Skip to main content

Gas Chromatography in Food Analysis

  • Chapter
  • First Online:
Practical Gas Chromatography

Abstract

The analysis of all kinds of compounds of food products is highly important to maintain food quality, which means primarily meeting the consumer’s expectations in terms of sensory properties, health, and correct declaration of ingredients and origin. Absence of residues and contaminants, as well as presence of desired ingredients, is highly appreciated by the consumer. From the multitude of analytical methods applied in food analysis, gas chromatography is an important tool with the major reason providing the unique chromatographical resolution making the parallel determination of a bundle of more or less similar compounds possible. Further, better extraction procedures in combination with innovative detection systems are improving more and more the sensitivity for detecting compounds, even at trace level. This chapter illustrates the applicability of gas chromatography in food analysis by discussing selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rohn S, Kroh LW (2008) Quality of processed plant food. In: Zude M (ed) Optical monitoring of fresh and processed agricultural crops – basics and applications for a better understanding of non-destructive sensing. CRC, Boca Raton

    Google Scholar 

  2. Huyskens-Keil S, Schreiner M (2003) Quality of fruits and vegetables. J Appl Bot 77:147–151

    Google Scholar 

  3. MoniQA Food Authenticity working group. Food Authenticity – general considerations. http://www.moniqa.org. Accessed 5 Jan 2011

  4. Lu C, Barr DB, Pearson MA, Waller LA (2008) Dietary intake and its contribution to longitudinal organophosphorus pesticide exposure in urban/suburban children. Environ Health Perspect 116:537–542

    Article  Google Scholar 

  5. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431

    CAS  Google Scholar 

  6. Lehotay SJ, Mastovská K, Yun SJ (2005) Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes. J AOAC Int 88:630–638

    CAS  Google Scholar 

  7. Wong JW, Hennessy MK, Hayward DG, Krynitsky AJ, Cassias I, Schenck FJ (2007) Analysis of organophosphorus pesticides in dried ground ginseng root by capillary gas chromatography-mass spectrometry and -flame photometric detection. J Agric Food Chem 55:1117–1128

    Article  CAS  Google Scholar 

  8. Schenck F, Wong J, Lu C, Li J, Holcomb JR, Mitchell LM (2009) Multiresidue analysis of 102 organophosphorus pesticides in produce at parts-per-billion levels using a modified QuEChERS method and gas chromatography with pulsed flame photometric detection. J AOAC Int 92:561–573

    CAS  Google Scholar 

  9. Fernandez-Muino MA, Sancho MT, Muniategui S, Huidobro JF, Simal-Lozano J (1995) Nonacaricide pesticide residues in honey: analytical methods and levels found. J Food Prot 58:1271–1274

    CAS  Google Scholar 

  10. Blasco C, Lino CM, Picó Y, Pena A, Font G, Silveira MI (2004) Determination of organochlorine pesticide residues in honey from the central zone of Portugal and the Valencian community of Spain. J Chromatogr A 1049:155–160

    CAS  Google Scholar 

  11. Perez-Serradilla JA, Mata-Granados JM, de Castro MDL (2010) Low-level determination of organochlorine pesticides in wines by automatic preconcentration and GC-MS-MS detection. Chromatographia 71:899–905

    Article  CAS  Google Scholar 

  12. Portoles T, Sancho JV, Hernandez F, Newton A, Hancock P (2010) Potential of atmospheric pressure chemical ionization source in GC-QTOF MS for pesticide residue analysis. J Mass Spectrom 45:926–936

    Article  CAS  Google Scholar 

  13. Chan EY, Griffiths SM, Chan CW (2008) Public-health risks of melamine in milk products. Lancet 372:1444–1445

    Article  CAS  Google Scholar 

  14. Brown CA, Jeong KS, Poppenga RH, Puschner B, Miller DM, Ellis AE, Kang KI, Sum S, Cistola AM, Brown SA (2007) Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007. J Vet Diagn Invest 19:525–531

    Article  Google Scholar 

  15. Skinner CG, Thomas JD, Osterloh JD (2010) Melamine toxicity. J Med Toxicol 6:50–55

    Article  CAS  Google Scholar 

  16. Xu X, Ren Y, Zhu Y, Cai Z, Han J, Huang B, Zhu Y (2009) Direct determination of melamine in dairy products by gas chromatography/mass spectrometry with coupled column separation. Anal Chim Acta 650:39–43

    Article  CAS  Google Scholar 

  17. Xu X, Song G, Zhu Y, Zhang J, Zhao Y, Shen H, Cai Z, Han J, Ren Y (2008) Simultaneous determination of two acute poisoning rodenticides tetramine and fluoroacetamide with a coupled column in poisoning cases. J Chromatogr B 876:103–108

    Article  CAS  Google Scholar 

  18. Li J, Qi HY, Shi YP (2009) Determination of melamine residues in milk products by zirconia hollow fiber sorptive microextraction and gas chromatography-mass spectrometry. J Chromatogr A 1216:5467–5471

    Article  CAS  Google Scholar 

  19. Lijinsky W (1999) N-Nitroso compounds in the diet. Mutat Res 443:129–138

    Article  CAS  Google Scholar 

  20. Adam F, Bertoncini F, Brodusch N, Durand E, Thiebaut D, Espinat D, Hennion MC (2007) New benchmark for basic and neutral nitrogen compounds speciation in middle distillates using comprehensive two-dimensional gas chromatography. J Chromatogr A 1148:55–64

    Article  CAS  Google Scholar 

  21. Yan X (2006) Unique selective detector for gas chromatography: nitrogen and sulfur chemiluminescence detectors. J Sep Sci 29:1931–1945

    Article  CAS  Google Scholar 

  22. Ozel MZ, Gogus F, Yagci S, Hamilton JF, Lewis AC (2010) Determination of volatile nitrosamines in various meat products using comprehensive gas chromatography-nitrogen chemiluminescence detection. Food Chem Toxicol 48:3268–3273

    Article  CAS  Google Scholar 

  23. Yurchenko S, Molder U (2006) Volatile N-nitrosamines in various fish products. Food Chem 96:325–333

    Article  CAS  Google Scholar 

  24. Grebel JE, Suffet IH (2007) Nitrogen-phosphorus detection and nitrogen chemiluminescence detection of volatile nitrosamines in water matrices: optimization and performance comparison. J Chromatogr A 1175:141–144

    Article  CAS  Google Scholar 

  25. International Agency for Research on Cancer (IARC) (1995) Dry cleaning, some chlorinated solvents and other industrial chemicals. Monogr Eval Carcinog Risks Hum 63:3194–3407

    Google Scholar 

  26. Zoller O, Sager F, Reinhard H (2007) Furan in food: headspace method and product survey. Food Addit Contam 24:91–107

    Article  CAS  Google Scholar 

  27. Perez-Locas C, Yaylayan VA (2004) Origin and mechanistic pathways of formation of the parent furan-a food toxicant. J Agric Food Chem 52:6830–6836

    Article  Google Scholar 

  28. Jestoi M, Järvinen T, Järvenpää E, Tapanainen H, Virtanen S, Peltonen K (2009) Furan in the baby-food samples purchased from the Finnish markets – determination with SPME-GC-MS. Food Chem 117:522–528

    Article  CAS  Google Scholar 

  29. Kim TK, Kim S, Lee KG (2010) Analysis of furan in heat-processed foods consumed in Korea using solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS). Food Chem 123:1328–1333

    Article  CAS  Google Scholar 

  30. Senyuva HZ, Gokmen V (2005) Analysis of furan in foods. Is headspace sampling a fit-for-purpose technique? Food Addit Contam 22:1198–1202

    Article  CAS  Google Scholar 

  31. Bicchi C, Ruosi MR, Cagliero C, Cordero C, Liberto E, Rubiolo P, Sgorbini B (2011) Quantitative analysis of volatiles from solid matrices of vegetable origin by high concentration capacity headspace techniques: determination of furan in roasted coffee. J Chromatogr A 1218:753–762

    Article  CAS  Google Scholar 

  32. Wagner MW (1970) Cyclamate acceptance. Science 168:1605

    Article  CAS  Google Scholar 

  33. Takayama S, Renwick AG, Johansson SL, Thorgeirsson UP, Tsutsumi M, Dalgard DW, Sieber SM (2000) Long-term toxicity and carcinogenicity study of cyclamate in nonhuman primates. Toxicol Sci 53:33–39

    Article  CAS  Google Scholar 

  34. Hashemi M, Habibi A, Jahanshahi N (2011) Determination of cyclamate in artificial sweeteners and beverages using headspace single-drop microextraction and gas chromatography flame-ionisation detection. Food Chem 124:1258–1263

    Article  CAS  Google Scholar 

  35. Suslow T (2000) Postharvest handling of organic crops. ANR Publication 7254, University of California, Oakland

    Google Scholar 

  36. Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749

    Article  CAS  Google Scholar 

  37. Guo Z, Wang S, Wie D, Wang M, Zhang H, Gai P, Duan J (2010) Development and application of a method for analysis of phthalates in ham sausages by solid-phase extraction and gas chromatography-mass spectrometry. Meat Sci 84:484–490

    Article  CAS  Google Scholar 

  38. Heudorf U, Mersch-Sundermann V, Angerer J (2007) Phthalates: toxicology and exposure. Int J Hyg Environ Health 210:623–634

    Article  CAS  Google Scholar 

  39. Ostrovsky I, Cabala R, Kubinec R, Gorova R, Blasko J, Kubincova J, Rimnacova L, Lorenz W (2011) Determination of phthalate sum in fatty food by gas chromatography. Food Chem 124:392–395

    Article  CAS  Google Scholar 

  40. van Hoeck E, de Schaetzen T, Pacquet C, Bolle F, Boxus L, van Loco J (2010) Analysis of benzophenone and 4-methylbenzophenone in breakfast cereals using ultrasonic extraction in combination with gas chromatography-tandem mass spectrometry (GC-MSn). Anal Chim Acta 663:55–59

    Article  Google Scholar 

  41. Anderson WA, Castle L (2003) Benzophenone in cartonboard packaging materials and the factors that influence its migration into food. Food Addit Contam 20:607–618

    Article  CAS  Google Scholar 

  42. EFSA Statement (2009) 4-methylbenzophenone found in breakfast cereals. EFSA J RN-243:1

    Google Scholar 

  43. Campone L, Piccinelli AL, Östman C, Rastrelli L (2010) Determination of organophosphorus flame retardants in fish tissues by matrix solid-phase dispersion and gas chromatography. Anal Bioanal Chem 397:799–806

    Article  CAS  Google Scholar 

  44. Focant JF, Eppe G, Pirard C, Massart AC, Andre JE, de Pauw E (2002) Levels and congener distributions of PCDDs. PCDFs and non-ortho PCBs in Belgian food stuffs. Assessment of dietary intake. Chemospere 48:167–179

    Article  CAS  Google Scholar 

  45. Kivitranta H, Tuomisto JT, Tiomisto J, Tukiainen E, Vartiainen T (2005) Polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in the general population in Finland. Chemosphere 65:854–869

    Article  Google Scholar 

  46. Hoh E, Lehotay SJ, Pangallo KC, Mastovska K, Ngo HL, Reddy CM, Vetter W (2009) Simultaneous quantitation of multiple classes of organohalogen compounds in fish oils with direct sample introduction comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry. J Agric Food Chem 57:2653–2660

    Article  CAS  Google Scholar 

  47. Lennernas M, Fjellstrom C, Becker W, Giachetti I, Schmitt A, Remaut de Winter A, Kearney M (1997) Influences on food choice perceived to be important by nationally-representative samples of adults in the European Union. Eur J Clin Nutr 51:S8–S15

    Google Scholar 

  48. Ruiz-Rodriguez A, Reglero G, Ibanez E (2010) Recent trends in the advanced analysis of bioactive fatty acids. J Pharm Biomed Anal 51:305–326

    Article  CAS  Google Scholar 

  49. Metcalfe LD, Schmitz AA (1961) The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal Chem 33:363–364

    Article  CAS  Google Scholar 

  50. Schlenk H, Gellerman JL (1960) Esterification of fatty acids with diazomethane on a small scale. Anal Chem 32:1412–1414

    Article  CAS  Google Scholar 

  51. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    CAS  Google Scholar 

  52. Siang GH, Makahleh A, Saad B, Lim BP (2010) Hollow fiber liquid-phase microextraction co pled with gas chromatography-flame ionization detection for the profiling of fatty acids in vegetable oils. J Chromatogr A 1217:8073–8078

    Article  CAS  Google Scholar 

  53. Sinclair HM (1956) Deficiency of essential fatty acids and atherosclerosis, etcetera. Lancet 270:381–383

    CAS  Google Scholar 

  54. Nguemeni C, Delplanque B, Rovere C, Simon-Rousseau N, Gandin C, Agnani G, Nahon JL, Heurteaux C, Blondeau N (2010) Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacol Res 61:226–233

    Article  CAS  Google Scholar 

  55. Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109:668–679

    Article  CAS  Google Scholar 

  56. Fritsche J, Steinhart H (1998) Amounts of conjugated linoleic acid (CLA) in German foods and evaluation of daily intake. Z Lebensm Unters Forsch 206:77–82

    Article  CAS  Google Scholar 

  57. Tanaka K (2005) Occurrence of conjugated linoleic acid in ruminant products and its physiological functions. Anim Sci J 76:291–303

    Article  CAS  Google Scholar 

  58. Chilliard Y, Ferlay A, Doreau M (2001) Effect of different types of forages, animal fat, or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livest Prod Sci 70:31–48

    Article  Google Scholar 

  59. Eder K, Ringseis R (2010) Metabolism and actions of conjugated linoleic acids on atherosclerosis-related events in vascular endothelial cells and smooth muscle cells. Mol Nutr Food Res 54:17–36

    Article  CAS  Google Scholar 

  60. Sottero B, Gamba P, Gargiulo S, Leonarduzzi G, Poli G (2009) Cholesterol oxidation products and disease: an emerging topic of interest in medicinal chemistry. Curr Med Chem 16:685–705

    Article  CAS  Google Scholar 

  61. Yen TY, Inbaraj BS, Chien JT, Chen BH (2010) Gas chromatography-mass spectrometry determination of conjugated linoleic acids and cholesterol oxides and their stability in a model system. Anal Biochem 400:130–138

    Article  CAS  Google Scholar 

  62. Kroll J, Rohn S, Rawel HM (2003) Secondary plant metabolites as functional constituents of foods. Dt Lebensm Rundsch 99:259–270

    CAS  Google Scholar 

  63. Robards K, Antolovich M (1997) Analytical chemistry of fruit bioflavonoids – a review. Analyst 122:11R–34R

    Article  CAS  Google Scholar 

  64. Luck G, Liao H, Murray NJ, Grimmer HR, Warminski EE, Williamson MP, Lilley TH, Haslam E (1994) Polyphenols, astringency and proline-rich proteins. Phytochemistry 37:357–371

    Article  CAS  Google Scholar 

  65. Halliwell B (1996) Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic Res 25:57–74

    Article  CAS  Google Scholar 

  66. Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306

    Article  CAS  Google Scholar 

  67. Saito Y, Jinno K (2003) Miniaturized sample preparation combined with liquid phase separations. J Chromatogr A 1000:53–67

    Article  CAS  Google Scholar 

  68. Vinas P, Martinez-Castillo N, Campillo N, Hernandez-Córdoba M (2011) Directly suspended droplet microextraction with in injection-port derivatization coupled to gas chromatography-mass spectrometry for the analysis of polyphenols in herbal infusions, fruits and functional foods. J Chromatogr A 1218:639–646

    Article  CAS  Google Scholar 

  69. Gao X, Williams SJ, Woodman OL, Marriott PJ (2010) Comprehensive two-dimensional gas chromatography, retention indices and time-of-flight mass spectra of flavonoids and chalcones. J Chromatogr A 1217:8317–8326

    Article  CAS  Google Scholar 

  70. Cole RA (1976) Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae. Phytochemistry 15:759–762

    Article  CAS  Google Scholar 

  71. Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhäuser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219

    Article  Google Scholar 

  72. Underhill EW, Kirkland DF (1971) Gas chromatography of trimethylsilyl derivatives of glucosinolates. J Chromatogr A 57:47–54

    Article  CAS  Google Scholar 

  73. Shen L, Su G, Wang X, Du O, Wang K (2010) Endogenous and exogenous enzymolysis of vegetable-sourced glucosinolates and influencing factors. Food Chem 119:987–994

    Article  CAS  Google Scholar 

  74. Spencer GF, Daxenbichler ME (1980) Gas chromatography-mass spectrometry of nitriles, isothiocyanates and oxazolidinethiones derived from cruciferous glucosinolates. J Sci Food Agric 31:359–367

    Article  CAS  Google Scholar 

  75. Slater GP, Manville JF (1993) Analysis of thiocyanates and isothiocyanates by ammonia chemical ionization gas chromatography-mass spectrometry and gas chromatography-Fourier transform infrared spectroscopy. J Chromatogr A 648:433–443

    Article  CAS  Google Scholar 

  76. Luykx DMAM, van Ruth SM (2008) An overview of analytical methods for determining the geographical origin of food products. Food Chem 107:897–911

    Article  CAS  Google Scholar 

  77. White JW, Doner LW (1978) Mass spectrometric detection of high-fructose corn syrup in honey by use of 13C/12C ratio: collaborative study. J Assoc Off Anal Chem 61:746–750

    CAS  Google Scholar 

  78. Woodbury SE, Evershed RP, Rossell JB (1998) δ13C analyses of vegetable oil fatty acid components, determined by gas chromatography-combustion isotope ratio mass spectrometry, after saponification or regiospecific hydrolysis. J Chromatogr A 805:249–257

    Article  CAS  Google Scholar 

  79. Meier-Augenstein W (2002) Stable isotope analysis of fatty acids by gas chromatography-isotope ratio mass spectrometry. Anal Chim Acta 465:63–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Rohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rohn, S. (2014). Gas Chromatography in Food Analysis. In: Dettmer-Wilde, K., Engewald, W. (eds) Practical Gas Chromatography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54640-2_21

Download citation

Publish with us

Policies and ethics