Skip to main content

Solvent-Free Extraction and Injection Techniques

  • Chapter
  • First Online:
Practical Gas Chromatography

Abstract

Static headspace as well as purge and trap are still widely in use for the analysis of volatile organic compounds. Since around 20 years, different types of microextraction techniques have been developed, which either require a strongly reduced amount of solvent or are completely solventless. In this chapter, we will focus on the solventless techniques, which can be combined with GC via injection or thermal desorption. In the first part a short overview of recent developments in solvent-free techniques such as headspace, purge and trap as well as microextraction techniques is given. The second part provides the theoretical background of the techniques with additional practical hints for their application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith RM (2003) Before the injection – modern methods of sample preparation for separation techniques. J Chromatogr A 1000(1–2):3–27

    CAS  Google Scholar 

  2. de Koning S, Janssen HG, Brinkman UAT (2009) Modern methods of sample preparation for GC analysis. Chromatographia 69:S33–S78. doi:10.1365/s10337-008-0937-3

    Google Scholar 

  3. Jönsson JA, Mathiasson L (2000) Membrane-based techniques for sample enrichment. J Chromatogr A 902:205–225

    Google Scholar 

  4. Pawliszyn J (2002) Sampling and sample preparation for field and laboratory : fundamentals and new directions in sample preparation. Elsevier, Amsterdam

    Google Scholar 

  5. Pawliszyn J (2003) Sample preparation: Quo Vadis? Anal Chem 75(11):2543–2558

    CAS  Google Scholar 

  6. Noble D (1993) Here today, gone tomorrow halogenated solvents in analytical chemistry. Anal Chem 65(15):693–695A

    Google Scholar 

  7. Liska I (2000) Fifty years of solid-phase extraction in water analysis – historical development and overview. J Chromatogr A 885(1–2):3–16

    CAS  Google Scholar 

  8. Hennion M-C (1999) Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A 856:3–54

    CAS  Google Scholar 

  9. Fritz JS (1999) Solid-phase extraction. Wiley, New York

    Google Scholar 

  10. Saito Y, Jinno K (2002) On-line coupling of miniaturized solid-phase extraction and microcolumn liquid-phase separations. Anal Bioanal Chem 373(6):325–331

    CAS  Google Scholar 

  11. Saito Y, Jinno K (2003) Miniaturized sample preparation combined with liquid phase separations. J Chromatogr A 1000(1–2):53–67

    CAS  Google Scholar 

  12. O’Reilly J, Wang O, Setkova L, Hutchinson JP, Chen Y, Lord HL, Linton CM, Pawliszyn J (2005) Automation of solid-phase microextraction. J Sep Sci 28(15):2010–2022

    Google Scholar 

  13. David F, Van Hoeck E, Sandra P (2007) Towards automated, miniaturized and solvent-free sample preparation methods. Anal Bioanal Chem 387(1):141–144

    CAS  Google Scholar 

  14. Baltussen E, Cramers CA, Sandra PJF (2002) Sorptive sample preparation – a review. Anal Bioanal Chem 373(1–2):3–22

    CAS  Google Scholar 

  15. Nerin C, Salafranca J, Aznar M, Batlle R (2009) Critical review on recent developments in solventless techniques for extraction of analytes. Anal Bioanal Chem 393(3):809–833

    CAS  Google Scholar 

  16. He Y, Lee HK (1997) Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Anal Chem 69(22):4634–4640

    CAS  Google Scholar 

  17. Liu H, Dasgupta PK (1996) Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal Chem 68(11):1817–1821

    CAS  Google Scholar 

  18. Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 1116(1–2):1–9

    CAS  Google Scholar 

  19. Kolb B (1980) Applied headspace gas chromatography. Heyden, London

    Google Scholar 

  20. Kolb B, Ettre LS (2006) Static headspace-gas chromatography : theory and practice, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  21. Snow NH, Slack GC (2002) Head-space analysis in modern gas chromatography. TrAC Trends Anal Chem 21(9–10):608–617

    CAS  Google Scholar 

  22. Kolb B, Ettre LS (1991) Theory and practice of multiphase extraction. Chromatographia 32(11–12):505–513

    CAS  Google Scholar 

  23. Voice TC, Kolb B (1993) Static and dynamic headspace analysis of volatile organic compounds in soils. Environ Sci Technol 27(4):709–713

    CAS  Google Scholar 

  24. Wasserbeschaffenheit-Gaschromatographische Bestimmung einer Anzahl monocyclischer aromatischer Kohlenwasserstoffe, Naphthalin und einiger chlorierter Substanzen mittels Purge und Trap-Anreicherung und thermischer Desorption (ISO 15680:2003); Deutsche Fassung EN ISO 15680:2003 (DIN-EN ISO Method 15680: 2004)

    Google Scholar 

  25. Voice TC, Kolb B (1994) Comparison of European and American techniques for the analysis of volatile organic-compounds in environmental matrices. J Chromatogr Sci 32(8):306–311

    CAS  Google Scholar 

  26. Martínez E, Lacorte S, Llobet I, Viana P, Barceló D (2002) Multicomponent analysis of volatile organic compounds in water by automated purge and trap coupled to gas chromatography-mass spectrometry. J Chromatogr A 959(1–2):181–190

    Google Scholar 

  27. Woolfenden E (2010) Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options. J Chromatogr A 1217(16):2674–2684

    CAS  Google Scholar 

  28. Demeestere K, Dewulf J, De Witte B, Van Langenhove H (2007) Sample preparation for the analysis of volatile organic compounds in air and water matrices. J Chromatogr A 1153(1–2):130–144

    CAS  Google Scholar 

  29. Woolfenden E (2010) Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 2: Sorbent selection and other aspects of optimizing air monitoring methods. J Chromatogr A 1217:2685–2694

    CAS  Google Scholar 

  30. Vreuls JJ, De Jong GJ, Ghijsen RT, Brinkman UAT (1993) On-line solid-phase extraction/thermal desorption for introduction of large volumes of aqueous samples into a capillary gas chromatograph: Part 2. J Microcolumn Sep 5(4):317–324

    CAS  Google Scholar 

  31. Vreuls JJ, Louter AJH, Brinkman UAT (1999) On-line combination of aqueous-sample preparation and capillary gas chromatography. J Chromatogr A 856(1–2):279–314

    CAS  Google Scholar 

  32. Mol HGJ, Janssen HGM, Cramers CA, Brinkman UAT (1993) Use of a temperature-programmed injector with a packed liner for direct water analysis and online reversed-phase GC-LC. J High Resolut Chromatogr 16(8):459–463

    CAS  Google Scholar 

  33. Teske J, Efer J, Engewald W (1997) Large-volume PTV injection: new results on direct injection of water samples in GC analysis. Chromatographia 46(11–12):580–586

    CAS  Google Scholar 

  34. Teske J, Efer J, Engewald W (1998) Large-volume PTV injection: comparison of direct water injection and in-vial extraction for GC analysis of triazines. Chromatographia 47(1–2):35–41

    CAS  Google Scholar 

  35. Müller RK, Grosse J, Thieme D, Lang R, Teske J, Trauer H (1999) Introduction to the application of capillary gas chromatography of performance-enhancing drugs in doping control. J Chromatogr A 843(1–2):275–285

    Google Scholar 

  36. Engewald W, Teske J, Efer J (1999) Programmed temperature vaporisers-based large volume injection in capillary gas chromatography. J Chromatogr A 842(1–2):143–161

    CAS  Google Scholar 

  37. Engewald W, Teske J, Efer J (1999) Programmed temperature vaporiser-based injection in capillary gas chromatography. J Chromatogr A 856(1–2):259–278

    CAS  Google Scholar 

  38. Teske J, Engewald W (2002) Methods for, and applications of, large-volume injection in capillary gas chromatography. TrAC Trends Anal Chem 21(9–10):584–593

    CAS  Google Scholar 

  39. Baltussen E, David F, Sandra P, Janssen HG, Cramers C (1999) Equilibrium sorptive enrichment on poly(dimethylsiloxane) particles for trace analysis of volatile compounds in gaseous samples. Anal Chem 71(22):5193–5198

    CAS  Google Scholar 

  40. Baltussen E, David F, Sandra P, Janssen HG, Cramers CA (1998) Sorption tubes packed with polydimethylsiloxane: a new and promising technique for the preconcentration of volatiles and semi-volatiles from air and gaseous samples. HRC J High Resolut Chromatogr 21(6):332–340

    CAS  Google Scholar 

  41. de Koning JA, Blokker P, Jungel P, Alkema G, Brinkman UAT (2002) Automated liner exchange – a novel approach in direct thermal desorption – gas chromatography. Chromatographia 56(3–4):185–190

    Google Scholar 

  42. Lord HL, Pawliszyn J (1998) Recent advances in solid-phase microextraction. LC GC Mag of Separ Sci 41–46

    Google Scholar 

  43. Quintana JB, Rodríguez I (2006) Strategies for the microextraction of polar organic contaminants in water samples. Anal Bioanal Chem 384:1447–1461

    CAS  Google Scholar 

  44. Mayer P, Tolls J, Hermens L, Mackay D (2003) Equilibrium sampling devices. Environ Sci Technol 37(9):184A–191A

    Google Scholar 

  45. Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR (1992) Automation and optimization of solid-phase microextraction. Anal Chem 64:1960–1966

    CAS  Google Scholar 

  46. Lord H, Pawliszyn J (2000) Evolution of solid-phase microextraction technology. J Chromatogr A 885(1–2):153–193

    CAS  Google Scholar 

  47. David F, Sandra P (2007) Stir bar sorptive extraction for trace analysis. J Chromatogr A 1152(1–2):54–69

    CAS  Google Scholar 

  48. van Pinxteren M, Paschke A, Popp P (2010) Silicone rod and silicone tube sorptive extraction. J Chromatogr A 1217(16):2589–2598

    Google Scholar 

  49. Grob K, Habich A (1985) Headspace gas analysis: the role and the design of concentration traps specifically suitable for capillary gas chromatography. J Chromatogr A 321:45–58

    CAS  Google Scholar 

  50. Burger BV, Munro Z (1986) Headspace gas analysis: quantitative trapping and thermal desorption of volatiles using fused-silica open tubular capillary traps. J Chromatogr A 370:449–464

    CAS  Google Scholar 

  51. Mol HGJ, Janssen H-GM, Cramers CA, Vreuls JJ, Brinkman UAT (1995) Trace level analysis of micropollutants in aqueous samples using gas chromatography with on-line sample enrichment and large volume injection. J Chromatogr A 703(1–2):277–307

    CAS  Google Scholar 

  52. Tienpont B, David F, Bicchi C, Sandra P (2000) High capacity headspace sorptive extraction. J Microcolumn Sep 12(11):577–584

    CAS  Google Scholar 

  53. Kataoka H (2002) Automated sample preparation using in-tube solid-phase microextraction and its application – a review. Anal Bioanal Chem 373(1–2):31–45

    CAS  Google Scholar 

  54. Nardi L (2002) Coupled in-tube SPME-HRGC: a complementary SPME technique to analyze aqueous samples by GC. Am Lab 34(1):30–37

    CAS  Google Scholar 

  55. Nardi L (2003) Guidelines for capillary extraction-capillary gas chromatography: preparation of extractors and analysis of aromatic compounds in water. J Chromatogr A 1017(1–2):1–15

    CAS  Google Scholar 

  56. Belardi RP, Pawliszyn JB (1989) The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Pollut Res J Can 24(1):179–191

    CAS  Google Scholar 

  57. Anonymous (2006) German standard methods for the examination of water, waste water and sludge – Jointly determinable substances (group F) – Part 34: Determination of selected plant treatment agents, biocides and break-down products; Method using gas chromatography (GC-MS) after solid-phase micro extraction (SPME) (F 34), vol 38407-34. Beuth, Berlin

    Google Scholar 

  58. Anonymous (2009) German standard methods for the examination of water, waste water and sludge – Jointly determinable substances (group F) – Part 41: Determination of selected easily volatile organic compounds in water – Method using gas chromatography (GC-MS) after solid-phase micro extraction (SPME), vol 38407-41. Beuth, Berlin

    Google Scholar 

  59. Anonymous (2007) Parent and alkyl polycyclic aromatics in sediment pore water by solid-phase microextraction and gas chromatography/mass spectrometry in selected ion monitoring mode, vol Method 8272. Washington, DC

    Google Scholar 

  60. Wang H, Liu W, Guan Y (2004) In-tube solid-phase microextraction and on-line coupling with high-resolution GC. LC-GC Eur 17(3):144–151

    CAS  Google Scholar 

  61. Bigham S, Medlar J, Kabir A, Shende C, Alli A, Malik A (2002) Sol-gel capillary microextraction. Anal Chem 74(4):752–761

    CAS  Google Scholar 

  62. Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley-VCH, New York

    Google Scholar 

  63. Pawliszyn J (1999) Applications of solid phase microextraction. Royal Society of Chemistry, Cambridge

    Google Scholar 

  64. Eisert R, Levsen K (1996) Solid-phase microextraction coupled to gas chromatography: a new method for the analysis of organics in water. J Chromatogr A 733(1–2):143–157

    CAS  Google Scholar 

  65. Alpendurada MF (2000) Solid-phase microextraction: a promising technique for sample preparation in environmental analysis. J Chromatogr A 889(1–2):3–14

    CAS  Google Scholar 

  66. Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Recent developments in solid-phase microextraction. Anal Bioanal Chem 393(3):781–795

    CAS  Google Scholar 

  67. Spietelun A, Kloskowski A, Chrzanowski W, Ni J (2013) Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. Chem Rev 113:1667–1685

    CAS  Google Scholar 

  68. Bicchi C, Iori C, Rubiolo P, Sandra P (2002) Headspace sorptive extraction (HSSE), stir bar sorptive extraction (SBSE), and solid phase microextraction (SPME) applied to the analysis of roasted Arabica coffee and coffee brew. J Agric Food Chem 50(3):449–459

    CAS  Google Scholar 

  69. Kataoka H (2005) Recent advances in solid-phase microextraction and related techniques for pharmaceutical and biomedical analysis. Curr Pharm Anal 1:65–84

    CAS  Google Scholar 

  70. Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B, David F, Sandra P (2005) Dual-phase twisters: a new approach to headspace sorptive extraction and stir bar sorptive extraction. J Chromatogr A 1094(1–2):9–16

    CAS  Google Scholar 

  71. Montero L, Popp P, Paschke A, Pawliszyn J (2004) Polydimethylsiloxane rod extraction, a novel technique for the determination of organic micropollutants in water samples by thermal desorption-capillary gas chromatography-mass spectrometry. J Chromatogr A 1025(1):17–26

    CAS  Google Scholar 

  72. Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11(10):737–747

    CAS  Google Scholar 

  73. Prieto A, Basauri O, Rodil R, Usobiaga A, Fernandez LA, Etxebarria N, Zuloaga O (2010) Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J Chromatogr A 1217(16):2642–2666

    CAS  Google Scholar 

  74. Lancas FM, Queiroz MEC, Grossi P, Olivares IRB (2009) Recent developments and applications of stir bar sorptive extraction. J Sep Sci 32(5–6):813–824

    CAS  Google Scholar 

  75. Sanchez-Rojas F, Bosch-Ojeda C, Cano-Pavon JM (2009) A review of stir bar sorptive extraction. Chromatographia 69:S79–S94

    Google Scholar 

  76. McComb ME, Oleschuk RD, Giller E, Gesser HD (1997) Microextraction of volatile organic compounds using the inside needle capillary adsorption trap (INCAT) device. Talanta 44:2137–2143

    CAS  Google Scholar 

  77. Shojania S, McComb ME, Perreault H, Gesser HD, Chow A, Oleschuk RD (1999) Qualitative analysis of complex mixtures of VOCs using the inside needle capillary adsorption trap. Can J Chem 77(11):1716–1727

    CAS  Google Scholar 

  78. Shojania S, Oleschuk RD, McComb ME, Gesser HD, Chow A (1999) The active and passive sampling of benzene, toluene, ethyl benzene and xylenes compounds using the inside needle capillary adsorption trap device. Talanta 50(1):193–205

    CAS  Google Scholar 

  79. Lachenmeier DW, Kroener L, Musshoff F, Madea B (2003) Application of tandem mass spectrometry combined with gas chromatography and headspace solid-phase dynamic extraction for the determination of drugs of abuse in hair samples. Rapid Commun Mass Spectrom 17(5):472–478

    CAS  Google Scholar 

  80. Sieg K, Fries E, Püttmann W (2008) Analysis of benzene, toluene, ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas chromatography/mass spectrometry. J Chromatogr A 1178(1–2):178–186

    CAS  Google Scholar 

  81. Musshoff F, Lachenmeier DW, Kroener L, Madea B (2002) Automated headspace solid-phase dynamic extraction for the determination of amphetamines and synthetic designer drugs in hair samples. J Chromatogr A 958(1–2):231–238

    CAS  Google Scholar 

  82. Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B (2004) Automated headspace solid-phase dynamic extraction to analyse the volatile fraction of food matrices. J Chromatogr A 1024(1–2):217–226

    CAS  Google Scholar 

  83. Van Durme J, Demeestere K, Dewulf J, Ronsse F, Braeckman L, Pieters J, Van Langenhove H (2007) Accelerated solid-phase dynamic extraction of toluene from air. J Chromatogr A 1175(2):145–153

    Google Scholar 

  84. Kubinec R, Berezkin VG, Gorova R, Addova G, Mracnova H, Sojak L (2004) Needle concentrator for gas chromatographic determination of BTEX in aqueous samples. J Chromatogr B Analyt Technol Biomed Life Sci 800(1–2):295–301

    CAS  Google Scholar 

  85. Jochmann MA, Yuan X, Schilling B, Schmidt TC (2008) In-tube extraction for enrichment of volatile organic hydrocarbons from aqueous samples. J Chromatogr A 1179(2):96–105

    CAS  Google Scholar 

  86. Laaks J, Jochmann MA, Schilling B, Schmidt TC (2010) In-tube extraction of volatile organic compounds from aqueous samples: an economical alternative to purge and trap enrichment. Anal Chem 82(18):7641–7648

    CAS  Google Scholar 

  87. Wang AP, Fang F, Pawliszyn J (2005) Sampling and determination of volatile organic compounds with needle trap devices. J Chromatogr A 1072(1):127–135

    CAS  Google Scholar 

  88. Gong Y, Eom IY, Lou DW, Hein D, Pawliszyn J (2008) Development and application of a needle trap device for time-weighted average diffusive sampling. Anal Chem 80(19):7275–7282

    CAS  Google Scholar 

  89. Mieth M, Kischkel S, Schubert JK, Hein D, Miekisch W (2009) Multibed needle trap devices for on site sampling and preconcentration of volatile breath biomarkers. Anal Chem 81(14):5851–5857

    CAS  Google Scholar 

  90. Mieth M, Schubert JK, Groger T, Sabel B, Kischkel S, Fuchs P, Hein D, Zimmermann R, Miekisch W (2010) Automated needle trap heart-cut GC/MS and needle trap comprehensive two-dimensional GC/TOF-MS for breath gas analysis in the clinical environment. Anal Chem 82(6):2541–2551

    CAS  Google Scholar 

  91. Saito Y, Nakao Y, Imaizumi M, Takeichi T, Kiso Y, Jinno K (2000) Fiber-in-tube solid-phase microextraction: a fibrous rigid-rod heterocyclic polymer as the extraction medium. Fresenius J Anal Chem 368(7):641–643

    CAS  Google Scholar 

  92. Kolb B (1999) Headspace sampling with capillary columns. J Chromatogr A 842(1–2):163–205

    CAS  Google Scholar 

  93. Staudinger J, Roberts PV (1996) A critical review of Henry’s law constants for environmental applications. Crit Rev Environ Sci Technol 26(3):205–297

    CAS  Google Scholar 

  94. Staudinger J, Roberts PV (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44(4):561–576

    CAS  Google Scholar 

  95. Robbins GA, Wang S, Stuart JD (1993) Using the static headspace method to determine Henry’s law constants. Anal Chem 65(21):3113–3118

    CAS  Google Scholar 

  96. Heringa MB, Hermens JLM (2003) Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). TrAC Trends Anal Chem 22(10):575–587

    CAS  Google Scholar 

  97. Ramos EU, Meijer SN, Vaes WHJ, Verhaar HJM, Hermens JLM (1998) Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environ Sci Technol 32(21):3430–3435

    CAS  Google Scholar 

  98. Schneider M, Goss KU (2009) Systematic investigation of the sorption properties of Tenax TA, Chromosorb 106, Porapak N, and Carbopak F. Anal Chem 81(8):3017–3021

    CAS  Google Scholar 

  99. Dettmer K, Engewald W (2002) Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. Anal Bioanal Chem 373(6):490–500

    CAS  Google Scholar 

  100. Lovkvist P, Jonsson JA (1987) Capacity of sampling and preconcentration columns with a low number of theoretical plates. Anal Chem 59(6):818–821

    Google Scholar 

  101. Rabe S, Krings U, Berger RG (2003) Initial dynamic flavour release from sodium chloride solutions. Eur Food Res Technol 218(1):32–39

    CAS  Google Scholar 

  102. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  103. Lou DW, Lee X, Pawliszyn J (2008) Extraction of formic and acetic acids from aqueous solution by dynamic headspace-needle trap extraction. Temperature and pH optimization. J Chromatogr A 1201(2):228–234

    CAS  Google Scholar 

  104. Zwank L, Berg M, Schmidt TC, Haderlein SB (2003) Compound-specific carbon isotope analysis of volatile organic compounds in the low-microgram per liter range. Anal Chem 75(20):5575–5583

    CAS  Google Scholar 

  105. Dettmer K, Engewald W (2003) Ambient air analysis of volatile organic compounds using adsorptive enrichment. Chromatographia 57:S339–S347

    Google Scholar 

  106. http://www.sisweb.com

  107. Graham NB, Zulfiqar M, Nwachuku NE, Rashid A (1990) Interaction of poly(ethylene oxide) with solvents: 4. Interaction of water with poly(ethylene oxide) crosslinked hydrogels. Polymer 31(5):909–916

    CAS  Google Scholar 

  108. Lattimer RP (2000) Mass spectral analysis of low-temperature pyrolysis products from poly(ethylene glycol). J Anal Appl Pyrolysis 56(1):61–78

    CAS  Google Scholar 

  109. Voorhees KJ, Baugh SF, Stevenson DN (1994) An investigation of the thermal-degradation of poly(ethylene glycol). J Anal Appl Pyrolysis 30(1):47–57

    CAS  Google Scholar 

  110. Han S, Kim C, Kwon D (1995) Thermal degradation of poly(ethyleneglycol). Polym Degrad Stab 47(2):203–208

    CAS  Google Scholar 

  111. Dietz C, Sanz J, Camara C (2006) Recent developments in solid-phase microextraction coatings and related techniques. J Chromatogr A 1103(2):183–192

    CAS  Google Scholar 

  112. Goss KU (2005) Comment on “free energy of transfer of a solute and its relation to the partition constant” – Reply. J Phys Chem B 109(37):17770–17770

    CAS  Google Scholar 

  113. Sprunger L, Proctor A, Acree WE, Abraham MH (2007) Characterization of the sorption of gaseous and organic solutes onto polydimethyl siloxane solid-phase microextraction surfaces using the Abraham model. J Chromatogr A 1175(2):162–173

    CAS  Google Scholar 

  114. http://www.ufz.de/index.php?en=16627

  115. Endo S, Droge STJ, Goss K-U (2011) Polyparameter linear free energy models for polyacrylate fiber-water partition coefficients to evaluate the efficiency of solid-phase microextraction. Anal Chem 83:1394–1400

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik A. Jochmann .

Editor information

Editors and Affiliations

Glossary of Acronyms in Extraction and Injection

Glossary of Acronyms in Extraction and Injection

ASPDE:

Accelerated solid-phase dynamic extraction

CME:

Capillary microextraction

DAI:

Direct aqueous injection

DI:

Direct immersion

DTD:

Direct thermal desorption

ESD:

Equilibrium sampling device

GPE:

Gum-phase extraction

HS:

Headspace

HSSE:

Headspace sorptive extraction

INCAT:

Inside needle capillary adsorption trap

In-tube SPME/ITSPME:

In-tube solid-phase microextraction

ITE:

In-tube extraction

ITEX:

In-tube extraction device

LLE:

Liquid–liquid extraction

LVI:

Large volume injection

Micro-SPE:

Micro solid-phase extraction

NT:

Needle trap

OTME:

Open-tubular microextraction

OTT:

Open-tubular trapping

P&T:

Purge and trap

SBSE:

Stir-bar sorptive extraction

S-HS:

Static headspace

SPDE:

Solid-phase dynamic extraction

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

SR:

Silicone rod

ST:

Silicone tube

TD:

Thermal desorption

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jochmann, M.A., Laaks, J., Schmidt, T.C. (2014). Solvent-Free Extraction and Injection Techniques. In: Dettmer-Wilde, K., Engewald, W. (eds) Practical Gas Chromatography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54640-2_11

Download citation

Publish with us

Policies and ethics