Skip to main content

Gas Chromatography-Mass Spectrometry

  • Chapter
  • First Online:
Practical Gas Chromatography

Abstract

This chapter provides a basic introduction to the technical and practical basics of coupling gas chromatography with mass spectrometry (GC-MS), and it will touch on major applications where GC-MS techniques are essential parts of analytical protocols. GC-MS instrumentation is discussed, with a focus on MS in terms of the strengths and weaknesses of particular techniques. Appropriate examples illustrating the preferred application fields of GC-MS(-MS) complement the description of different ionization techniques, mass analyzing modes, data processing, and interpretation of mass spectra. Practical tips may facilitate access to GC-MS for routine analysis, and the latest trends in instrumental development are touched on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASA:

Accelerated solvent extraction

AT%:

Atom percentage

BSTFA:

Bis(trimethylsilyl)trifluoroacetamide

CI:

Chemical ionization

CSIA:

Compound-specific isotope analysis

ECD:

Electron capture detector

EI:

Electron ionization

F:

Fragment ion

FID:

Flame ionization detector

FT-ICR:

Fourier transform-ion cyclotron resonance

GC-MS:

Gas chromatography-mass spectrometry

GC×GC:

Comprehensive gas chromatography

HIS:

Hyperthermal surface ionization

HPLC:

High-performance liquid chromatography

ICP-MS:

Inductive coupled plasma mass spectrometer

ID:

Internal diameter

IP:

Ionization potential

IR-MS:

Isotope ratio-mass spectrometry

ITD:

Ion trap detector

LOD:

Limit of detection

LOQ:

Limit of quantification

M+• :

Molecular ion

MRM:

Multiple reaction monitoring

MS-MS:

Tandem mass spectrometry

N:

Neutral

NCI:

Negative chemical ionization

NMR:

Nuclear magnetic resonance

PAH:

Polyaromatic hydrocarbons

PCB:

Polyhalogenated biphenyl

PCDD/F:

Polyhalogenated dibenzodioxins and furanes

PCI:

Positive chemical ionization

PTR:

Protein transfer reaction

Q-IT:

Quadrupole-ion trap

QqQ:

Triple-stage quadrupole

RF:

Radio frequency

SIM:

Selected ion monitoring

SMB:

Supersonic molecular beam

SPE:

Solid-phase extraction

TIC:

Total ion current

TMAH:

Tetramethylannilinium hydroxide

TMS:

Trimethylsilyl

ToF-MS:

Time-of-flight mass spectromet(ry)er

WADA:

World Anti-Doping Agency

u:

Mass unit

References

  1. Gross JH (2011) Mass spectrometry – a textbook, 2nd edn. Springer, Berlin

    Google Scholar 

  2. Hübschmann HJ (2008) Handbook of GC/MS: fundamentals and applications, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  3. Niessen WMA (ed) (2001) Current practice of gas chromatography-mass spectrometry. Marcel Dekker, New York

    Google Scholar 

  4. Müllers C, Luhs W, Schaffert E, Thies W (1997) High-temperature gas chromatography for the detection of trierucoylglycerol in the seed oil of transgenic rapeseed (Brassica napus L.). Fett/Lipid 99:352–356

    Google Scholar 

  5. Ruiz Samblas C, Gonzalez Casado A, Cuadros Rodriguez L, Rodríguez García FP (2010) Application of selected ion monitoring to the analysis of triacylglycerols in olive oil by high temperature-gas chromatography/mass spectrometry. Talanta 82:255–260

    CAS  Google Scholar 

  6. Kuipers J, Buchwaldt S (2009) High temperature GC analysis of Fischer-Tropsch reaction products, Varian Application Note SI-2105 (now Agilent Technologies)

    Google Scholar 

  7. Michael-Jubeli R, Bleton J, Baillet-Guffroy A (2011) High-temperature gas chromatography-mass spectrometry for skin surface lipids profiling. J Lipid Res 52:143–151

    CAS  Google Scholar 

  8. Gudzinowicz B, Gudzinowicz M, Martin HF (1977) Fundamentals of intergrated GC-MS Part III. The integrated GC-MS analytical system, vol 7, Chromatographic science series. Marcel Dekker, New York

    Google Scholar 

  9. Hinshaw JV (2011) Hydrogen carrier gas and vacuum compensation. LCGC Eur 24:26–31

    CAS  Google Scholar 

  10. Levin RD, Lias SG (1982) Ionization potential and appearance potential measurements, 1971-1981. National Standard Reference Data System U.S. Department of Commerce, M. Baldrige, National Bureau of Standards, Washington, NSRDS-NBS: 71

    Google Scholar 

  11. McLafferty FW, Tureček F (1993) Interpretation of mass spectra, 4th edn. University Science Books, Sausalito, CA

    Google Scholar 

  12. Panda SK, Andersson JT, Schrader W (2007) Mass-spectrometric analysis of complex volatile and nonvolatile crude oil components: a challenge. Anal Bioanal Chem 389:1329–1339

    CAS  Google Scholar 

  13. Hüttig J, Oehme M (2006) Congener group patterns of chloroparaffins in marine sediments obtained by chloride attachment chemical ionization and electron capture negative ionization. Chemosphere 64:1573–1581

    Google Scholar 

  14. Talrose VL, Ljubimova AK (1998) Secondary processes in the ion source of a mass spectrometer. J Mass Spectrom 33:502–504 (reprint from 1952)

    Google Scholar 

  15. Harrison AG (1992) Chemical ionization mass spectrometry, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  16. Zhu J, Feng YL, Aikawa B (2004) A positive chemical ionization GC/MS method for the determination of airborn ethylene glycol and propylene glycols in non-occupational environment. J Environ Monit 6:881–887

    CAS  Google Scholar 

  17. Collin OL, Zimmermann CM, Jackson GP (2009) Fast gas chromatography negative chemical ionization tandem mass spectrometry of explosive compounds using dynamic collision-induced dissociation. Int J Mass Spectrom 279:93–99

    CAS  Google Scholar 

  18. Hunter EP, Lias SG (1998) Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 27:413–656. doi:10.1063/1.556018

    CAS  Google Scholar 

  19. Murata T (1977) Analysis of triglycerides by gas chromatography/chemical ionization mass spectrometry. Anal Chem 49:2209–2213

    CAS  Google Scholar 

  20. Kameyama S, Tanimoto H, Inomata S, Tsunogai U, Ooki A, Takeda S, Obata H, Tsuda A, Uematsu M (2010) High-resolution measurement of multiple volatile organic compounds dissolved in seawater using equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS). Mar Chem 122:59–73

    CAS  Google Scholar 

  21. Müller MD, Schmid PP (1984) GC-MS analysis of chlorinated paraffins with negative ion chemical ionization. J High Resolut Chromatogr Chromatogr Commun 7:33–37

    Google Scholar 

  22. Lewis E, Jamieson WD (1983) Use of negative chemical ionization GC-MS to study polychlorinated biphenyls in marine sediments. Int J Mass Spectrom 48:303–306

    CAS  Google Scholar 

  23. Gurprasad NP, Haidar NA, Manners TG (2002) Applications of negative chemical ionization mass spectrometry technique in environmental analysis. Commun Soil Sci Plant Anal 33:3449–3456

    CAS  Google Scholar 

  24. Huskova R, Matisova E, Hrouzkova S, Svorc L (2009) Analysis of pesticide residues by fast gas chromatography in combination with negative chemical ionization mass spectrometry. J Chromatogr A 1216:6326–6334

    CAS  Google Scholar 

  25. Tagami T, Kajimura K, Yamasaki K, Sawabe Y, Monura C, Taguchi S, Obana H (2010) Simple and rapid determination of organochlorine pesticide residues in Kampo products by gas chromatography/mass spectrometry with negative chemical ionization. J Health Sci 56:112–115

    CAS  Google Scholar 

  26. Fängström B, Athanassiadis I, Odsjö T, Norén K, Bergman Å (2008) Temporal trends of polybrominated diphenyl ethers and hexabromocyclododecane in milk from Stockholm mothers, 1980–2004. Mol Nutr Food Res 52:187–193

    Google Scholar 

  27. Worton DR, Mills GP, Oram DE, Sturges WT (2008) Gas chromatography negative ion chemical ionization mass spectrometry: application to the detection of alkyl nitrates and halocarbons in the atmosphere. J Chromatogr A 1201:112–119

    CAS  Google Scholar 

  28. Guo Q, Deng M, Yu BY, Tan L (2010) Analysis of the residues of 20 organochlorine pesticides in Herba epimedii, a Chinese herbal medicine, by solid-phase extraction with gas chromatography/negative chemical ionization-mass spectrometry. J AOAC Int 93:295–305

    CAS  Google Scholar 

  29. Medina CM, Pitarch E, Portoles T, Lopez FJ, Hernandez F (2009) GC-MS/MS multi-residue method for the determination of organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in human breast tissues. J Sep Sci 32:2090–2102

    CAS  Google Scholar 

  30. Nacher-Mestre J, Serrano R, Hernandez F, Benedito-Palos L, Perez-Sanchez J (2010) Gas chromatography-mass spectrometric determination of polybrominated diphenyl. Anal Chim Acta 664:190–198

    CAS  Google Scholar 

  31. Mizuishi K, Takeuchi M, Hobo T (1998) Effect of hydrogen bromide doping on capillary gas chromatographic analysis of tributyltin and triphenyltin halides. Analyst 123:329–335

    CAS  Google Scholar 

  32. Lundgren K, Rappe C, Buser HR (1991) Detection of alkylated polychlorodibenzofuranes and alkylated polychlorodibenzo-p-dioxins by tandem mass spectrometry for the analysis of crustacean samples. Chemosphere 23:1591–1604

    CAS  Google Scholar 

  33. Onwudili JA, Hajizadeh Y, Zainal S, Upton J, Williams PT (2011) Application of low-temperature CP-Sil 88 column for the isomeric analysis of toxic 2378-substituted PCDD/Fs in incinerator flyash and sewage sludge using a triple quadrupole GC–MS/MS. Talanta 87:143–151

    CAS  Google Scholar 

  34. Moeder M, Braun P, Lange F, Schrader S, Lorenz W (2007) Highly selective and sensitive determination of endocrine disrupting compounds and pharmaceutical residues using solid phase extraction, derivatization and gas chromatography – negative chemical ionization mass spectrometry. CLEAN 35:444–451

    CAS  Google Scholar 

  35. Amirav A, Gordin A, Tzanani N (2001) Supersonic GC-MS. Rapid Commun Mass Spectrom 15:810–820

    Google Scholar 

  36. Fialkov AB, Gordin A, Amirav A (2003) Extending the range of compounds amenable for gas chromatography-MS analysis. J Chromatogr A 991:217–240

    CAS  Google Scholar 

  37. Kochman M, Gordin A, Goldshlag P, Lehotay SJ, Amnirav A (2002) Fast, high-sensitive, multipesticide analysis of complex mixtures with supersonic GC-MS. J Chromatogr A 974:185–212

    CAS  Google Scholar 

  38. Davis SC, Makarov AA, Hughes JD (1999) Supersonic molecular beam-hyperthermal surface ionization coupled with time-of-flight mass spectrometry applied to trace level detection of polynuclear aromatic hydrocarbons in drinking water for reduced sample preparation and analysis time. Rapid Commun Mass Spectrom 13:247–250

    CAS  Google Scholar 

  39. Medeiros PM, Simoneit BRT (2007) Gas chromatography coupled to mass spectrometry for analyses of organic compounds and biomarkers as tracers for geological, environmental, and forensic research. J Sep Sci 30:1516–1536

    CAS  Google Scholar 

  40. Kolberg DI, Prestes OD, Adaime MB, Zanella R (2011) Development of a fast multiresidue method for the determination of pesticides in dry samples (wheat grains, flour and bran) using QuEChERS based method and GC-MS. Food Chem 125:1436–1442

    CAS  Google Scholar 

  41. Wishart DS (2009) Computational strategies for metabolite identification in metabolomics. Bioanalysis 1:1579–1596

    CAS  Google Scholar 

  42. Fabbri D, Sangiorgi F, Vassura I (2005) Pyrolysis-GC-MS to trace terrigenous organic matter in marine sediments: a comparison between pyrolytic and lipid markers in the Adriatic Sea. Anal Chim Acta 530:253–261

    CAS  Google Scholar 

  43. Froelich JM, Lu Y, Reid CE (2010) Chemical derivatization and multistage tandem mass spectrometry for protein structural characterization. In: March RE, Todd JFJ (eds) Practical aspects of trapped ion mass spectrometry, Vol V, Applications of ion trapping devices. CRC, Taylor & Francis, Boca Raton, FL, p 83

    Google Scholar 

  44. You J, Wang D, Lydy MJ (2010) Determination of pyrethroid insecticides in sediment by gas chromatography-ion trap tandem mass spectrometry. Talanta 81:136–141

    CAS  Google Scholar 

  45. Soares Emídio E, de Menezes Prata V, Silveira Dórea H (2010) Validation of an analytical method for analysis of cannabinoids in hair by headspace solid-phase microextraction and gas chromatography–ion trap tandem mass spectrometry. Anal Chim Acta 670:63–71

    Google Scholar 

  46. Mateus-Avois L, Manguin P, Saugy M (2005) Use of ion trap gas chromatography-multiple mass spectrometry for the detection and confirmation of 3′-hydroxystanozolol at trace levels in urine for doping control. J Chromatogr B 816:193–201

    CAS  Google Scholar 

  47. Losada S, Parera J, Abalos M, Abad E, Santos FJ, Galceran MT (2010) Suitability of selective pressurized liquid extraction combined with gas chromatography–ion-trap tandem mass spectrometry for the analysis of polybrominated diphenyl ethers. Anal Chim Acta 678:73–81

    CAS  Google Scholar 

  48. Wong PSH, Cooks RG (1997) Ion trap mass spectrometry. Curr Sep 16:85–92

    CAS  Google Scholar 

  49. March RE, Todd JFJ (2005) Quadrupole ion trap mass spectrometry, 2 edn. Winefordner JD (ed) Chemical analysis – a series of monographs on analytical chemistry and its applications. Wiley, Hoboken, NJ

    Google Scholar 

  50. Guilhaus M (1995) Principles and instrumentation in time-of-flight mass spectrometry. J Mass Spectrom 30:1519–1532

    CAS  Google Scholar 

  51. Uphoff A, Grotemeyer J (2003) The secrets of time-of-flight mass spectrometry revealed. Eur J Mass Spectrom 9:151–164

    CAS  Google Scholar 

  52. Miao L, Cai W, Shao X (2011) Rapid analysis of multicomponent pesticide mixture by GC-MS with the aid of chemometric resolution. Talanta 83:1247–1253

    CAS  Google Scholar 

  53. Jiang WX, Qiu YP, Ni Y, Su MM, Jia W, Du XX (2010) An automated data analysis pipeline for GC-TOF-MS metabonomics studies. J Proteome Res 9:5974–5981

    CAS  Google Scholar 

  54. Dallüge J, van Stee LLP, Xu X, Williams J, Beens J, Vreuls RJJ, Brinkman UAT (2002) Unravelling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry: cigarette smoke. J Chromatogr A 974:169–184

    Google Scholar 

  55. Benecke C, Grund R, Hohberger R, Kerber A, Laue R, Wieland T (1995) MOLGEN+, a generator of connectivity isomers and stereoisomers for molecular structure elucidation. Anal Chim Acta 314:141–147

    CAS  Google Scholar 

  56. Buckendahl A-C, Budczies J, Fiehn O, Darb-Esfahani S, Kind T, Noske A, Weichert W, Sehouli J, Braicu E, Dietel M, Denkert M (2011) Prognostic impact of AMP-activated protein kinase expression in ovarian carcinoma: correlation of protein expression and GC/TOF-MS-based metabolomics. Oncol Rep 25:1005–1012. doi:10.3892/or.2011.1162

    Google Scholar 

  57. Gardner JY, Brillhart DE, Benjamin MM, Dixon LG, Mitchell LM, Dimandja JMD (2011) The use of GC x GC/TOF MS with multivariate analysis for the characterization of foodborne pathogen bacteria profiles. J Sep Sci 34:176–185

    CAS  Google Scholar 

  58. Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62:887–900

    CAS  Google Scholar 

  59. Hernández F, Portolés T, Pitarch E, López FJ (2011) Gas chromatography coupled to high-resolution time-of-flight mass spectrometry to analyze trace-level organic compounds in the environment, food safety and toxicology Trends in. Anal Chem 30:388–400

    Google Scholar 

  60. Portoles T, Pitarch E, Lopez FJ, Hernandez F (2011) Development and validation of a rapid and wide-scope qualitative screening method for detection and identification of organic pollutants in natural water and wastewater by gas chromatography time-of-flight mass spectrometry. J Chromatogr A 1218:303–315

    CAS  Google Scholar 

  61. Moeder M, Martin C, Schlosser D, Harynuk J, Górecki T (2006) Separation of technical 4-nonylphenols and their biodegradation products by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A 1107:233–239

    CAS  Google Scholar 

  62. Aebi B, Sturny-Jungo R, Bernhard W, Blanke R, Hirsch R (2002) Quantitation using GC-TOF-MS: example of bromazepam. Forensic Sci Int 128:84–89

    CAS  Google Scholar 

  63. Scigelova M, Makarov A (2006) Orbitrap mass analyser – overview and applications in proteomics. Pract Proteomics 6:16–21

    Google Scholar 

  64. Hogenboom AC, van Leerdam JA, de Voogt P (2009) Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography–hybrid linear ion trap Orbitrap mass spectrometry. J Chromatogr A 1216:510–519

    CAS  Google Scholar 

  65. Clarke A, Scarth J, Teale P, Pearce C, Hillyer L (2011) The use of in vitro technologies and high-resolution/accurate-mass LC-MS to screen for metabolites of ‘designer’ steroids in the equine. Drug Test Anal 3:74–87

    CAS  Google Scholar 

  66. Padilla-Sánchez JA, Plaza-Bolaños P, Romero-González R, Garrido-Frenich A, Martínez Vidal JL (2010) Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography–triple quadrupole-mass spectrometry/mass spectrometry. J Chromatogr A 1217:5724–5731

    Google Scholar 

  67. Shen H-Y, Jiang H-L (2005) Screening, determination and confirmation of chloramphenicol in seafood, meat and honey using ELISA, HPLC-UVD, GC-ECD, GC-MS-EI-SIM and GC-MS-NCI-SIM methods. Anal Chim Acta 535:23–41

    Google Scholar 

  68. Meruva NK, Sellers KW, Brewer WE, Goode SR, Morgan SL (2000) Comparisons of chromatographic performance and data quality using fast gas chromatography. Paper no. 1397, Pittcon 2000, New Orleans, 17 Mar 2000

    Google Scholar 

  69. Kolic TM, Shen L, MacPherson K, Fayez L, Gobran T, Heim P, Marvin CH, Arsenault G, Reiner EJ (2009) The analysis of halogenated flame retardants by GC-HRMS in environmental samples. J Chromatogr Sci 47:83–91

    CAS  Google Scholar 

  70. Rösner P (ed) (2011) Mass spectra of designer drugs 2011. Wiley-VCH, Weinheim

    Google Scholar 

  71. Maurer HH, Pfleger K, Weber AA (2011) Mass spectral library of drugs, poisons, pesticides, pollutants and their metabolites. Wiley-VCH, Weinheim

    Google Scholar 

  72. Parr MK, Schanzer W (2010) Detection of the misuse of steroids in doping control. J Steroid Biochem Mol Biol 121(Sp. Iss.):528–537

    CAS  Google Scholar 

  73. Wolf S, Schmidt S, Müller-Hannemann M, Neumann S (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11:148. doi:10.1186/1471-2105-11-148

    Google Scholar 

  74. Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

    CAS  Google Scholar 

  75. Schymanski EL, Bataineh M, Goss K-U, Brack W (2009) Integrated analytical and computer tools for structure elucidation in effect-directed analysis. Trends Anal Chem 28(5):550–561

    CAS  Google Scholar 

  76. European Commission Decision 202/657/EC, Off J Eur Commun, August 21, 2002. COMMISSION DECISION of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (notified under document number C(2002) 3044)

    Google Scholar 

  77. André F, de Wasch KKG, De Brabander HF, Impens SR, Stolker LAM, van Ginkel L, Stephany RW, Schilt R, Courtheyn D, Bonnaire Y, Fürst P, Gowik P, Kennedy G, Kuhn T, Moretain J-P, Sauer M (2001) Trends in the identification of organic residues and contaminants. EC regulations under revision. Trends Anal Chem 20:435–445

    Google Scholar 

  78. Parr MK, Fußhöller G, Schlöre N, Opfermann G, Geyer H, Rodchenkov G, Schänzer W (2011) Detection of Δ6-methyltestosterone in a “dietary supplement” and GC–MS/MS investigations on its urinary metabolism. Toxicol Lett 201:101–104

    CAS  Google Scholar 

  79. Parr MK, Opfermann G, Schänzer W (2011) Mass spectra of physiologically active substances-including drugs, steroid hormones, and endocrine disruptors 2011. Wiley-VCH, Weinheim

    Google Scholar 

  80. Tzing S-H, Ding W-H (2010) Determination of melamine and cyanuric acid in powdered milk using injection-port derivatization and gas chromatography–tandem mass spectrometry with furan chemical ionization. J Chromatogr A 1217:6267–6273

    CAS  Google Scholar 

  81. Kalachova K, Pulkrabova J, Cajka T, Drabova L, Stupak M, Hajslova J (2013) Gas chromatography-triple quandrupole tandem mass spectrometry: a powerful tool for the (ultra)trace analysis of multiclass environmental contaminants in fish and fish feed. Anal Bioanal Chem 405:7803–7815

    CAS  Google Scholar 

  82. Schmidt L, Müller J, Göen T (2013) Simultaneous monitoring of seven phenolic metabolites of endocrine disrupting compounds (EDC) in human urine using gas chromatography with tandem mass spectrometry. Anal Bioanal Chem 405:2019–2029

    CAS  Google Scholar 

  83. Tiwari MK, Guha S (2013) Simultaneous analysis of endosulfan, chlorpyrifos, and their metabolites in natural soil and water samples using gas chromatography-tandem mass spectrometry. Environ Monit Assess 185:8451–8463

    CAS  Google Scholar 

  84. Moeder M, Martin C, Harynuk J, Górecki T, Vinken R, Corvini PFX (2006) Isomeric 4-nonylphenol structures related from GC-MS-MS combined with cluster analysis. J Chromatogr A 1102:245–255

    CAS  Google Scholar 

  85. Zenkevich I, Makarov A, Schrader S, Moeder M (2009) A new version of an additive scheme for the prediction of gas chromatographic retention indices of the 211 structural isomers of 4-nonylphenol. J Chromatogr A 1216:4097–4106

    CAS  Google Scholar 

  86. Wheeler TF, Heim JR, LaTorre MR, Janes AB (1997) Mass spectral characterization of p-nonylphenol isomers using high-resolution capillary GC-MS. J Chromatogr Sci 35:19–30

    CAS  Google Scholar 

  87. WADA (2011) World Anti-Doping Agency, The World Anti-Doping Code, The 2011 Prohibited List, 18 Sept 2010. http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-Prohibited-list/To_be_effective/WADA_Prohibited_List_2011_EN.pdf

  88. Tsakalof AK, Gkagtzis DC, Koukoulis GN, Hadjichristodoulou CS (2012) Development of GC–MS/MS method with programmable temperature vaporization large volume injection for monitoring of 17β-estradiol and 2-methoxyestradiol in plasma. Anal Chim Acta 709:73–80

    CAS  Google Scholar 

  89. Cervera MI, Medina C, Portoles T, Pitarch E, Beltran J, Serrahima E, Pineda L, Munoz G, Centrich F, Hernandez F (2010) Multi-residue determination of 130 multiclass pesticides in fruits and vegetables by gas chromatography coupled to triple quadrupole tandem mass spectrometry. Anal Bioanal Chem 397:2873–2891

    CAS  Google Scholar 

  90. Pitarch E, Medina C, Portolés T, López FJ, Hernández F (2007) Determination of priority organic micro-pollutants in water by gas chromatography coupled to triple quadrupole mass spectrometry. Anal Chim Acta 583:246–258

    CAS  Google Scholar 

  91. Blau K, Halket JM (1993) Handbook of derivatives for chromatography. Wiley, Chichester, UK

    Google Scholar 

  92. Haertig C (2008) Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography-mass spectrometry database. J Chromatogr A 1177:159–169

    CAS  Google Scholar 

  93. Spagou K, Theodoridis G, Wilson I, Raikos N, Greaves P, Edwards R, Nolan B, Klapa MI (2011) A GC-MS metabolic profiling study of plasma samples from mice on low- and high-fat diets. J Chromatogr B 879(SI):1467–1475

    CAS  Google Scholar 

  94. Zaikin V, Halket J (2009) Handbook of derivatives for mass spectrometry. IM Publications, Chichester, UK

    Google Scholar 

  95. Halket J, Zaikin V (2005) Derivatization in mass spectrometry-5. Specific derivatization of monofunctional compounds. Eur J Mass Spectrom 11:127–160

    CAS  Google Scholar 

  96. Lin DL, Wang SM, Wu CH, Chen BG, Lu RH (2008) Chemical derivatization for the analysis of drugs by GC-MS – a conceptual review. J Food Drug Anal 16:1–10

    Google Scholar 

  97. El Haj BM, Al Ainri AM, Hassan MH, Bin Khadem RK, Marzouq MS (1999) The GC-MS analysis of some commonly used non-steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical dosage forms and in urine. Forensic Sci Int 105:141–153

    Google Scholar 

  98. Casas Ferreira AM, Möder M, Fernández Laespada ME (2011) GC-MS determination of parabens, triclosan and methyl triclosan in water by in situ derivatisation and stir-bar sorptive extraction. Anal Bioanal Chem 399:945–953

    CAS  Google Scholar 

  99. Blachut D, Wojtasiewicz K, Czarnocki Z, Szukalski B (2009) The analytical profile of some 4-methylthioamphetamine (4-MTA) homologues. Forensic Sci Int 192:98–114

    CAS  Google Scholar 

  100. Pieper B, Schober S, Goebl C, Mittelbach M (2010) novel sensitive determination of steryl glycosides in biodiesel by gas chromatography-mass spectrometry. J Chromatogr A 1217:6555–6561

    Google Scholar 

  101. Asperger A, Engewald W, Fabian G (1999) Advances in the analysis of natural waxes provided by thermally assisted hydrolyses and methylation (THM) in combination with GC-MS. J Anal Appl Pyrolysis 52:51–63

    CAS  Google Scholar 

  102. Dubois N, Barnathan G, Gouygou JP, Berge JP (2009) Gas chromatographic behavior of fatty acid derivatives for mass spectrometry on low-polarity capillary columns. Eur J Lipid Sci 111:688–697

    CAS  Google Scholar 

  103. Fang K, Pan XJ, Huang B, Liu JL, Wang Y, Gao JP (2010) Simultaneous derivatization of hydroxyl and ketone groups for the analysis of steroid hormones by GC-MS. Chromatographia 72:949–956

    CAS  Google Scholar 

  104. Christakoudi S, Cowan DA, Taylor NF (2010) A new marker for early diagnosis of 21-hydroxylase deficiency: 3 beta,16 alpha,17 alpha-trihydroxy-5 alpha-pregnane-7,20-dione. J Steroid Biochem Mol Biol 121(Sp. Iss):574–581

    CAS  Google Scholar 

  105. Vinas P, Martinez-Castillo N, Campillo N, Hernandez-Cordoba M (2011) Directly suspended droplet microextraction with in injection-port derivatization coupled to gas chromatography-mass spectrometry for the analysis of polyphenols in herbal infusions, fruits and functional foods. J Chromatogr A 1218:639–646

    CAS  Google Scholar 

  106. Kim HJ, Shin HS (2011) Simple and automatic determination of aldehydes and acetone in water by headspace solid-phase microextraction and gas chromatography-mass spectrometry. J Sep Sci 34:693–699

    CAS  Google Scholar 

  107. Gonzalez I, Quintana JB, Rodríguez I, Schrader S, Moeder M (2011) Fully automated determination of parabens, triclosan and methyl triclosan in wastewater by microextraction by packed sorbents and gas chromatography-mass spectrometry. Anal Chim Acta 684:59–66

    Google Scholar 

  108. Cheng CY, Wang YC, Ding WH (2011) Determination of triclosan in aqueous samples using solid-phase extraction followed by on-line derivatization gas chromatography-mass spectrometry. Anal Sci 27(Special Issue):197–202

    CAS  Google Scholar 

  109. Philp RP (2007) The emergence of stable isotopes in environmental and forensic geochemistry studies: a review. Environ Chem Lett 5:57–66

    CAS  Google Scholar 

  110. Brand WA (1996) High precision isotope ratio monitoring techniques in mass spectrometry. J Mass Spectrom 31:225–235

    CAS  Google Scholar 

  111. Hofstetter TB, Berg M (2011) Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. Trends Anal Chem 30:618–627

    CAS  Google Scholar 

  112. Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 12:2005–2031

    CAS  Google Scholar 

  113. Daeid NN, Buchanan HAS, Savage KA, Fraser JG, Cresswell SL (2010) Recent advances in the application of stable isotope ratio analysis in forensic chemistry. Aust J Chem 63:3–7

    CAS  Google Scholar 

  114. Blessing M, Jochmann MA, Schmidt TC (2008) Pitfalls in compound-specific isotope analysis of environmental samples. Anal Bioanal Chem 390:591–630

    CAS  Google Scholar 

  115. Hofmann D, Gehre M, Jung K (2003) Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Isotopes Environ Health Stud 39:1–12

    Google Scholar 

  116. Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope ratio mass spectrometry. J Chromatogr A 842:351–371

    CAS  Google Scholar 

  117. Palmer PT, Limero TF (2001) Mass spectrometry in the U.S. space program: past present, and future. J Am Soc Mass Spectrom 12:656–675

    CAS  Google Scholar 

  118. Smith PA, Jackson Lepage CR, Savage PB, Bowerbank CR, Lee ED, Lukacs MJ (2011) Use of a hand-potable gas chromatograph-toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosponothiolate (VX). Anal Chim Acta 690:215–220

    CAS  Google Scholar 

  119. Contreras JA, Murray JR, Jacolin A, Tolley SE, Samuel E, Oliphant JL, Tolley HD, Lammert SA, Lee ED, Later DW, Lee ML (2008) Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. J Am Soc Mass Spectrom 19:1425–1434

    CAS  Google Scholar 

  120. Joshi M, Rigsby K, Almirall JR (2011) Analysis of the headspace composition of smokeless powders using GC-MS, GC-mu ECD and ion mobility spectrometry. Forensic Sci Int 208:29–36

    CAS  Google Scholar 

  121. Borsdorf H, Eiceman GA (2006) Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev 41:323–375

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Moeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moeder, M. (2014). Gas Chromatography-Mass Spectrometry. In: Dettmer-Wilde, K., Engewald, W. (eds) Practical Gas Chromatography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54640-2_9

Download citation

Publish with us

Policies and ethics