Skip to main content

The Analytical Separation of Enantiomers by Gas Chromatography on Chiral Stationary Phases

  • Chapter
  • First Online:
Practical Gas Chromatography

Abstract

Enantioselective GC is of widespread use in the enantiomeric analysis of volatile natural products such as pheromones, flavors, fragrances, and essential oils as well as synthetic products obtained from asymmetric syntheses and kinetic resolutions. Whereas enantioseparation of derivatized α-amino acids is performed on chiral stationary phases (CSPs) based on α-amino acid derivatives, alkylated/acylated cyclodextrins are employed as versatile CSPs for a multitude of volatile derivatized and nonderivatized enantiomers. Three main types of CSPs are reviewed and the miniaturization of enantioselective GC, the quantification of enantiomers, and validation issues are described. A list of commercially available fused silica capillary columns coated with various CSPs is compiled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gil-Av E, Nurok D (1974) Resolution of optical isomers by gas chromatography of diastereomers. In: Giddings GC, Heller RA (eds) Advances in chromatography, vol 10. Marcel Dekker, New York, pp 99–172

    Google Scholar 

  2. Schurig V (2013) Terms for the quantitation of a mixture of stereoisomers. Top Curr Chem 340:21–40

    Google Scholar 

  3. Gil-Av E (1975) Present status of enantiomeric analysis by gas chromatography. J Mol Evol 6:131–144

    CAS  Google Scholar 

  4. Lochmüller CH, Souter RW (1975) Chromatographic resolution of enantiomers. Selective review. J Chromatogr 113:283–302

    Google Scholar 

  5. Schurig V (1983) Gas chromatographic methods. In: Morrison JD (ed) Asymmetric synthesis, vol 1, Analytical methods. Academic, New York, pp 59–86

    Google Scholar 

  6. Schurig V (1986) Current methods for determination of enantiomeric compositions (Part 3): gas chromatography on chiral stationary phases. Merck Kontakte (Darmstadt) 1:3–22

    Google Scholar 

  7. König WA (1993) Enantioselective gas chromatography. Trends Anal Chem 12:130–137

    Google Scholar 

  8. Schurig V (1994) Review. Enantiomer separation by gas chromatography on chiral stationary phases. J Chromatogr A 666:111–129

    CAS  Google Scholar 

  9. Juvancz Z, Petersson P (1996) Enantioselective gas chromatography. J Microcol Sep 8:99–114

    CAS  Google Scholar 

  10. Schurig V (2001) Separation of enantiomers by gas chromatography. J Chromatogr A 906:275–299

    CAS  Google Scholar 

  11. Schurig V (2002) Chiral separations using gas chromatography. Trends Anal Chem 21:647–661

    CAS  Google Scholar 

  12. He LF, Beesley TE (2005) Applications of enantiomeric gas chromatography: a review. J Liq Chromatogr Rel Technol 28:1075–1114

    Google Scholar 

  13. Li L, Zi M, Ren CX, Yuan LM (2007) The development of chiral stationary phase in gas chromatography. Prog Chem (China) 19:393–403

    CAS  Google Scholar 

  14. Schurig V (2011) Separation of enantiomers by gas chromatography on chiral stationary phases, Chapter 9. In: Ahuja S (ed) Chiral separation methods for pharmaceutical and biotechnological products. Wiley, Hoboken, pp 251–297

    Google Scholar 

  15. Beesley T, Majors RE (2011) The state of the art in chiral gas chromatography. LC-GC North Am 29:642–651, LC x GC 25(5):232–243

    CAS  Google Scholar 

  16. Schurig V, Juza M (2014) Analytical separation of enantiomers by gas chromatography on chiral stationary phases, Chapter 4. In: Grushka E, Grinberg N (eds) Advances of chromatography, vol 52. CRC, Boca Raton, pp 117–168

    Google Scholar 

  17. Allenmark S, Schurig V (1997) Chromatography on chiral stationary phases. J Mater Chem 7:1955–1963

    CAS  Google Scholar 

  18. Allenmark SG (1991) Chromatographic enantioseparation: methods and applications, Ellis Horwood series in analytical chemistry. Ellis Horwood, New York, 2nd revised edition

    Google Scholar 

  19. Schreier P, Bernreuther A, Huffer M (1995) Gas chromatography. In: Schreier P, Bernreuther A, Huffer M (eds) Analysis of chiral organic molecules. Walter de Gruyter, Berlin, pp 132–233

    Google Scholar 

  20. Beesley TE, Scott RPW (1999) Chiral chromatography. Wiley, New York

    Google Scholar 

  21. Frank H, Nicholson GJ, Bayer E (1978) Gas chromatographic-mass spectrometric analysis of optically-active metabolites and drugs on a novel chiral stationary phase. J Chromatogr 146:197–206

    CAS  Google Scholar 

  22. Drake S, Morrison C, Smith F (2011) Simultaneous chiral separation of methylamphetamine and common precursors using gas chromatography/mass spectrometry. Chirality 23:593–601

    CAS  Google Scholar 

  23. Wang LL, McDonald JA, Khan SJ (2013) Enantiomeric analysis of polycyclic musks in water by chiral gas chromatography-tandem mass spectrometry. J Chromatogr A 1303:66–75

    CAS  Google Scholar 

  24. Schmidt R, Wahl HG, Häberle H, Dieterich H-J, Schurig V (1999) Headspace gas chromatography-mass spectrometry analysis of isoflurane enantiomers in blood samples after anesthesia with the racemic mixture. Chirality 11:206–211

    CAS  Google Scholar 

  25. Pätzold R, Schieber A, Brückner H (2005) Gas-chromatographic quantification of free D-amino acids in higher vertebrates. Biomed Chromatogr 19:466–473

    Google Scholar 

  26. Tenberken O, Worek F, Thiermann H, Reiter G (2010) Development and validation of a sensitive gas-chromatography-ammonia chemical ionization mass spectrometry method for the determination of tabun enantiomers in hemolysed blood and plasma of different species. J Chromatogr B 878:1290–1296

    CAS  Google Scholar 

  27. Freissinet C, Buch A, Sternberg R, Szopa C, Geffroy-Rodier C, Jelinek C, Stambouli M (2010) Search for evidence of life in space: analysis of enantiomeric organic molecules by N, N-dimethylformamide dimethylacetal derivative dependent gas chromatography-mass spectrometry. J Chromatogr A 1217:731–740

    CAS  Google Scholar 

  28. Kühnle M, Kreidler D, Holtin K, Czesla H, Schuler P, Schurig V, Albert K (2010) Online coupling of enantioselective capillary gas chromatography with proton nuclear magnetic resonance spectroscopy. Chirality 22:808–812

    Google Scholar 

  29. Schomburg G, Husmann H, Hübinger E, König WA (1984) Multidimensional capillary gas chromatography – enantiomeric separations of selected cuts using a chiral second column. J High Resolut Chromatogr 7:404–410

    CAS  Google Scholar 

  30. Sciarrone D, Schipilliti L, Ragonese C, Tranchida PQ, Dugo P, Dugo G, Mondello L (2010) Thorough evaluation of the validity of conventional enantio-gas chromatography in the analysis of volatile chiral compounds in mandarin essential oil: a comparative investigation with multidimensional gas chromatography. J Chromatogr A 1217:1101–1105

    CAS  Google Scholar 

  31. Sciarrone D, Ragonese C, Carnovale C, Piperno A, Dugo P, Dugo G, Mondello L (2010) Evaluation of tea tree oil quality and ascaridole: a deep study by means of chiral and multi heart-cuts multidimensional gas chromatography system coupled to mass spectrometry detection. J Chromatogr A 1217:6422–6427

    CAS  Google Scholar 

  32. Barba C, Martínez RM, Calvo MM, Santa-María G, Herraiz M (2012) Chiral analysis by online coupling of reversed-phase liquid chromatography to gas chromatography and mass spectrometry. Chirality 24:420–426

    CAS  Google Scholar 

  33. Mosandl A (1995) Enantioselective capillary gas chromatography and stable isotope ratio mass spectrometry in the authenticity control of flavours and essential oils. Food Rev Int 11:597–664

    CAS  Google Scholar 

  34. Pizzarello S, Huang Y, Fuller M (2004) The carbon isotopic distribution of Murchison amino acids. Geochim Cosmochim Acta 23:4963–4969

    Google Scholar 

  35. Schipilliti L, Dugo P, Bonaccorsi I, Mondello L (2011) Headspace-solid phase microextraction coupled to gas chromatography-combustion-isotope ratio mass spectrometer and to enantioselective gas chromatography for strawberry flavoured food quality control. J Chromatogr A 1218:7481–7486

    CAS  Google Scholar 

  36. Marriott P, Shellie R (2002) Principles and applications of comprehensive two-dimensional gas chromatography. Trends Anal Chem 21:573–583

    CAS  Google Scholar 

  37. Rubiolo P, Sgorbini B, Liberto E, Cordero C, Bicchi C (2010) Essential oils and volatiles: sample preparation and analysis. A review. Flavour Fragr J 25:282–290

    CAS  Google Scholar 

  38. Shellie R, Marriott PJ (2002) Comprehensive two-dimensional gas chromatography with fast enantioseparation. Anal Chem 74:5426–5430

    CAS  Google Scholar 

  39. Junge M, Bieri S, Huegel H, Marriott PJ (2007) Fast comprehensive two-dimensional gas chromatography with cryogenic modulation. Anal Chem 79:4448–4454

    CAS  Google Scholar 

  40. Bayer E (1983) Chirale Erkennung von Naturstoffen an optisch aktiven Polysiloxanen (Chiral recognition of natural products on optically active polysiloxanes). Z Naturforsch 38b:1281–1291

    CAS  Google Scholar 

  41. Schurig V (1984) Gas chromatographic separation of enantiomers on optically active metal-complex-free stationary phases. Angew Chem Int Ed 23:747–765

    Google Scholar 

  42. Koppenhoefer B, Bayer E (1985) Chiral recognition in gas chromatographic analysis of enantiomers on chiral polysiloxanes. In: Bruner F (ed) The science of chromatography, vol 32, Journal of Chromatography Library. Elsevier, Amsterdam, pp 1–42

    Google Scholar 

  43. König WA (1987) The practice of enantiomer separation by capillary gas chromatography. Hüthig, Heidelberg

    Google Scholar 

  44. Frank H (1990) Gas chromatography of enantiomers on chiral stationary phases. Chapter 3. In: Holmstedt B, Frank H, Testa B (eds) Chirality and biological activity. Alan R. Liss, New York, pp 33–54

    Google Scholar 

  45. Feibush B (1998) Chiral separation of enantiomers via selector/selectand hydrogen bondings. Chirality 10:382–395

    CAS  Google Scholar 

  46. Schurig V (2011) Gas-chromatographic enantioseparation of derivatized α-amino acids on chiral stationary phases – past and present. J Chromatogr B 879:3122–3140

    CAS  Google Scholar 

  47. Schurig V (1980) Resolution of enantiomers and isotopic compositions by selective complexation gas chromatography on metal complexes. Chromatographia 13:263–270

    CAS  Google Scholar 

  48. Schurig V (1988) Enantiomer analysis by complexation gas chromatography. Scope, merits and limitations. J Chromatogr 441:135–153

    CAS  Google Scholar 

  49. Schurig V, Betschinger F (1992) Metal-mediated enantioselective access to unfunctionalized aliphatic oxiranes: prochiral and chiral recognition. Chem Rev 92:873–888

    CAS  Google Scholar 

  50. Schurig V (1997) Molecular recognition in complexation gas chromatography, Chapter 7. In: Jinno K (ed) Chromatographic separations based on molecular recognition. Wiley-VCH, New York, pp 371–418

    Google Scholar 

  51. Schurig V (2002) Practice and theory of enantioselective complexation gas chromatography. J Chromatogr A 965:315–356

    CAS  Google Scholar 

  52. Schurig V, Nowotny H-P (1990) Gas chromatographic separation of enantiomers on cyclodextrin derivatives. Angew Chem Int Ed Engl 29:939–957

    Google Scholar 

  53. König WA (1992) Gas chromatographic enantiomer separation with modified cyclodextrins. Hüthig, Heidelberg

    Google Scholar 

  54. Snopek J, Smolková-Keulemansová E, Cserháti T, Gahm KH, Stalcup A (1996) Cyclodextrins in analytical separation methods. Chapter 18. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3, Cyclodextrins. Pergamon, Oxford, pp 516–571

    Google Scholar 

  55. Juvancz Z, Szejtli J (2002) The role of cyclodextrins in chiral selective chromatography. Trends Anal Chem 21:379–388

    CAS  Google Scholar 

  56. Schurig V (2010) Use of derivatized cyclodextrins as chiral selectors for the separation of enantiomers by gas chromatography. Ann Pharmaceut Française 68:82–98

    CAS  Google Scholar 

  57. Zhang X, Zhang Y, Armstrong DW (2012) Chromatographic separations and analysis: cyclodextrin mediated HPLC, GC and CE enantiomeric separations. Chapter 8.10. In: Carreira EM, Yamamoto H (eds) Comprehensive chirality, vol 9. Elsevier, Amsterdam, pp 177–199

    Google Scholar 

  58. Dai Y, Hai J, Tang W, Ng SC (2013) Cyclodextrin-based chiral stationary phases for gas chromatography. In: Tang W, Ng SC, Sun D (eds) Modified cyclodextrins for chiral separation. Springer-Verlag, Berlin Heidelberg, pp 27–66

    Google Scholar 

  59. Schurig V, Kreidler D (2013) Gas-chromatographic enantioseparation of unfunctionalized chiral hydrocarbons: an overview. Chapter 3. In: Scriba GKE (ed) Chiral separations, methods and protocols, 2nd edn. Humana, Springer, New York, pp 45–67

    Google Scholar 

  60. Schurig V (2013) Salient features of enantioselective gas chromatography: the enantiomeric differentiation of chiral inhalation anesthetics as a representative methodological case in point. Top Curr Chem 340:153–208

    Google Scholar 

  61. Vetter W, Schurig V (1997) Enantioselective determination of chiral organochlorine compounds in biota by gas chromatography on modified cyclodextrins. J Chromatogr A 774:143–175

    CAS  Google Scholar 

  62. Nillos MG, Gan J, Schlenk D (2010) Chirality of organophosphorus pesticides: analysis and toxicity. J Chromatogr B 878:1277–1284

    CAS  Google Scholar 

  63. Pérez-Fernández V, Garćia MÁ, Marina ML (2010) Characteristics and enantiomeric analysis of chiral pyrethroids. J Chromatogr A 127:968–989

    Google Scholar 

  64. Ali I, Aboul-Enein HY (2004) The analysis of chiral pollutants by gas chromatography, Chapter 6. In: Ali I, Aboul-Enein HY (eds) Chiral pollutants: distribution, toxicity and analysis by chromatography and capillary electrophoresis. Wiley-VCH, Weinheim, pp 185–228

    Google Scholar 

  65. Vetter W, Bester K (2006) Gas chromatographic enantioseparation of chiral pollutants – techniques and results. Chapter 6. In: Busch KW, Busch MA (eds) Chiral analysis. Elsevier, New York, pp 131–213

    Google Scholar 

  66. Hühnerfuss H, Shah MR (2009) Enantioselective chromatography – a powerful tool for the determination of biotic and abiotic transformation processes of chiral environmental pollutants. J Chromatogr A 1216:481–502

    Google Scholar 

  67. Juvancz Z, Grolimund K, Schurig V (1993) Pharmaceutical applications of a bonded cyclodextrin stationary phase. J Microcol Sep 5:459–468

    CAS  Google Scholar 

  68. Bernreuther A, Epperlein U, Koppenhoefer B (1997) Enantiomers: why they are important and how to resolve them. Chapter 6. In: Marsili R (ed) Techniques for analyzing food aroma. Marcel Dekker, New York, pp 143–207

    Google Scholar 

  69. Bicchi C, Manzin V, D’Amato A, Rubiolo P (1995) Cyclodextrin derivatives in GC separation of enantiomers of essential oil, aroma and flavour compounds. Flavour Fragr J 10:127–137

    CAS  Google Scholar 

  70. Bicchi C, D’Amato A, Rubiolo P (1999) Cyclodextrin derivatives as chiral selectors for direct gas chromatographic separation of enantiomers in the essential oil, aroma and flavour field. J Chromatogr A 843:99–121

    CAS  Google Scholar 

  71. Mosandl A (2004) Authenticity assessment: a permanent challenge in food flavor and essential oil analysis. J Chromatogr Sci 42:440–449

    CAS  Google Scholar 

  72. Tranchida PQ, Bonaccorsi I, Dugo P, Mondello L, Dugo G (2012) Analysis of citrus essential oils: state of the art and future perspectives. A review. Flavour Fragr J 27:98–123

    CAS  Google Scholar 

  73. Marriott PJ, Shellie R, Cornwell C (2001) Gas chromatographic technologies for the analysis of essential oils. J Chromatogr A 936:1–22

    CAS  Google Scholar 

  74. Gil-Av E, Feibush B, Charles-Sigler R (1966) Separation of enantiomers by gas liquid chromatography with an optically active stationary phase. Tetrahedr Lett 7:1009–1015

    Google Scholar 

  75. Schurig V (2007) Emanuel Gil-Av and the separation of enantiomers on chiral stationary phases by chromatography. In: Ettre LS (ed) Milestones in chromatography. LC x GC North Am 25(4):382–395

    Google Scholar 

  76. Gil-Av E, Feibush B (1967) Resolution of enantiomers by gas liquid chromatography with optically active stationary phases. Separation on packed columns. Tetrahedr Lett 8:3345–3347

    Google Scholar 

  77. Schurig V (2004) Preparative-scale separation of enantiomers on chiral stationary phases by gas chromatography. In: Toda F (ed) Enantiomer separation: fundamentals and practical methods. Kluwer, Dordrecht, pp 267–300

    Google Scholar 

  78. Feibush B (1971) Interaction between asymmetric solutes and solvents. N-Lauroyl-valyl-tert-butylamide as stationary phase in gas liquid partition chromatography. J Chem Soc Chem Commun 11:544–545

    Google Scholar 

  79. Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino-acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15:174–176

    CAS  Google Scholar 

  80. Frank H, Nicholson GJ, Bayer E (1978) Chiral polysiloxanes for resolution of optical antipodes. Angew Chem Int Ed 17:363–365

    Google Scholar 

  81. Schurig V, Juza M, Preschel M, Nicholson GJ, Bayer E (1999) Gas-chromatographic enantiomer separation of proteinogenic amino acid derivatives: comparison of Chirasil-Val and Chirasil-γ-Dex used as chiral stationary phases. Enantiomer 4:297–303

    CAS  Google Scholar 

  82. Nicholson GJ, Frank H, Bayer E (1979) Glass capillary gas chromatography of amino acid enantiomers. J High Resolut Chromatogr Chromatogr Commun 2:411–415

    CAS  Google Scholar 

  83. Lai G, Nicholson G, Bayer E (1988) Immobilization of Chirasil-Val on glass capillaries. Chromatographia 26:229–233

    CAS  Google Scholar 

  84. Saeed T, Sandra P, Verzele M (1979) Synthesis and properties of a novel chiral stationary phase for the resolution of amino acid enantiomers. J Chromatogr 186:611–618

    CAS  Google Scholar 

  85. König WA, Benecke I (1981) Gas chromatographic separation of enantiomers of amines and amino alcohols on chiral stationary phases. J Chromatogr 209:91–95

    Google Scholar 

  86. Koppenhoefer B, Mühleck U, Lohmiller K (1995) Backbone modification of Chirasil-Val: effect of nonpolar side chains on enantiomer separation in gas chromatography. Chromatographia 40:718–723

    CAS  Google Scholar 

  87. Abe I, Kuramoto S, Musha S (1983) Heliflex Chirasil-Val; GC of amino acid enantiomers. J High Resolut Chromatogr Chromatogr Commun 6:366–370

    CAS  Google Scholar 

  88. Levkin PA, Levkina A, Schurig V (2006) Combining the enantioselectivities of L-valine diamide and permethylated β-cyclodextrin in one gas chromatographic chiral stationary phase. Anal Chem 78:5143–5148

    CAS  Google Scholar 

  89. Frank H, Abe I, Fabian G (1992) A versatile approach to the reproducible synthesis of functionalized polysiloxane stationary phases. J High Resolut Chromatogr 15:444–448

    CAS  Google Scholar 

  90. Abe I, Terada K, Nakahara T, Frank H (1998) New stereoselective GC phases: immobilized chiral polysiloxanes with (S)-(-)-t-leucine derivatives as selectors. J High Resolut Chromatogr 21:592–596

    CAS  Google Scholar 

  91. Abe I, Ohtani S (2006) Novel chiral selectors anchored on polydimethylsiloxane as stationary phases for separation of derivatized amino acid enantiomers by capillary gas chromatography. J Sep Sci 29:319–324

    CAS  Google Scholar 

  92. Bonner WA, Van Dort MA, Flores JJ (1974) Quantitative gas chromatographic analysis of leucine enantiomers. Comparative study. Anal Chem 46:2104–2107

    CAS  Google Scholar 

  93. Abdalla S, Bayer E, Frank H (1987) Derivatives for separation of amino acid enantiomers. Chromatographia 23:83–85

    CAS  Google Scholar 

  94. Hušek P (1991) Rapid derivatization and gas chromatographic determination of amino acids. J Chromatogr 552:289–299

    Google Scholar 

  95. Zahradnickova H, Hušek P, Simek P (2009) GC separation of amino acid enantiomers via derivatization with heptafluorobutyl chloroformate and Chirasil-L-Val column. J Sep Sci 32:3919–3924

    CAS  Google Scholar 

  96. Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2008) Automated GC–MS analysis of free amino acids in biological fluids. J Chromatogr B 870:222–232

    CAS  Google Scholar 

  97. Junge M, Huegel H, Marriott PJ (2007) Enantiomeric analysis of amino acids by using comprehensive two-dimensional gas chromatography. Chirality 19:228–234

    CAS  Google Scholar 

  98. Woiwode W, Frank H, Nicholson GJ, Bayer E (1978) Studies upon racemization of cysteine-containing peptides. Chem Ber Recueil 111:3711–3718

    CAS  Google Scholar 

  99. Frank H, Woiwode W, Nicholson G, Bayer E (1981) Determination of the rate of acidic catalyzed racemization of protein amino-acids. Liebigs Ann Chem 3:354–365

    Google Scholar 

  100. Liardon R, Ledermann S, Ott U (1981) Determination of D-amino acids by deuterium labelling and selected ion monitoring. J Chromatogr 203:385–395

    CAS  Google Scholar 

  101. Nokihara K, Gerhardt J (2001) Development of an improved automated gas chromatographic chiral analysis system: application to non-natural amino acids and natural protein hydrolysates. Chirality 13:431–434

    CAS  Google Scholar 

  102. Weiner S, Kustanovich Z, Gil-Av E (1980) Dead Sea scroll parchments: unfolding of the collagen molecules and racemization of aspartic acid. Nature 287:820–823

    CAS  Google Scholar 

  103. Rykowska L, Wasiak W (2009) Recent advances in gas chromatography for solid and liquid stationary phases containing metal ions. J Chromatogr A 1216:1713–1722

    CAS  Google Scholar 

  104. Schurig V (2012) Supramolecular chromatography. Chapter 6. In: Schneider H-J (ed) Applications of supramolecular chemistry. CRC, Boca Raton, pp 129–157

    Google Scholar 

  105. Schurig V (1977) Resolution of a chiral olefin by complexation chromatography on an optically active rhodium(I) complex. Angew Chem Int Ed 16:110

    Google Scholar 

  106. Schurig V, Gil-Av E (1976) Chromatographic resolution of chiral olefins. Specific rotation of 3-methylcyclopentene and related compounds. Isr J Chem 15:96–98

    Google Scholar 

  107. Golding BT, Sellars PJ, Wong AK (1977) Resolution of racemic epoxides on g.l.c. columns containing optically active lanthanoid complexes. J Chem Soc Chem Commun 16:570–571

    Google Scholar 

  108. Schurig V, Bürkle W (1982) Extending the scope of enantiomer resolution by complexation gas chromatography. J Am Chem Soc 104:7573–7580

    CAS  Google Scholar 

  109. Schurig V, Weber R (1981) Manganese(II)-bis(3-heptafluorobutyryl-1R-camphorate): a versatile agent for the resolution of racemic cyclic ethers by complexation gas chromatography. J Chromatogr 217:51–70

    CAS  Google Scholar 

  110. Schurig V, Schmalzing D, Schleimer M (1991) Enantiomer separation on immobilized Chirasil-Metal and Chirasil-Dex by gas chromatography and supercritical fluid chromatography. Angew Chem Int Ed 30:987–989

    Google Scholar 

  111. Schleimer M, Schurig V (1993) Enantiomer separation by complexation gas and supercritical fluid chromatography on immobilized polysiloxane-bonded nickel(II) bis[3-(heptafluorobutanoyl)-10-methylene-(1R)-camphorate] (Chirasil-nickel). J Chromatogr 638:85–96

    CAS  Google Scholar 

  112. Schleimer M, Fluck M, Schurig V (1994) Enantiomer separation by capillary SFC and GC on Chirasil-Nickel: observation of unusual peak broadening phenomena. Anal Chem 66:2893–2897

    CAS  Google Scholar 

  113. Spallek MJ, Storch G, Trapp O (2012) Straightforward synthesis of poly(dimethylsiloxane) phases with immobilized 3-(perfluoroalkanoyl)-(1R)-camphorate metal complexes and their application in enantioselective complexation gas chromatography. Eur J Org Chem 21:3929–3945

    Google Scholar 

  114. Stockinger S, Spallek MJ, Trapp O (2012) Investigation of novel immobilized 3-(perfluoroalkanoy1)-(1R)-camphorate nickel complexes in enantioselective complexation gas chromatography. J Chromatogr A 1269:346–351

    CAS  Google Scholar 

  115. Ôi N, Horiba M, Kitahara H, Doi T, Tani T, Sakakibara T (1980) Direct separation of α-hydroxycarboxylic acid ester enantiomers by gas chromatography with optically active copper(II) complexes. J Chromatogr 202:305–308

    Google Scholar 

  116. Xie SM, Zhang XH, Zhang ZJ, Zhang M, Jia J, Yuan LM (2013) A 3-D open-framework material with intrinsic chiral topology used as stationary phase in gas chromatography. Anal Bioanal Chem 405:3407–3412

    CAS  Google Scholar 

  117. Xie SM, Zhang XH, Zhang ZJ, Yuan LM (2013) Porous chiral metal-organic framework InH(D-C10H14O4)2 with anionic-type diamond network for high-resolution gas chromatographic enantioseparations. Anal Lett 46:753–763

    CAS  Google Scholar 

  118. Schurig V (1998) Peak coalescence phenomena in enantioselective chromatography. Chirality 10:140–146

    CAS  Google Scholar 

  119. Schurig V (2005) Contributions to the theory and practice of the chromatographic separation of enantiomers. Chirality 17:S205–S226

    CAS  Google Scholar 

  120. Bürkle W, Karfunkel H, Schurig V (1984) Dynamic phenomena during enantiomer resolution by complexation gas chromatography. A kinetic study of enantiomerization. J Chromatogr 288:1–14

    Google Scholar 

  121. Schurig V, Jung M, Schleimer M, Klärner F-G (1992) Investigation of the enantiomerization barrier of homofuran by computer simulation of interconversion profiles obtained by complexation gas chromatography. Chem Ber Recueil 125:1301–1303

    CAS  Google Scholar 

  122. Schurig V, Keller F, Reich S, Fluck M (1997) Dynamic phenomena involving chiral dimethyl-2,3-pentadienedioate in enantioselective gas chromatography and NMR spectroscopy. Tetrahedr Asymm 8:3475–3480

    CAS  Google Scholar 

  123. Trapp O, Schoetz G, Schurig V (2001) Determination of enantiomerization barriers by dynamic and stopped-flow chromatographic methods. Chirality 13:403–414

    CAS  Google Scholar 

  124. Krupčik J, Oswald P, Májek P, Sandra P, Armstrong DW (2003) Determination of the interconversion energy barrier of enantiomers by separation methods. J Chromatogr A 1000:779–800

    Google Scholar 

  125. Wolf C (2008) Dynamic stereochemistry of chiral compounds – principles and applications. RSC, Cambridge

    Google Scholar 

  126. Trapp O (2013) Interconversion of stereochemically labile enantiomers (enantiomerization). Top Curr Chem 341:231–270

    Google Scholar 

  127. Schurig V, Ossig J, Link R (1989) Evidence for a temperature dependent reversal of the enantioselectivity in complexation gas chromatography on chiral phases. Angew Chem Int Ed 28:194–196

    Google Scholar 

  128. Jiang Z, Schurig V (2008) Existence of a low isoenantioselective temperature in complexation gas chromatography. Profound change of enantioselectivity of a nickel(II) chiral selector either bonded to, or dissolved in, poly(dimethylsiloxane). J Chromatogr A 1186:262–270

    CAS  Google Scholar 

  129. Kościelski T, Sybilska D, Jurczak J (1983) Separation of α- and β-pinene into enantiomers in gas-liquid chromatography systems via α-cyclodextrin inclusion complexes. J Chromatogr 280:131–134

    Google Scholar 

  130. Kościelski T, Sybilska D, Jurczak J (1986) New chromatographic method for the determination of the enantiomeric purity of terpenoic hydrocarbons. J Chromatogr 364:299–303

    Google Scholar 

  131. Ochocka R, Sybilska D, Asztemborska M, Kowalczyk J, Goronowicz J (1991) Approach to direct chiral recognition of some terpenic hydrocarbon constituents of essential oils by gas chromatography systems via α-cyclodextrin complexation. J Chromatogr 543:171–177

    CAS  Google Scholar 

  132. Ceborska M, Asztemborska M, Luboradzki R, Lipkowski J (2013) Interactions with β-cyclodextrin as a way for encapsulation and separation of camphene and fenchene. Carbohydr Polym 91:110–114

    CAS  Google Scholar 

  133. Lindström M, Norin T, Roeraade J (1990) Gas chromatographic separation of monoterpene hydrocarbon enantiomers on α-cyclodextrin. J Chromatogr 513:315–320

    Google Scholar 

  134. Juvancz Z, Alexander G, Szejtli J (1987) Permethylated β-cyclodextrin as stationary phase in capillary gas chromatography. J High Resolut Chromatogr 10:105–107

    CAS  Google Scholar 

  135. Alexander G, Juvancz Z, Szejtli J (1988) Cyclodextrins and their derivatives as stationary phases in GC capillary columns. J High Resolut Chromatogr 11:110–113

    CAS  Google Scholar 

  136. Schurig V, Nowotny H-P (1987) Separation of enantiomers on diluted permethylated β-cyclodextrin by high-resolution gas chromatography. In: Zlatkis A (ed) Proceedings of advances in chromatography, Berlin, 8–10 Sept 1987

    Google Scholar 

  137. Schurig V, Nowotny H-P (1988) Separation of enantiomers on diluted permethylated β-cyclodextrin by high-resolution gas chromatography. J Chromatogr 441:155–163

    CAS  Google Scholar 

  138. Nowotny H-P, Schmalzing D, Wistuba D, Schurig V (1989) Extending the scope of enantiomer separation on diluted methylated β-cyclodextrin derivatives by high resolution gas chromatography. High Resolut Chromatogr 12:383–393

    CAS  Google Scholar 

  139. König WA, Lutz S, Mischnick-Lübbecke P, Brassat B, Wenz G (1988) Cyclodextrins as chiral stationary phases in capillary gas chromatography I. Pentylated α-cyclodextrin. J Chromatogr 447:193–197

    Google Scholar 

  140. Armstrong DW, Li W, Chang C-D, Pitha J (1990) Polar-liquid, derivatized cyclodextrin stationary phases for the capillary gas chromatography separation of enantiomers. Anal Chem 62:914–923

    CAS  Google Scholar 

  141. Li W-Y, Jin HL, Armstrong DW (1990) 2,6-Di-O-pentyl-3-O-trifluoroacetyl cyclodextrin liquid stationary phases for capillary gas chromatographic separation of enantiomers. J Chromatogr 509:303–324

    CAS  Google Scholar 

  142. Hardt I, König WA (1993) Diluted versus undiluted cyclodextrin derivates in capillary gas chromatography and the effect of linear carrier gas velocity, column temperature, and length on enantiomer separation. J Microcol Sep 5:35–40

    CAS  Google Scholar 

  143. Mayer S, Schmalzing D, Jung M, Schleimer M (1992) A chiral test mixture for permethylated β-cyclodextrin-polysiloxane gas-liquid chromatography phases: the Schurig test mixture. LC x GC Int 5(4):58–59, LC x GC 10(10):782–785

    Google Scholar 

  144. Keim W, Köhnes A, Meltzow W, Römer H (1991) Enantiomer separation by gas chromatography on cyclodextrin chiral stationary phases. J High Resolut Chromatogr 14:507–529

    CAS  Google Scholar 

  145. Bicchi C, Artuffo G, D’Amato A, Nano GM, Galli A, Galli M (1991) Permethylated cyclodextrins in the GC separation of racemic mixtures of volatiles: Part 1. J High Resolut Chromatogr 14:301–305

    CAS  Google Scholar 

  146. Huang K, Zhang X, Armstrong DW (2010) Ionic cyclodextrins in ionic liquid matrices as chiral stationary phases for gas chromatography. J Chromatogr A 1217:5261–5273

    CAS  Google Scholar 

  147. Liang M, Qi M, Zhang C, Fu R (2004) Peralkylated-β-cyclodextrin used as gas chromatographic stationary phase prepared by sol-gel technology for capillary column. J Chromatogr A 1059:111–119

    CAS  Google Scholar 

  148. Grisales JO, Lebed PJ, Keunchkarian S, González FR, Castells CB (2009) Permethylated β-cyclodextrin in liquid poly(oxyethylene) as a stationary phase for capillary gas chromatography. J Chromatogr A 1216:6844–6851

    CAS  Google Scholar 

  149. Delahousse G, Peulon-Agasse V, Debray JC, Vaccaro M, Cravotto G, Jabin I, Cardinael P (2013) The incorporation of calix[6]arene and cyclodextrin derivatives into sol-gels for the preparation of stationary phases for gas chromatography. J Chromatogr A 1318:207–216

    CAS  Google Scholar 

  150. Blum W, Aichholz R (1990) Gas chromatographic enantiomer separation on tert-butylsilylated β-cyclodextrin diluted in PS-086. A simple method to prepare enantioselective glass capillary columns. J High Resolut Chromatogr 13:515–518

    CAS  Google Scholar 

  151. Dietrich A, Maas B, Messer W, Bruche G, Karl V, Kaunzinger A, Mosandl A (1992) Stereoisomeric flavor compounds, part LVIII: the use of heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin as a chiral stationary phase in flavour analysis. J High Resolut Chromatogr 15:590–593

    CAS  Google Scholar 

  152. Takahisa E, Engel K-H (2005) 2,3-Di-O-methoxymethyl-6-O-tert.-butyldimethylsilyl-γ-cyclodextrin: a new class of cyclodextrin derivatives for gas chromatographic separation of enantiomers. J Chromatogr A 1063:181–192

    CAS  Google Scholar 

  153. Bicchi C, D’Amato D, Manzin V, Galli A, Galli M (1996) Cyclodextrin derivatives in the gas chromatographic separation of racemic mixtures of volatile compounds. X. 2,3-Di-O-ethyl-6-O-tert-butyldimethylsilyl-β- and -γ-cyclodextrins. J Chromatogr A 742:161–173

    CAS  Google Scholar 

  154. Dietrich A, Maas B, Karl V, Kreis P, Lehmann D, Weber B, Mosandl A (1992) Stereoisomeric flavor compounds, part LV: stereodifferentiation of some chiral volatiles on heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin. J High Resolut Chromatogr 15:176–179

    CAS  Google Scholar 

  155. Zhang Y, Breitbach ZS, Wang CL, Armstrong DW (2010) The use of cyclofructans as novel chiral selectors for gas chromatography. Analyst 135:1076–1083

    CAS  Google Scholar 

  156. Schurig V, Juza M (1997) Approach to the thermodynamics of enantiomer separation by gas chromatography. Enantioselectivity between the chiral inhalation anesthetics enflurane, isoflurane and desflurane and a diluted γ-cyclodextrin derivative. J Chromatogr A 757:119–135

    CAS  Google Scholar 

  157. Špánic I, Krupčik J, Schurig V (1999) Comparison of two methods for the gas chromatographic determination of thermodynamic parameters of enantioselectivity. J Chromatogr A 843:123–128

    Google Scholar 

  158. Jung M, Schmalzing D, Schurig V (1991) Theoretical approach to the gas chromatographic separation of enantiomers on dissolved cyclodextrin derivatives. J Chromatogr 552:43–57

    CAS  Google Scholar 

  159. Schurig V, Schmalzing D, Mühleck U, Jung M, Schleimer M, Mussche P, Duvekot C, Buyten JC (1990) Gas chromatographic enantiomer separation on polysiloxane anchored permethyl-β-cyclodextrin (Chirasil-Dex). J High Resolut Chromatogr 13:713–717

    CAS  Google Scholar 

  160. Fischer P, Aichholz R, Bölz U, Juza M, Krimmer S (1990) Permethyl-β-cyclodextrin, chemically bonded to polysiloxane: a chiral stationary phase with wider application range for enantiomer separation by capillary gas chromatography. Angew Chem Int Ed 29:427–429

    Google Scholar 

  161. Haglund P, Wiberg K (1996) Determination of the gas chromatographic elution sequences of the (+)- and (-)-enantiomers of stable atropisomeric PCBs on Chirasil-Dex. J High Resolut Chromatogr 19:373–376

    CAS  Google Scholar 

  162. Cooper G, Sant M, Asiyo C (2009) Gas chromatography-mass spectrometry resolution of sugar acid enantiomers on a permethylated β-cyclodextrin stationary phase. J Chromatogr A 1216:6838–6843

    CAS  Google Scholar 

  163. Goesmann F, Rosenbauer H, Roll R, Szopa C, Raulin F, Sternberg R, Israel G, Meierhenrich U, Thiemann W, Munoz-Caro G (2007) COSAC, the cometary sampling and composition experiment on Philae. Space Sci Rev 128:257–280

    CAS  Google Scholar 

  164. Evans AC, Meinert C, Giri C, Goesmann F, Meierhenrich U (2012) Chirality, photochemistry and the detection of amino acids in interstellar ice analogues and comets. Chem Soc Rev 41:5447–5458

    CAS  Google Scholar 

  165. Freissinet C, Buch A, Szopa C, Sternberg R (2013) Enantiomeric separation of volatile organics by gas chromatography for the in situ analysis of extraterrestrial materials: kinetics and thermodynamics investigation of various chiral stationary phases. J Chromatogr A 1306:59–71

    CAS  Google Scholar 

  166. Pietrogrande MC (2013) Enantioselective separation of amino acids as biomarkers indicating life in extraterrestrial environments. Anal Bioanal Chem 405:7931–7940

    CAS  Google Scholar 

  167. Schurig V, Jung M, Mayer S, Fluck M, Negura S, Jakubetz H (1995) Unified enantioselective capillary chromatography on a Chirasil-DEX stationary phase. Advantages of column miniaturization. J Chromatogr A 694:119–128

    CAS  Google Scholar 

  168. Cousin H, Trapp O, Peulon-Agasse V, Pannecoucke X, Banspach L, Trapp G, Jiang Z, Combret JC, Schurig V (2003) Synthesis, NMR spectroscopic characterization and polysiloxane-based immobilization of the three regioisomeric monooctenyl permethyl-β-cyclodextrins and their application in enantioselective GC. Eur J Org Chem 17:3273–3287

    Google Scholar 

  169. Grosenick H, Schurig V (1997) Enantioselective capillary gas chromatography and capillary supercritical fluid chromatography on an immobilized γ-cyclodextrin derivative. J Chromatogr A 761:181–193

    CAS  Google Scholar 

  170. Armstrong DW, Tang Y, Ward T, Nichols M (1993) Derivatized cyclodextrins immobilized on fused-silica capillaries for enantiomeric separations via capillary electrophoresis, gas chromatography, or supercritical fluid chromatography. Anal Chem 65:1114–1117

    CAS  Google Scholar 

  171. Bradshaw JS, Chen Z, Yi GL, Rossiter BE, Malik A, Pyo D, Yun H, Black DR, Zimmerman SS, Lee ML, Tong W, D’Souza VT (1995) 6A,6B-β-Cyclodextrin hexasiloxane copolymers: enantiomeric separations by a β-cyclodextrin-containing rotaxane copolymer. Anal Chem 67:4437–4439

    CAS  Google Scholar 

  172. Sicoli G, Jiang Z, Jicsinsky L, Schurig V (2005) Modified linear dextrins (‘acyclodextrins’) as new chiral selectors for the gas-chromatographic separation of enantiomers. Angew Chem Int Ed 44:4092–4095

    CAS  Google Scholar 

  173. Sicoli G, Pertici F, Jiang Z, Jicsinszky L, Schurig V (2007) Gas-chromatographic approach to probe the absence of molecular inclusion in enantioseparations by carbohydrates. Investigation of linear dextrins (“acyclodextrins”) as novel chiral stationary phases. Chirality 19:391–400

    CAS  Google Scholar 

  174. Pirkle WH, Welch CJ (1996) Some thoughts on the coupling of dissimilar chiral columns or the mixing of chiral stationary phases for the separation of enantiomers. J Chromatogr A 731:322–326

    CAS  Google Scholar 

  175. Levkin PA, Schurig V (2008) Apparent and true enantioselectivity of single- and binary-selector chiral stationary phases in gas chromatography. J Chromatogr A 1184:309–322

    CAS  Google Scholar 

  176. Pfeiffer J, Schurig V (1999) Enantiomer separation of amino acid derivatives on a new polymeric chiral resorc[4]arene stationary phase by capillary gas chromatography. J Chromatogr A 840:145–150

    CAS  Google Scholar 

  177. Ruderisch A, Pfeiffer J, Schurig V (2001) Synthesis of an enantiomerically pure resorcinarene with pendant L-valine residues and its attachment to a polysiloxane (Chirasil-Calix). Tetrahedr Asymm 12:2025–2030

    CAS  Google Scholar 

  178. Ruderisch A, Pfeiffer J, Schurig V (2003) Mixed chiral stationary phase containing modified resorcinarene and β-cyclodextrin selectors bonded to a polysiloxane for enantioselective gas chromatography. J Chromatogr A 994:127–135

    CAS  Google Scholar 

  179. Levkin PA, Ruderisch A, Schurig V (2006) Combining the enantioselectivity of a cyclodextrin and a diamide selector in a mixed binary gas-chromatographic chiral stationary phase. Chirality 18:49–63

    CAS  Google Scholar 

  180. Levkin PA, Levkina A, Czesla H, Nazzi S, Schurig V (2007) Expanding the enantioselectivity of the gas-chromatographic chiral stationary phase Chirasil-Val-C-11 by doping it with octakis(3-O-butanoyl-2,6-di-O-n-pentyl)-γ-cyclodextrin. J Sep Sci 30:98–103

    CAS  Google Scholar 

  181. Uccello-Barretta G, Nazzi S, Balzano F, Levkin PA, Schurig V, Salvadori P (2007)Heptakis[2,3-di-O-methyl-6-O-(L-valine-tert-butylamide-N-alpha-ylcarbonylmethyl)]-β-cyclodextrin: a new multifunctional cyclodextrin CSA for the NMR enantiodiscrimination of polar and apolar substrates. Eur J Org Chem 19:3219–3226

    Google Scholar 

  182. Stephany O, Dron F, Tisse S, Martinez A, Nuzillard J-M, Peulon-Agasse V, Cardinaël P, Bouillon J-P (2009) (L)- or (D)-valine tert-butylamide grafted on permethylated β-cyclodextrin derivatives as new mixed binary chiral selectors: versatile tools for capillary gas chromatographic enantioseparation. J Chromatogr A 1216:4051–4062

    CAS  Google Scholar 

  183. Stephany O, Tisse S, Coadou G, Bouillon JP, Peulon-Agasse V, Cardinael P (2012) Influence of amino acid moiety accessibility on the chiral recognition of cyclodextrin-amino acid mixed selectors in enantioselective gas chromatography. J Chromatogr A 1270:254–261

    CAS  Google Scholar 

  184. Schurig V, Czesla H (2001) Miniaturization of enantioselective gas chromatography. Enantiomer 6:107–128

    CAS  Google Scholar 

  185. Ishii D, Niwa T, Ohta K, Takeuchi T (1988) Unified capillary chromatography. J High Resolut Chromatogr 11:800–801

    CAS  Google Scholar 

  186. Lindström M (1991) Improved enantiomer separation using very short capillary columns coated with permethylated β-cyclodextrin. J High Resolut Chromatogr 14:765–767

    Google Scholar 

  187. Bicchi C, Liberto E, Cagliero C, Cordero C, Sgorbini B, Rubiolo P (2008) Conventional and narrow bore short capillary columns with cyclodextrin derivatives as chiral selectors to speed-up enantioselective gas chromatography and enantioselective gas chromatography-mass spectrometry analyses. J Chromatogr A 1212:114–123

    CAS  Google Scholar 

  188. Bicchi C, Blumberg L, Cagliero C, Cordero C, Rubiolo P, Liberto E (2010) Development of fast enantioselective gas-chromatographic analysis using gas-chromatographic method-translation software in routine essential oil analysis (lavender essential oil). J Chromatogr A 1217:1530–1536

    CAS  Google Scholar 

  189. Schurig V, Grosenick H, Juza M (1995) Enantiomer separation of chiral inhalation anesthetics (enflurane, isoflurane and desflurane) by gas chromatography on a γ-cyclodextrin derivative. Recl Trav Chim Pays-Bas 114:211–219

    CAS  Google Scholar 

  190. Prichard E (2003) Gas chromatography practical laboratory skills training guides. The Royal Society of Chemistry, Thomas Graham House, Cambridge, pp 1–36

    Google Scholar 

  191. Juza M, Jakubetz H, Hettesheimer H, Schurig V (1999) Quantitative determination of isoflurane enantiomers in blood samples during and after surgery via headspace gas chromatography-mass spectrometry. J Chromatogr B 735:93–102

    CAS  Google Scholar 

  192. Frank H, Nicholson GJ, Bayer E (1978) Enantiomer labelling, a method for the quantitative analysis of amino acids. J Chromatogr 167:187–196

    CAS  Google Scholar 

  193. Blair NE, Bonner WA (1980) Quantitative determination of D ≠ L mixtures of optical enantiomers by gas chromatography. J Chromatogr 198:185–187

    CAS  Google Scholar 

  194. Tsai W-L, Hermann K, Hug E, Rohde B, Dreiding AS (1985) Enantiomer-differentiation induced by an enantiomeric excess during chromatography with achiral phases. Helv Chim Acta 68:2238–2243

    CAS  Google Scholar 

  195. Trapp O, Schurig V (2010) Nonlinear effects in enantioselective chromatography: prediction of unusual elution profiles of enantiomers in non-racemic mixtures on an achiral stationary phase doped with small amounts of a chiral selector. Tetrahedr Asymm 21:1334–1340

    CAS  Google Scholar 

  196. König WA (1993) Forum: collection of enantiomer separation factors obtained by capillary gas chromatography on chiral stationary phases. J High Resolut Chromatogr 16:312–323

    Google Scholar 

  197. König WA (1993) Forum: collection of enantiomer separation factors obtained by capillary gas chromatography on chiral stationary phases. J High Resolut Chromatogr 16:338–352

    Google Scholar 

  198. König WA (1993) Forum: collection of enantiomer separation factors obtained by capillary gas chromatography on chiral stationary phases. J High Resolut Chromatogr 16:569–586

    Google Scholar 

  199. Maas B, Dietrich A, Mosandl A (1994) Forum: collection of enantiomer separation factors obtained by capillary gas chromatography on chiral stationary phases. J High Resolut Chromatogr 17:109–115

    Google Scholar 

  200. Maas B, Dietrich A, Mosandl A (1994) Forum: collection of enantiomer separation factors obtained by capillary gas chromatography on chiral stationary phases. J High Resolut Chromatogr 17:169–173

    CAS  Google Scholar 

  201. Tang YB, Zhou YW, Armstrong DW (1994) Examination of the enantioselectivity of wall-immobilized cyclodextrin copolymers in capillary gas chromatography. J Chromatogr A 666:147–159

    CAS  Google Scholar 

  202. Koppenhoefer B, Graf R, Holzschuh H, Nothdurft A, Trettin U, Piras P, Roussel C (1994) CHIRBASE, a molecular database for the separation of enantiomers by chromatography. J Chromatogr A 666:557–563

    CAS  Google Scholar 

  203. Schurig V (1995) Determination of enantiomeric purity. In: Helmchen G, Hoffmann RW, Mulzer J, Schaumann E (eds) Houben-Weyl, methods of organic chemistry. Volume E21a: Stereoselective synthesis. A.3. Chapter 3.1.5: By gas chromatography. Thieme, New York, pp 168–192

    Google Scholar 

  204. Reiner C, Nicholson GJ, Nagel U, Schurig V (2007) Evaluation of enantioselective gas chromatography for the determination of minute deviations from racemic composition of α-amino acids with emphasis on tyrosine: accuracy and precision of the method. Chirality 19:401–414

    CAS  Google Scholar 

  205. Koppenhoefer B, Trettin U, Figura R, Lin B (1989) Accurate determination of the intrinsic racemization in chiral synthesis via enantiomer resolution of underivatized vicinal diols. Tetrahedr Lett 30:5109–5110

    CAS  Google Scholar 

  206. Koppenhoefer B, Muschalek V, Hummel M, Bayer E (1989) Determination of the enhancement of the enantiomeric purity during recrystallization of amino acids. J Chromatogr 477:139–145

    Google Scholar 

  207. Bayer E, Allmendinger H, Enderle G, Koppenhoefer B (1985) Anwendung von D-Chirasil-Val bei der gas-chromatographischen Analytik von Enantiomeren. Fresenius Z Anal Chem 321:321–324

    CAS  Google Scholar 

  208. Stalcup AM (2010) Chiral separations (Chapter 2.2.3. Chiral separation validation). Annu Rev Anal Chem 3:341–363

    CAS  Google Scholar 

  209. (1997) ICH Q 2 B: Validation of analytical procedures: methodology. In: International conference on harmonization of technical requirements for the registration of drugs for human use, Geneva, Switzerland, May 1997

    Google Scholar 

  210. (2000) ICH Q 6 A: specifications. In: International conference on harmonization of technical requirements for the registration of drugs for human use; Test procedures and acceptance criteria for new drug substances and new drug products: chemical substances, section 3.3.1.d and decision tree # 5 in (CPMP/ICH/367/96), London, UK

    Google Scholar 

  211. Wrezel PW, Chion I, Pakula R, Weissmueller DW (2006) System suitability and validation for chiral purity assays of drug substances. LC x GC North Am 24(11):1216–1221

    CAS  Google Scholar 

  212. Gerhardt J, Nicholson GJ (2001) Validation of a GC-MS method for determination of the optical purity of peptides. In: Martinez J, Fehrentz J-A (eds) Peptides 2000, Proceedings of the 26th European peptide symposium, Paris, pp 563–570

    Google Scholar 

  213. European Pharmacopoeia 8.0; Neroli oil (Nerolium aetheroleum) 01/2008:1175

    Google Scholar 

  214. Bucheli TD, Brändli RC (2006) Two-dimensional gas chromatography coupled to triple quadrupole mass spectrometry for the unambiguous determination of atropisomeric polychlorinated biphenyls in environmental samples. J Chromatogr A 1110:156–164

    CAS  Google Scholar 

  215. Xiang Y, Sluggett GW (2010) Development and validation of a GC method for quantitative determination of enantiomeric purity of a proline derivative. J Pharm Biomed Anal 53:878–883

    CAS  Google Scholar 

  216. Harner T, Wiberg K, Norstrom R (2000) Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environ Sci Technol 34:218–220

    CAS  Google Scholar 

  217. De Geus HJ, Wester PG, de Boer J, Brinkman UAT (2000) Enantiomer fractions instead of enantiomer ratios. Chemosphere 41:725–727

    Google Scholar 

  218. Hashim NH, Shafie S, Khan SJ (2010) Enantiomeric fraction as an indicator of pharmaceutical biotransformation during wastewater treatment and in the environment – a review. Environ Technol 31:1349–1370

    CAS  Google Scholar 

  219. Asher BJ, D’Agostino LA, Way JD, Wong CS, Harynuk JJ (2009) Comparison of peak integration methods for the determination of enantiomeric fraction in environmental samples. Chemosphere 75:1042–1048

    CAS  Google Scholar 

  220. Aichholz R, Bölz U, Fischer P (1990) A standard test mixture for assessing enantioselectivity of chiral phase capillary GC columns – CHIRAL-Test I for amide phases. J High Resolut Chromatogr 13:234–238

    CAS  Google Scholar 

  221. Berezkin VG, Sorokina EY, Sokolov AI, Rudenko BA (2003) Effect of water vapor on chromatographic characteristics of the cyclodextrin-containing stationary liquid phase in capillary gas chromatography. J Anal Chem 58:61–66

    CAS  Google Scholar 

  222. Jaus A, Oehme M (2001) Consequences of variable purity of heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin determined by liquid chromatography-mass spectrometry on the enantioselective separation of polychlorinated compounds. J Chromatogr A 905:59–67

    CAS  Google Scholar 

  223. Cousin H, Peulon-Agasse V, Combret J-C, Cardinael P (2009) Mono-2,3 or 6-hydroxy methylated β-cyclodextrin (eicosa-O-methyl-β-cyclodextrin) isomers as chiral stationary phases for capillary GC. Chromatographia 69:911–922

    CAS  Google Scholar 

  224. Junge M, König WA (2003) Selectivity tuning of cyclodextrin derivatives by specific substitution. J Sep Sci 26:1607–1614

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schurig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Juza, M., Schurig, V. (2014). The Analytical Separation of Enantiomers by Gas Chromatography on Chiral Stationary Phases. In: Dettmer-Wilde, K., Engewald, W. (eds) Practical Gas Chromatography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54640-2_15

Download citation

Publish with us

Policies and ethics