1420–1425

    Article  Google Scholar 

  47. Manovic V, Wu Y, He I, Anthony EJ (2012) Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles. Environ Sci Technol 46:12720–12725

    Article  Google Scholar 

  48. Borgwardt R (1985) Calcination kinetics and surface area of dispersed limestone particles. AIChE J 31:103–111

    Article  Google Scholar 

  49. Beruto D, Searcy A (1976) Calcium oxides of high reactivity. Nature 263:221–222

    Article  Google Scholar 

  50. Dennis JS, Hayhurst AN (1987) The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds. Chem Eng Sci 42:2361–2372

    Article  Google Scholar 

  51. Silcox G, Kramlich J, Pershing D (1989) A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles. Ind Eng Chem Res 28:155–160

    Article  Google Scholar 

  52. Borgwardt RH (1989) Sintering of nascent calcium oxide. Chem Eng Sci 44:53–60

    Article  Google Scholar 

  53. Satterfield CN, Feakes F (1959) Kinetics of the thermal decomposition of calcium carbonate. AIChE J 5:115–122

    Article  Google Scholar 

  54. Khinast J, Krammer G, Brunner C, Staudinger G (1996) Decomposition of limestone: the influence of CO2 and particle size on the reaction rate. Chem Eng Sci 51:623–634

    Article  Google Scholar 

  55. Hills AWD (1968) The mechanism of the thermal decomposition of calcium carbonate. Chem Eng Sci 23:297–320

    Article  Google Scholar 

  56. Garcia-Labiano F, Abad A, de Diego L, Gayan P (2002) Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chem Eng Sci 57:2381–2393

    Article  Google Scholar 

  57. Bhatia SK, Perlmutter DD (1980) A random pore model for fluid–solid reactions: I. Isothermal, kinetic control. AIChE J 26:379–386

    Article  Google Scholar 

  58. Bhatia SK, Perlmutter DD (1981) A random pore model for fluid–solid reactions: II. Diffusion and transport effects. AIChE J 27:247–254

    Article  Google Scholar 

  59. Fuller E, Schettler P, Giddings J (1966) New method for prediction of binary gas-phase diffusion coefficients. Ind Eng Chem 58:19–27

    Article  Google Scholar 

  60. Nitsch W (1962) Über die Druckabhängigkeit der CaCO3-bildung aus dem Oxyd. Z Elektrochem 66:8–9

    Google Scholar 

  61. Bhatia SK, Perlmutter DD (1983) Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE J 29:79–86

    Article  Google Scholar 

  62. Kyaw K, Matsuda H, Hasatani M (1996) Applicability of carbonation/decarbonation reactions to high-temperature thermal energy and temperature upgrading. J Chem Eng Jpn 29:119–125

    Article  Google Scholar 

  63. Sun P, Grace JR, Lim CJ, Anthony EJ (2008) Determination of intrinsic rate constants of the CaO–CO2 reaction. Chem Eng Sci 63:47–56

    Google Scholar 

  64. Oakeson WG, Cutler IB (1979) Effect of CO2 pressure on the reaction with CaO. J Am Ceram Soc 62:556–558

    Article  Google Scholar 

  65. Sun P, Grace JR, Lim CJ, Anthony EJ (2008) A discrete-pore-size-distribution-based gas–solid model and its application to the reaction. Chem Eng Sci 63:57–70

    Article  Google Scholar 

  66. Stendardo S, Foscolo PU (2009) Carbon dioxide capture with dolomite: a model for gas–solid reaction within the grains of a particulate sorbent. Chem Eng Sci 64:2343–2352

    Article  Google Scholar 

  67. Khoshandam B, Kumar R, Allahgholi L (2010) Mathematical modeling of CO2 removal using carbonation with CaO: the grain model. Korean J Chem Eng 27:766–776

    Article  Google Scholar 

  68. Li Z, Sun H, Cai N (2012) Rate equation theory for the carbonation reaction of CaO with CO2. Energy Fuels 26:4607–4616

    Article  Google Scholar 

  69. Li Z-S, Fang F, Tang X-Y, Cai N-S (2012) Effect of temperature on the carbonation reaction of CaO with CO2. Energy Fuels 26:2473–2482

    Article  Google Scholar 

  70. Symonds RT, Lu DY, Macchi A, Hughes RW, Anthony EJ (2009) CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: modelling and bench-scale testing. Chem Eng Sci 64:3536–3543

    Article  Google Scholar 

  71. Barker R (1974) The reactivity of calcium oxide towards carbon dioxide and its use for energy storage. J Appl Chem Biotechnol 24:221–227

    Article  Google Scholar 

  72. Florin NH, Harris AT (2009) Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles. Chem Eng Sci 64:187–191

    Article  Google Scholar 

  73. Lu H, Reddy EP, Smirniotis PG (2006) Calcium oxide based sorbents for capture of carbon dioxide at high temperatures. J Ind Eng Chem 45:3944–3949

    Article  Google Scholar 

  74. Broda M, Kierzkowska AM, Müller CR (2012) Application of the sol–gel technique to develop synthetic calcium-based sorbents with excellent carbon dioxide capture characteristics. ChemSusChem 5:411–418

    Article  Google Scholar 

  75. Grasa G, González B, Alonso M, Abanades JC (2007) Comparison of CaO-based synthetic CO2 sorbents under realistic calcination conditions. Energy Fuels 21:3560–3562

    Article  Google Scholar 

  76. Florin NH, Blamey J, Fennell PS (2010) Synthetic CaO-based sorbent for CO2 capture from large-point sources. Energy Fuels 24:4598–4604

    Article  Google Scholar 

  77. Li ZS, Cai NS, Huang YY (2006) Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new Ca-based CO2 sorbent. Ind Eng Chem Res 45:1911–1917

    Article  MathSciNet  Google Scholar 

  78. Mercury JMR, Aza AHD, Turrillas X, Pena PJ (2004) The synthesis mechanism of Ca3Al2O6 from soft mechanochemically activated precursors studied by time-resolved neutron diffraction up to 1000 °C. Solid State Chem 177:866–874

    Article  Google Scholar 

  79. Pacciani R, Müller CR, Davidson JF, Dennis JS, Hayhurst AN (2008) Synthetic Ca-based solid sorbents suitable for capturing CO2 in a fluidized bed. Can J Chem Eng 86:356–366

    Article  Google Scholar 

  80. Filitz R, Kierzkowska AM, Broda M, Müller CR (2012) Highly efficient CO2 sorbents: development of synthetic, calcium-rich dolomites. Environ Sci Technol 46:559–565

    Article  Google Scholar 

  81. Li Z, Cai N, Huang Y, Han H (2005) Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent. Energy Fuels 19:1447–1452

    Article  Google Scholar 

  82. Liu W, Feng B, Wu Y, Wang G, Barry J, Diniz da Costa JC (2010) Synthesis of sintering-resistant sorbents for CO2 capture. Environ Sci Technol 44:3093–3097

    Google Scholar 

  83. Carreon MA, Guliants VV (2005) Ordered meso- and macroporous binary and mixed metal oxides. Eur J Inorg Chem 1:27–43

    Google Scholar 

  84. Qin C, Liu W, An H, Yin J, Feng B (2012) Fabrication of CaO-based sorbents for CO2 capture by a mixing method. Environ Sci Technol 46:1932–1939

    Article  Google Scholar 

  85. Huang C-H, Chang K-P, Yu C-T, Chiang P-C, Wang C-F (2010) Development of high-temperature CO2 sorbents made of CaO-based mesoporous silica. Chem Eng J 161:129–135

    Article  Google Scholar 

  86. Vinu A, Srinivasu P, Miyahara M, Ariga K (2006) Preparation and catalytic performances of ultralarge-pore TiSBA-15 mesoporous molecular sieves with very high Ti content. J Phys Chem B 110:801–806

    Article  Google Scholar 

  87. Broda M, Müller CR (2012) Synthesis of highly efficient, Ca-based, Al2O3 stabilized, carbon gel templated CO2 sorbents. Adv Mater 24:3059–3064

    Article  Google Scholar 

  88. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227

    Article  Google Scholar 

  89. Liu W, Low NWL, Feng B, Wang G, Diniz da Costa C (2010) Calcium precursors for the production of CaO sorbents for multicycle CO2 capture. Environ Sci Technol 44:841–847

    Google Scholar 

  90. Gupta H, Fan L-S (2002) Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res 41:4035–4042

    Article  Google Scholar 

  91. Kierzkowska AM, Poulikakos LV, Broda M, Müller CR (2013) Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique. Int J Greenhouse Gas Control 15:48–54

    Article  Google Scholar 

  92. Li L, King DL, Nie Z, Li XS, Howard C (2010) MgAI2O4 Spinel-stabilized calcium oxide absorbents with improved durability for high-temperature CO2 capture. Energy Fuels 24:3698–3703

    Article  Google Scholar 

  93. Martavaltzi CS, Lemonidou AA (2008) Development of new CaO based sorbent materials for CO2 removal at high temperature. Microporous Mesoporous Mater 110:119–127

    Article  Google Scholar 

  94. Manovic V, Anthony EJ (2009) CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture. Environ Sci Technol 43:7117–7122

    Article  Google Scholar 

  95. Lu H, Khan A, Pratsinis SE, Smirniotis PG (2009) Flame-made durable doped-CaO nanosorbents for CO2 capture. Energy Fuels 23:1093–1100

    Article  Google Scholar 

  96. Hong Lu, Smirniotis PG, Ernst FO, Pratsinis SE (2009) Nanostructured Ca-based sorbents with high CO2 uptake efficiency. Chem Eng Sci 64:1936–1943

    Article  Google Scholar 

  97. Broda M, Kierzkowska AM, Müller CR (2012) The influence of the calcination and carbonation conditions on the CO2 uptake of synthetic Ca-based CO2 sorbents. Environ Sci Technol 46:10849–10856

    Article  Google Scholar 

  98. Luo C, Zheng Y, Ding N, Wu QL, Zheng CG (2011) SGCS-made ultrafine CaO/Al2O3 sorbent for cyclic CO2 capture. Chin Chem Lett 22:615–618

    Article  Google Scholar 

  99. Santos ET, Alfonsín C, Chambel AJS, Fernandes A, Soares Dias AP, Pinheiro CIC, Ribeiro MF (2012) Investigation of a stable synthetic sol–gel CaO sorbent for CO2 capture. Fuel 94:624–628

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Swiss National Science Foundation (SNF) for partial financial support (Project: 200021_135457/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph R. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Broda, M., Pacciani, R., Müller, C.R. (2014). CO2 Capture via Cyclic Calcination and Carbonation Reactions. In: Lu, AH., Dai, S. (eds) Porous Materials for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54646-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54646-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54645-7

  • Online ISBN: 978-3-642-54646-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics