Skip to main content

Waste Thermal Energy Harvesting (III): Storage with Phase Change Materials

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Energy ((LNEN,volume 24))

Abstract

In last two chapters, both methods to harvest waste thermal energy through the conversion to electricity. In this chapter, energy storage as an alternative method to harvest waste thermal energy, especially by using phase change materials (PCMs), will be presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew. Sustain. Energy Rev. 14, 31–55 (2010)

    Google Scholar 

  2. S.M. Hasnain, Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers. Manage. 39, 1127–1138 (1998)

    Google Scholar 

  3. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009)

    Google Scholar 

  4. G.A. Lane, H.E. Rossow, Encapsulation of heat of fusion storage materials, in Proceedings of 2 nd South Eastern Conference on Application of Solar Energy, pp. 442–55 (1976)

    Google Scholar 

  5. R. Biswas, Thermal storage using sodium sulfate decahydrate and water. Sol. Energy 99, 99–100 (1977)

    Google Scholar 

  6. B. Charlsson, H. Stymmeand, G. Wattermark, An incongruent heat of fusion system CaCl2·6H2O made congruent through modification of chemical composition of the system. Sol. Energy 23, 333–350 (1979)

    Google Scholar 

  7. S. Herrick, A rolling cylinder latent heat storage device for solar heating/cooling. ASHRAE Tans. 85, 512–515 (1979)

    Google Scholar 

  8. D. Kearney, B. Kelly, U. Herrmann, R. Cable, J. Pacheco, R. Mahoney, H. Price, D. Blake, P. Nava, N. Potrovitza, Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy 29, 861–870 (2004)

    Google Scholar 

  9. U. Herrmann, B. Kelly, H. Price, Two-tank molten salt storage for parabolic trough solar power plants. Energy 29, 883–893 (2004)

    Google Scholar 

  10. D. Brosseau, J.W. Kelton, D. Ray, M. Edgar, K. Chisman, B. Emms, Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants. J. Sol. Energy Eng. Trans. ASME 127, 109–116 (2005)

    Google Scholar 

  11. J. Stefan, Uber einge problem der theoric der warmeleitung, S. B. Wein. Acad. Mat. Natur. 98, 173–484 (1989)

    Google Scholar 

  12. H.S. Carslaw, J.C. Jager, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, London, 1973)

    Google Scholar 

  13. V.J. Lauardini, Heat Transfer in Cold Climates (Van Nostrand, New York, 1981)

    Google Scholar 

  14. T.R. Goodman, The heat balance integral and its application in problems involving a change. J. Sol. Energy Eng. Trans. ASME 80, 335–342 (1958)

    Google Scholar 

  15. L.T. Yeh, B.T. Chung, Solidification and melting of material subjected to convention and radiation. J. Space Cr. Rockets 12, 329–334 (1975)

    Google Scholar 

  16. J. Crank, R. Gupta, Isothermal migration in two dimensions. Int. J. Heat Mass Transf. 18, 1101–1117 (1975)

    Google Scholar 

  17. D. Buddhi, N.K. Bansal, R.L. Sawhney, M.S. Sodha, Solar thermal storage systems using phase change materials. Int. J. Energy Res. 12, 547–555 (1988)

    Google Scholar 

  18. A. Lazaridas, A numerical solution of the multidimensional solidification (or melting) problem. Int. J. Heat Mass Transf. 13, 1459–1477 (1970)

    Google Scholar 

  19. C. Bonacina, G. Comini, A. Fasano, M. Primicerio, Numerical solution phase change problems. Int. J. Heat Mass Transf. 16, 1825–1832 (1973)

    Google Scholar 

  20. G. Comini, S. Del Guidice, R.W. Lewis, O.C. Zienkiewicz, Finite element solution of non-linear heat conduction with phase changes. Int. J. Numer. Methods Eng. 8, 613–624 (1974)

    MATH  Google Scholar 

  21. III W. Rolph, K.J. Bathe, An efficient algorithm for analysis of nonlinear heat transfer with phase change. Int. J. Numer. Methods Eng. 18, 119–134 (1982)

    Google Scholar 

  22. J. Yoo, B. Rubinsky, Numerical computation using finite elements for the moving interface in heat transfer problems with phase change transformation. Numer. Heat Transf. 6, 209–222 (1983)

    MATH  Google Scholar 

  23. R. Bounerot, P. Janet, Numerical computation of free boundary for the two dimensional Stefan problems by space-time finite elements. J. Comput. Phys. 25, 163–181 (1977)

    Google Scholar 

  24. N. Shamsunder, E. Sparrow, Analysis of multidimensional phase change via the enthalpy model. J. Heat Transf. Trans. ASME 19, 333–340 (1975)

    Google Scholar 

  25. S.E. Hibbert, N.C. Markatos, V.R. Voller, Computer simulation of moving interface, convective, phase change process. Int. J. Heat Mass Transf. 31, 1785–1795 (1988)

    MATH  Google Scholar 

  26. C. Bonacina, G. Cominl, A. Fasano, M. Primicerio, On the estimation of thermophysical properties in nonlinear heat-conduction problems. Int. J. Heat Mass Transf. 17, 861–867 (1974)

    Google Scholar 

  27. M. Costa, D. Buddhi, A. Oliva, Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy Convers. Manage. 39, 319–330 (1998)

    Google Scholar 

  28. A.J. Dalhuijsen, A. Segal, Comparison of finite element techniques for conduction problems. Int. J. Number. Meth. Eng. 23, 1807–1829 (1986)

    MATH  Google Scholar 

  29. C. Wen, J.W. Sheffled, M.P. O’Dell, J.E. Leland, Analytical and experimental investigation of melting heat transfer. J. Thermophys. Heat Transf. 3, 330–339 (1989)

    Google Scholar 

  30. C.R. Swaminathan, V.R. Vollar, On the enthalpy method. Int. J. Num. Meth. Heat Fluid Flow 3, 233–244 (1993)

    Google Scholar 

  31. V.R. Voller, M. Cross, N.C. Markatos, An enthalpy method for convection/fusion phase change. Int. J. Numer. Methods. Eng. 24, 271–284 (1987)

    MATH  Google Scholar 

  32. A. Laoud, M. Lacroix, Thermal performance of a latent heat energy storage ventilated panel for electric load management. Int. J. Heat Mass Transf. 42, 275–286 (1999)

    Google Scholar 

  33. J. Bansszek, R. Domanski, M. Rebow, F. El-Sagier, Experimental study of solid-liquid phase change in a spiral thermal energy storage unit. Appl. Therm. Eng. 19, 1253–1277 (1999)

    Google Scholar 

  34. M. Lacroix, Numerical simulation of a shell and tube latent heat thermal energy storage unit. Sol. Energy 50, 357–367 (1993)

    Google Scholar 

  35. B. Zivkovic, I. Fujji, An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Sol. Energy 70, 51–61 (2001)

    Google Scholar 

  36. P. Lamberg, K. Siren, Analytical model for melting in semi-infinite PCM storage with an internal fin. Heat Mass Transf. 39, 167–176 (2003)

    Google Scholar 

  37. V.R. Voller, Fast implicit finite-difference method for the analysis of phase change problems. Numer. Heat Transf. Part B 17, 155–169 (1990)

    Google Scholar 

  38. A. Sharma, L.D. Won, D. Buddhi, J.U. Park, Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system. Renew. Energy 30, 2179–2187 (2005)

    Google Scholar 

  39. C.R. Chen, A. Sharma, Numerical investigation of melt fraction of PCMs in a latent heat storage system. J. Eng. Appl. Sci. 1, 437–444 (2006)

    Google Scholar 

  40. C.R. Chen, A. Sharma, S.K. Tyagi, D. Buddhi, Numerical heat transfer studies of PCMs used in a box type solar cooker. Renew. Energy 33, 1121–1129 (2008)

    Google Scholar 

  41. A. Sharma, S.D. Sharma, D. Buddhi, L.D. Won, Effect of thermo physical properties of heat exchanger material on the performance of latent heat storage system using an enthalpy method. Int. J. Energy Res. 30, 191–201 (2006)

    Google Scholar 

  42. Q. He, W.N. Zhang, A study on latent heat storage exchangers with the high temperature phase-change material. Int. J. Energy Res. 25, 331–341 (2001)

    Google Scholar 

  43. H. Michels, R. Pitz-Paal, Cascaded latent heat storage for parabolic trough solar power plants. Sol. Energy 81, 829–837 (2007)

    Google Scholar 

  44. Z.X. Gong, A.S. Mujumdar, Cyclic heat transfer in a novel storage unit of multiple phase change materials. Appl. Thermal Eng. 16, 807–815 (1996)

    Google Scholar 

  45. Z.X. Gong, A.S. Mujumdar, A new solar receiver thermal store for space based activities using multiple composite phase-change materials. J. Sol. Energy Eng. Trans. ASME 117, 215–220 (1995)

    Google Scholar 

  46. H. Cui, X. Hou, X. Yuan, Energy analysis of space solar dynamic heat receivers. Sol. Energy 74, 303–308 (2003)

    Google Scholar 

  47. H. Cui, Y. Xing, Y. Guo, Z. Wang, H. Cui, X. Yuan, Numerical simulation and experimental investigation on unit heat exchange tube for solar heat receiver. Sol. Energy 82, 1229–1234 (2008)

    Google Scholar 

  48. C. Guo, W. Zhang, Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system. Energy Convers. Manage. 49, 919–927 (2008)

    Google Scholar 

  49. B. Yimer, M. Adami, Parametric study of phase change thermal energy storage systems for space application. Energy Convers. Manage. 38, 253–262 (1997)

    Google Scholar 

  50. A. Hoshi, D.R. Mills, A. Bittar, T.S. Saitoh, Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Sol. Energy 79, 332–339 (2005)

    Google Scholar 

  51. V. Morisson, M. Rady, E. Palomo, E. Arquis, Thermal energy storage systems for electricity production using solar energy direct steam generation technology. Chem. Eng. Process. 47, 499–507 (2008)

    Google Scholar 

  52. H. Cui, X. Yuan, X. Hou, Thermal performance analysis for a heat receiver using multiple phase change materials. Appl. Therm. Eng. 23, 2353–2361 (2003)

    Google Scholar 

  53. K. Lafdi, O. Mesalhy, A. Elyafy, Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon 46, 159–168 (2008)

    Google Scholar 

  54. D.B. Khillarkar, Z.X Gong, A.S. Mujumdar, Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section. Appl. Therm. Eng. 20, 893–912 (2000)

    Google Scholar 

  55. J. Yagi, T. Akiyama, Storage of thermal energy for effective use of waste heat from industries. J. Mater. Process. Technol. 48, 793–804 (1995)

    Google Scholar 

  56. A.A. Jalalzadeh-Azar, Performance comparison of high-temperature packed bed operation with PCM and sensible-heat pellets. Int. J. Energy Res. 21, 1039–1052 (1997)

    Google Scholar 

  57. S. Jegadheeswaran, S.D. Pohekar, T. Kousksou, Exergy based performance evaluation of latent heat thermal storage system: a review. Renew. Sustain. Energy Rev. 14, 2580–2595 (2010)

    Google Scholar 

  58. A. Kaizawa, H. Kamano, A. Kawai, T. Jozuka, T. Senda, N. Maruoka, T. Akiyama, Thermal and flow behaviors in heat transportation container using phase change material, Energy Convers. Manage. 49, 698–706 (2008)

    Google Scholar 

  59. A. Mawire, M. McPherson, Experimental characterization of a thermal energy storage system using temperature and power controlled charging. Renew. Energy 33, 682–693 (2008)

    Google Scholar 

  60. A. Bejan, Two thermodynamic optima in the design of sensible heat units for energy storage. J. Heat Transf. 100, 708–712 (1978)

    Google Scholar 

  61. M.A. Rosen, N. Pedinelli, I. Dincer, Energy and exergy analyses of cold thermal storage systems. Int. J. Energy Res. 23, 1029–1038 (1999)

    Google Scholar 

  62. M.A. Rosen, The exergy of stratified thermal energy storages. Sol. Energy 71, 173–185 (2001)

    Google Scholar 

  63. K. Kaygusuz, T. Ayhan, Exergy analysis of solar-assisted heat-pump systems for domestic heating. Energy 18, 1077–1085 (1993)

    Google Scholar 

  64. A. Venkataramayya, K.N. Ramesh, Exergy analysis of latent heat storage systems with sensible heating and subcooling of PCM. Int. J. Energy Res. 22, 411–426 (1998)

    Google Scholar 

  65. A. Sari, K. Kaygusuz, Energy and exergy calculations of latent heat energy storage systems. Energy Sources 22, 117–126 (2000)

    Google Scholar 

  66. H.H. Ozturk, Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for green house heating. Energy Convers. Manage. 46, 1523–1542 (2005)

    Google Scholar 

  67. A. Koca, H.G. Oztop, T. Koyun, Y. Varol, Energy and exergy analysis of a latent heat storage system with phase change material for solar collector. Renew. Energy 33, 567–574 (2008)

    Google Scholar 

  68. T. Kousksou, T. El Rhafiki, A. Arid, E. Schall, Y. Zeraouli, Power, efficiency, and irreversibility of latent energy systems. J. Thermophy. Heat Transf. 22, 234–239 (2008)

    Google Scholar 

  69. A. Erek, I. Dincer, A new approach to energy and exergy analyses of latent heat storage unit. Heat Transf. Eng. 30, 506–515 (2009)

    Google Scholar 

  70. D. MacPee, I. Dincer, Thermodynamic analysis of freezing and melting processes in a bed of spherical PCM capsules. J. Sol. Energy Eng. Trans. ASME 131, 031017 (2009)

    Google Scholar 

  71. I. Dincer, Y.A. Cengel, Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3, 116–149 (2001)

    Google Scholar 

  72. M.A. Rosen, Appropriate thermodynamic performance measures for closed systems for thermal energy storage. J. Sol. Energy Eng. Trans. ASME 114, 100–105 (1992)

    Google Scholar 

  73. T. Watanabe, A Kanzawa, Second law optimization of a latent heat storage system with PCMs having different melting points. Heat Recovery Syst. CHP 15, 641–653 (1995)

    Google Scholar 

  74. M.A. Rosen, I. Dincer, Exergy methods for assessing and comparing thermal storage systems. Int. J. Energy Res. 27, 415–530 (2003)

    Google Scholar 

  75. Z.X. Gong, A.S. Mujumdar, Thermodyanamic optimization of the thermal process in energy storage using multiple phase change materials. Appl. Therm. Eng. 17, 1067–1083 (1996)

    Google Scholar 

  76. Y. Demirel, H.H. Ozturk, Thermoeconomics of seasonal latent heat storage systems. Int. J. Energy Res. 30, 1001–1012 (2006)

    Google Scholar 

  77. R.J. Krane, A second law analysis of the optimum design and operation of thermal energy storage systems. Int. J. Heat Mass Transf. 30, 43–57 (1987)

    Google Scholar 

  78. C. Bellecci, M. Conti, Phase change energy storage: entropy production, irreversibility, and second law efficiency. Sol. Energy 53, 163–170 (1994)

    Google Scholar 

  79. M.M. Farid, A. Kanzawa, Thermal performance of a heat storage module using PCM’s with different melting temperatures: mathematical modeling. J. Sol. Energy Eng. Trans. ASME 111, 152–157 (1989)

    Google Scholar 

  80. F. Strub, J.P. Bedecarrats, Numerical second law analysis of a refrigeration phase-change storage. Int. J. Thermodyn. 2, 133–138 (1999)

    Google Scholar 

  81. F. Strub F and J. P. Bedecarrats, Thermodynamics of phase-change energy storage: the effects of undercooling on entropy generation during solidification. Int. J. Thermodyn. 3, 35–42 (2000)

    Google Scholar 

  82. T. Kousksou, F. Strub, J.S. Lasvignottes, A. Jamil, J.P. Bedecarrats, Second law analysis of latent thermal storage for solar system. Sol. Energy Mater. Solar Cells 91, 1275–1281 (2007)

    Google Scholar 

  83. M. Lacroix, Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int. J. Heat Mass Transf. 36, 2083–2092 (1993)

    Google Scholar 

  84. A. Erek, I. Dincer, An approach to entropy analysis of a latent heat storage module. Int. J. Therm. Sci. 47, 1077–1085 (2008)

    Google Scholar 

  85. H. El-Dessouky, F. Al-Juwayhel, Effectiveness of a thermal energy storage system using phase-change materials. Energy Convers. Manage. 38, 601–617 (1997)

    Google Scholar 

  86. A. Bejan, Entropy Generation Minimization (CRC Press, London, 1996)

    MATH  Google Scholar 

  87. C. Charach, A. Zemel, Thermodynamic analysis of latent heat storage in a shell-and-tube heat exchanger. J. Sol. Energy Eng. Trans. ASME 114, 93–99 (1992)

    Google Scholar 

  88. H. Bjustrom, B. Carlsson, An exergy analysis of sensible and latent heat storage. Heat Recovery Syst. CHP 5, 233–250 (1985)

    Google Scholar 

  89. F. Aghbalou, F. Badia, J. Illa, Exergetic optimization of solar collector and thermal energy storage system. Int. J. Heat Mass Transf. 49, 1255–1263 (2006)

    MATH  Google Scholar 

  90. C. Charach, Second-law efficiency of an energy storage-removal cycle in a phase-change material shell-and-tube heat exchanger. J. Sol. Energy Eng. Trans. ASME 115, 240–243 (1993)

    Google Scholar 

  91. H. Ettouney, H. El-Dessouky, E. Al-Kandari, Heat transfer characteristics during melting and solidification of phase change energy storage process. Ind. Eng. Chem. Res. 43, 5350–5357 (2004)

    Google Scholar 

  92. A. Valero, M.A. Lozano, An introduction of thermoeconomics. in Developments in the Design of Thermal Systems, ed. by R.F. Boehm (Cambridge, Cambridge University Press, 2005), pp. 203–223

    Google Scholar 

  93. C.A. Frangopoulos, Thermoeconomic functional and optimization. Energy 19, 563–571 (1987)

    Google Scholar 

  94. D.J. Kim, A new thermoeconomic methodology for energy systems. Energy 35, 410–422 (2010)

    Google Scholar 

  95. M.A. Lozano, A. Valero, Theory of the exergetic cost. Energy 18, 939–960 (1993)

    Google Scholar 

  96. B. Erlach, L. Serra, A. Valero, Structural theory as standard for thermoeconomics. Energy Convers. Manage. 40, 1627–1649 (1999)

    Google Scholar 

  97. M.A. Badar, S.M. Zubair, A.A. Al-Farayedhi, Second-law-based thermoeconomic optimization of a sensible heat thermal energy storage system. Energy 18, 641–649 (1993)

    Google Scholar 

  98. M.A. Badar, S.M. Zubair, On thermoeconomic of a sensible heat thermal energy storage system. J. Sol. Energy Eng. Trans. ASME 117, 225–259 (1995)

    Google Scholar 

  99. S.M. Zubair, M.A. Al-Naglah, Thermoeconomic optimization of a sensible heat thermal storage system: a complete cycle. ASME J. Energy Res. Techn. 121, 286–294 (1999)

    Google Scholar 

  100. A.A. Ghoneim, Comparison of theoretical models of phase change and sensible heat storage for air and water solar heating systems. Sol. Energy 42, 209–220 (1989)

    Google Scholar 

  101. J. Prakash, H.P. Garg, G. Datta, A solar water heater with a built-in latent heat storage. Energy Convers. Manage. 25, 51–56 (1985)

    Google Scholar 

  102. N.K. Bansal, D. Buddhi, An analytical study of a latent heat storage system in a cylinder. Sol. Energy 33, 235–242 (1992)

    Google Scholar 

  103. K. Kaygusuz, Experimental and theoretical investigation of latent heat storage for water based solar heating systems. Energy Convers. Manage. 36, 315–323 (1995)

    Google Scholar 

  104. Y. Rabin, I. Bar-Niv, E. Korin, B. Mikic, Integrated solar collector storage system based on a salt hydrate phase change material. Sol. Energy 55, 435–444 (1995)

    Google Scholar 

  105. E-B.S. Mettawee, G.M.R. Assassa, Experimental study of a compact PCM solar collector. Energy 31, 2958–2968 (2006)

    Google Scholar 

  106. L.F. Cabeza, M. Ibanez, C. Sole, J. Roca, M. Nogues, Experimentation with a water tank including a PCM module. Sol. Energy Mater. Solar Cells 90, 1273–1782 (2006)

    Google Scholar 

  107. S. Canbazoglu, A. Sahinaslan, A. Ekmekyapar, Y. Gokhan Aksoy, F. Akarsu, Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system. Energy Build. 37, 235–242 (2005)

    Google Scholar 

  108. D.J. Morrison, S.I. Abdel Khalik, Effects of phase change energy storage on the performance of air-based and liquid-based solar heating systems. Sol. Energy 20, 57–67 (1978)

    Google Scholar 

  109. J.J. Jurinak, S.I. Adbel Khalik, On the performance of air-based solar heating systems utilizing phase change energy storage. Energy 4, 503–522 (1979)

    Google Scholar 

  110. A.A. Ghoneim, S.A. Klein, The effect of phase change material properties on the performance of solar air-based heating systems. Sol. Energy 42, 441–447 (1989)

    Google Scholar 

  111. S.O. Enibe, Performance of a natural circulation solar air heating system with phase change material energy storage. Renew Energy 27, 69–86 (2002)

    Google Scholar 

  112. G. Zhou, Y. Zhang, Q. Zhang, K. Lin, H. Di, Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates. Appl. Energy 84, 1068–1077 (2007)

    Google Scholar 

  113. D. Buddhi, L.K. Sahoo, Solar cooker with latent heat storage design and experimental testing. Energy Convers.Manage. 38, 493–498 (1997)

    Google Scholar 

  114. S.D. Sharma, D. Buddhi, R.L. Sawhney, A. Sharma, Design, development and performance evaluation of a latent heat unit for evening cooking in a solar cooker. Energy Convers. Manage. 41, 1497–1508 (2000)

    Google Scholar 

  115. D. Buddhi, S.D. Sharma, A. Sharma, Thermal performance evaluation of a latent heat storage unit for late evening cooking in a solar cooker having three reflectors. Energy Convers. Manage. 44, 809–817 (2003)

    Google Scholar 

  116. S.D. Sharma, T. Iwata, H. Kitano, K. Sagara, Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Sol. Energy 78, 416–426 (2005)

    Google Scholar 

  117. N.M. Nahar, Design, development and testing of a double reflector hot box solar cooker with a transparent insulation material. Renew. Energy 23, 167–179 (2001)

    Google Scholar 

  118. K. Hung C.F. Abrams Jr., L.L. Coasts, C.G. Bowers Jr., Development of greenhouse bulk drying systems for solar energy utilization and planted mechanization. AHARE paper no. 75–1018, Am. Soc. Agric. Eng. St. Joseph, MI, (1975)

    Google Scholar 

  119. M. Kern and R. A. Aldrich, Phase change energy storage in a greenhouse solar heating system. ASME paper no. 79–4028. Am. Soc. Agric. Eng. St. Joseph, MI, (1979)

    Google Scholar 

  120. K. Hung, M. Toksoy, Design and analysis of green house solar system in agricultural production. Energy Agric. 2, 115–136 (1983)

    Google Scholar 

  121. T. Boulard, E. Razafinjohany, A. Baille, A. Jaffrin, B. Fabre, Performance of a greenhouse heating system with a phase change material. Agric. Forest Meteorol. 52, 303–318 (1990)

    Google Scholar 

  122. H.H. Ozturk, Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating. Energy Convers. Manage. 46, 1523–1542 (2005)

    Google Scholar 

  123. H.H. Ozturk, A. Bascetincelik, Energy and exergy efficiency of a packed-bed heat storage unit for greenhouse heating. Biosyst. Eng. 86, 231–245 (2003)

    Google Scholar 

  124. A.A. Ghoneim, S.A. Klein, J.A. Duffie, Analysis of collector-storage building walls using phase change materials. Sol. Energy 47, 237–242 (1991)

    Google Scholar 

  125. S. Chandra, R. Kumar, S. Kaushik, S. Kaul, Thermal performance of a non A/C building with PCCM thermal storage wall. Energy Convers. Manage. 25, 15–20 (1985)

    Google Scholar 

  126. T.R. Knowles, Proportioning composites for efficient-TSWs. Sol. Energy 31, 319–326 (1983)

    Google Scholar 

  127. V.V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art. Renew. Sustain. Energy Rev. 11, 1146–1166 (2007)

    Google Scholar 

  128. D. Feldman, M.A. Khan, D. Banu, Energy storage composite with an organic phase change material. Sol. Energy Mater. 18, 333–341 (1989)

    Google Scholar 

  129. D. Feldman, M. Shapiro, D. Banu, C.J. Fuks, Fatty acids and their mixtures as phase change materials for thermal energy storage. Sol. Energy Mater. 18, 201–216 (1989)

    Google Scholar 

  130. D. Feldman, D. Banu, D. Hawes, E. Ghanbari E, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Mater. 22, 231–242 (1991)

    Google Scholar 

  131. D.W. Hawes, D. Feldman, D. Banu, Latent heat storage in building materials. Energy Build. 20, 77–86 (1993)

    Google Scholar 

  132. A.K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build. Environ. 32, 405–410 (1997)

    Google Scholar 

  133. D.A. Neeper, Solar buildings research: what are the best directions? Passive Sol. J. 3, 213–219 (1986)

    Google Scholar 

  134. D.A. Neeper, Thermal dynamics of wallboard with latent heat storage. Sol. Energy 68, 393–403 (2000)

    Google Scholar 

  135. T.K. Stovall, J.J. Tomlinson, What are the potential benefits of including latent heat storage in common wall board. J. Sol. Energy Eng. Trans. ASME 117, 318–325 (1995)

    Google Scholar 

  136. K. Peippo, P. Kauranen, P.D. Lund, A multi-component PCM wall optimized for passive solar heating. Energy Build. 17, 259–270 (1991)

    Google Scholar 

  137. D. Zhang, Z. Li, J. Zhou, K. Wu, Development of thermal energy storage concrete. Cement Concrete. Res. 34, 927–934 (2004)

    Google Scholar 

  138. P. Schossig, H.M. Henning, S. Gschwander, T. Haussmann, Micro-encapsulated phase-change materials integrated into construction materials. Sol. Energy Mater. Solar Cells 89, 297–306 (2005)

    Google Scholar 

  139. A. Athienitis, Y. Chen, The effect of solar radiation on dynamic thermal performance of floor heating systems. Sol. Energy 69, 229–237 (2000)

    Google Scholar 

  140. G. Bakos, Energy management method for auxiliary energy saving in a passive-solar-heated residence using low-cost off-peak electricity. Energy Build. 31, 237–241 (2003)

    Google Scholar 

  141. K.P. Lin, Y.P. Zhang, X. Xu, H.F. Di, R. Yang, P.H. Qin, Modeling and simulation of under-floor electric heating system with shape stabilized PCM plates. Build. Environ. 39, 1427–1434 (2004)

    Google Scholar 

  142. C. Benard, D. Gobin, M. Gutierrez, Experimental results of a latent heat solar roof used for breeding chickens. Sol. Energy 6, 347–354 (1981)

    Google Scholar 

  143. J.M. Gutherz, M.E. Schiler, A passive solar heating system for the perimeter zone of office buildings. Energy Sources 13, 39–54 (1991)

    Google Scholar 

  144. J.R. Turnpenny, D.W. Etheridge, D.A. Reay, Novel ventilation cooling system for reducing air conditioning in buildings, Part I. Testing and theoretical modeling. Appl. Therm. Eng. 20, 1019–1037 (2000)

    Google Scholar 

  145. J.R. Turnpenny, D.W. Etheridge, D.A. Reay, Novel ventilation cooling system for reducing air conditioning in buildings, Part II. Testing of prototype. Appl. Therm. Eng. 21, 1203–1217 (2001)

    Google Scholar 

  146. M.M. Farid, M.H. Rafah, An electrical storage heater using the phase change method of heat storage. Energy Convers. Manage. 30, 219–230 (1990)

    Google Scholar 

  147. M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Convers. Manage. 45, 1597–1615 (2004)

    Google Scholar 

  148. B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003)

    Google Scholar 

  149. A. Shukla, D. Buddhi, R.L. Sawhney, Solar water heaters with phase change material thermal energy storage medium: a review. Renew. Sustain. Energy Rev. 13, 2119–2125 (2009)

    Google Scholar 

  150. M. Medrano, A. Gil, I. Martorell, X. Potau, L.F. Cabeza, State of the art on high-temperature thermal energy storage for power generation. Part 2—case studies. Renew. Sustain. Energy Rev. 14, 56–72 (2010)

    Google Scholar 

  151. N. Gokon, D. Nakano, S. Inuta, T. Kodama, High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes. Sol. Energy 82, 1145–1153 (2008)

    Google Scholar 

  152. M.F. Demirbas, Thermal energy storage and phase change materials: an overview. Energy Sources Part B 1, 85–95 (2006)

    Google Scholar 

  153. S. Jegadheeswaran, S.D. Pohekar, Performance enhancement in latent heat thermal storage system: a review. Renew. Sust. Energy Rev. 13, 2225–2244 (2009)

    Google Scholar 

  154. R. Domanski, G. Fellah, Exergy analysis for the evaluation of a thermal storage system employing PCMs with different melting temperatures. Appl. Therm. Eng. 16, 907–919 (1996)

    Google Scholar 

  155. Z.X. Gong, A.S. Mujumdar, Finite element analysis of a multistage latent heat thermal storage system. Numer. Heat Transf. Part A 30, 669–684 (1996)

    Google Scholar 

  156. P. Lamberg, R. Lehtiniemi, A.M. Henell, Numerical and experimental investigation of melting and freezing processes in phase change material storage. Int. J. Therm. Sci. 43, 277–287 (2004)

    Google Scholar 

  157. U. Stritih, An experimental study of enhanced heat transfer in rectangular PCM storage. Int. J. Heat Mass Transf. 47, 2841–2847 (2004)

    Google Scholar 

  158. Y. Zhang, Z. Chen, Q. Wang, Q. Wu, Melting in an enclosure with discrete heating at a constant rate. Exp. Therm. Fluid Sci. 6, 196–201 (1993)

    Google Scholar 

  159. Y. Jellouli, R. Chouikh, A. Guizani, A. Belghith, Numerical study of the moving boundary problem during melting process in a rectangular cavity heated from below. Am. J. Appl. Sci. 4, 251–256 (2007)

    Google Scholar 

  160. K.W. Ng, Z.X. Gong, A.S. Mujumdar, Heat transfer in free convection-dominated melting of a phase change material in a horizontal annulus. Int. Commun. Heat Mass Transf. 25, 631–640 (1998)

    Google Scholar 

  161. A.F. Regin, S.C. Solanki, J.S. Saini, Latent heat thermal storage using cylindrical capsule: numerical and experimental investigations. Renew. Energy 31, 2025–2041 (2006)

    Google Scholar 

  162. B.J. Jones, D. Sun, S. Krishnan, S.V. Garimella, Experimental and numerical investigation of melting in a cylinder. Int. J. Heat. Mass. Transf. 49, 2724–2738 (2006)

    Google Scholar 

  163. P.A. Bahrami, Natural melting within a spherical shell. NASA Technical Memorandum (Ames Research Center, California, 1990) Report No. 102822

    Google Scholar 

  164. F.L. Tan, Constrained and unconstrained melting inside a sphere. Int. Commun. Heat Mass Transf. 35, 466–475 (2008)

    Google Scholar 

  165. H. Ettouney, H. El-Dessouky H, A. Al-Ali, Heat transfer during phase change of paraffin wax stored in spherical shells. J. Solar Energy Eng. Trans. ASME 127, 357–365 (2005)

    Google Scholar 

  166. M. Lacroix, M. Benmadda, Analysis of natural convection melting from a heated wall with vertically oriented fins. Int. J. Numer. Methods Heat Fluid Flow 8, 465–478 (1998)

    MATH  Google Scholar 

  167. H. Ettouney, H. El-Dessouky, E. Al-Kandari, Heat transfer characteristics during melting and solidification of phase change energy storage process. Ind. Eng. Chem. Res. 43, 5350–5357 (2004)

    Google Scholar 

  168. M. Pinelli, S. Piva, Solid/liquid phase change in presence of natural convection: a thermal energy storage case study. ASME J. Energy Res. Techn. 125, 190–197 (2003)

    Google Scholar 

  169. M. Pinelli, G. Casano, S. Piva, Solid-liquid phase change heat transfer in a vertical cylinder heated from above. Int. J. Heat Techn. 18, 61–67 (2000)

    MATH  Google Scholar 

  170. R. Akhilesh, C. Balaji, A. Narasimhan, Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int. J. Heat Mass Transf. 48, 2759–2770 (2005)

    MATH  Google Scholar 

  171. M. Akhilesh, I. Sezai, Enhancement of heat transfer in latent heat storage modules with internal fins. Numer. Heat Transf. Part A 53, 749–765 (2008)

    Google Scholar 

  172. M. Lacroix, M. Benmadda, Numerical simulation of natural convection-dominated melting and solidification from a finned vertical wall. Numer. Heat Transf. Part A 31, 71–86 (1997)

    Google Scholar 

  173. V. Shatikian, G. Ziskind, R. Letan, Numerical investigation of a PCM-based heat sink with internal fins. Int. J. Heat Mass Transf. 48, 3689–3706 (2005)

    MATH  Google Scholar 

  174. Y. Zhang, A. Faghri, Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. J. Enhanc. Heat Transf. 3, 119–127 (1996)

    Google Scholar 

  175. R.V. Seeniraj, R. Velraj, N.L. Narasimhan, Thermal analysis of a finned-tube LHTS module for a solar dynamic power system. Heat Mass Transf. 38, 409–417 (200)

    Google Scholar 

  176. P. Lamberg, Approximate analytical model for two-phase solidification problem in a finned phase-change material storage. Appl. Energy 77, 131–152 (2004)

    Google Scholar 

  177. J.C. Choi, S.D. Kim, Heat-transfer characteristics of a latent heat storage system using MgCl2 · 6H2O. Energy 17, 1153–1164 (1992)

    Google Scholar 

  178. Z. Liu, X. Sun, C. Ma, Experimental study of the characteristics of solidification of stearic acid in an annulus and its thermal conductivity enhancement. Energy Convers. Manage. 46, 971–984 (2005)

    Google Scholar 

  179. R. Velraj, R.V. Seeniraj, H. Hafner, C. Faber, K. Schwarzer, Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit. Sol. Energy 60, 281–290 (1997)

    Google Scholar 

  180. A. Castell, C. Sole, M. Medrano, J. Roca, L.F. Cabeza, D. Garcia, Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl. Therm. Eng. 28, 1676–1686 (2008)

    Google Scholar 

  181. J. Wang, G. Chen, H. Jiang, Theoretical study on a novel phase change process. Int. J. Energy Res. 23, 287–294 (1999)

    Google Scholar 

  182. M.M. Farid, A. Kanzawa, Thermal performance of a heat storage module using PCMs with different melting temperatures: mathematical modeling. J. Sol. Energy Eng. Trnas. ASME 111, 152–157 (1989)

    Google Scholar 

  183. R. Velraj, R.V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer, Heat transfer enhancement in a latent heat storage system. Sol. Energy 65, 171–180 (1999)

    Google Scholar 

  184. J. Wang, Y. Ouyang, Chen G, Experimental study on charging processes of a cylindrical heat storage capsule employingmultiple-phase-changematerials. Int. J. Energy Res. 25, 439–447 (2001)

    Google Scholar 

  185. J. Wang, G. Chen, F. Zheng, Study on phase change temperature distributions of composite PCMs in thermal energy storage systems. Int. J. Energy Res. 23, 277–285 (1999)

    Google Scholar 

  186. R.V. Seeniraj, N.L. Narasimhan, Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol. Energy 82, 535–542 (2008)

    Google Scholar 

  187. M. Fang, G. Chen, Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl. Therm. Eng. 27, 994–1000 (2007)

    Google Scholar 

  188. S.D. Sharma, K. Sagara, Latent heat storage materials and systems: a review. Int. J. Green Energy 2, 1–56 (2005)

    Google Scholar 

  189. O. Mesalhy, K. Lafdi, A. Elgafi, K. Bowman, Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porousmatrix. Energy Convers. Manage. 46, 847–867 (2005)

    Google Scholar 

  190. S. Krishnan, J.Y. Murthy, S.V. Garimella, A two-temperature model for solidliquid phase change in metal foams. ASME J. Heat Transf. 127, 995–1004 (2005)

    Google Scholar 

  191. D. Haillot, X. Py, V. Goetz, M. Benabdelkarim, Storage composites for the optimization of solar water heating systems. Chem. Eng. Res. Design 86, 612–617 (2008)

    Google Scholar 

  192. A. Sari, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 27, 1271–1277 (2007)

    Google Scholar 

  193. H. Yin, X. Gao, J. Ding, Z. Zhang, Experimental research on heat transfer mechanism of heat sink with composite phase change materials. Energy Convers. Manage. 49, 1740–1746 (2008)

    Google Scholar 

  194. S. Kim, L.T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol. Energy Mater. Sol. Cells 93, 136–142 (2009)

    Google Scholar 

  195. S. Pincemin, X. Py, R. Olives, M. Christ, O. Oettinger, Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar power plant. J. Sol. Energy Eng. Trans. ASME 130, 11005–11009 (2008)

    Google Scholar 

  196. S. Pincemin, R. Olives, X. Py, M. Christ, Highly conductive composites made of phase change materials and graphite for thermal storage. Sol. Energy Mater. Sol. Cells 92, 603–613 (2008)

    Google Scholar 

  197. A. Elgafy, K. Lafdi, Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 43, 3067–3074 (2005)

    Google Scholar 

  198. E.S. Mettawee, G.M.R. Assassa, Thermal conductivity enhancement in a latent heat storage system. Sol. Energy 81, 839–845 (2007)

    Google Scholar 

  199. J.M. Khodadadi, S.F. Hosseinizadeh, Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int. Commun. Heat Mass Transf. 34, 534–543 (2007)

    Google Scholar 

  200. J.L. Zeng, L.X. Sun, F. Xu, Z.C. Tan, Z.H. Zhang, J. Zhang, T. Zhang, Study of a PCM based energy storage system containing Ag nanoparticles. J. Therm. Anal. Calorim. 87, 369–373 (2007)

    Google Scholar 

  201. R.V. Seeniraj, R. Velraj, N.L. Narasimhan, Heat transfer enhancement study of a LHTS unit containing dispersed high conductivity particles. J. Sol. Energy Eng. Trans. ASME 124, 243–249 (2002)

    Google Scholar 

  202. H. Ettouney, I. Alatiqi, M. Al-Sahali, S.A. Al-Ali, Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems. Renew. Energy 29, 841–860 (2004)

    Google Scholar 

  203. H. Ettouney, I. Alatiqi, M. Al-Sahali, K. Al-Hajirie, Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and beads. Energy Convers. Manage. 47, 211–228 (2006)

    Google Scholar 

  204. J. Fukai, M. Kanou, Y. Kodama, O. Miyatake, Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Convers. Manage. 41, 1543–1556 (2000)

    Google Scholar 

  205. J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Improvement of thermal characteristics of latent heat thermal energy storage units using carbonfiber brushes: experiments and modeling. Int. J. Mass Heat Transf. 46, 4513–4525 (2003)

    Google Scholar 

  206. Y. Hamada, W. Ohtsu, J. Fukai, Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates. Sol. Energy 75, 317–328 (2003)

    Google Scholar 

  207. J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int. J. Mass Heat Transf. 45, 4781–4792 (2002)

    Google Scholar 

  208. Y. Hamada, W. Otsu, J. Fukai J, Y. Morozumi, O. Miyatake, Anisotropic heat transfer in composites based on high-thermal conductive carbon fibers. Energy 30, 221–233 (2005)

    Google Scholar 

  209. K. Nakaso, H. Teshima, A. Yoshimura, S. Nogami, Y. Hamada, J. Fukai, Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks. Chem Eng Process. 47, 879–885 (2008)

    Google Scholar 

  210. Y. Cui, C. Liu, S. Hu, X. Yu, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol. Energy Mater. Sol. Cells 95, 1208–1212 (2011)

    Google Scholar 

  211. J. Wang, H. Xie, Z. Xin, Y. Li, L. Chen, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol. Energy 84, 339–344 (2010)

    Google Scholar 

  212. J. Wang, H. Xie, Z. Xin, Y. Li, L. Chen, Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim. Acta 488, 39–42 (2009)

    Google Scholar 

  213. J. Wang, H. Xie, Z. Xin, Y. Li, Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon 48, 3979–3986 (2010)

    Google Scholar 

  214. L.W. Fan, X. Fang, X. Wang, Y. Zeng, Y. Q. Xiao, Z.T. Yu, X. Xu, Y.C. Hu, K.F. Cen, Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy, 110, 163–172 (2013)

    Google Scholar 

  215. Y. Hamada, J. Fukai, Latent heat thermal energy storage tanks for space heating of buildings: comparison between calculations and experiments. Energy Convers. Manage. 46, 3221–3235 (2005)

    Google Scholar 

  216. M.N.A. Hawlader, M.S. Uddin, M.M. Khin, Microencapsulated PCM thermal energy storage system. Appl. Energy 74, 195–202 (2003)

    Google Scholar 

  217. B. Chen, X. Wang, R. Zeng, Y. Zhang, X. Wang, J. Niu, Y. Li, H. Di, An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux. Exper. Therm. Fluid Sci. 32, 1638–1646 (2008)

    Google Scholar 

  218. C. Alkan, A. Sari, A. Karaipekli, O. Uzun, Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 93, 143–147 (2009)

    Google Scholar 

  219. M.N.A. Hawlader, M.S. Uddin, H.J. Zhu, Encapsulated phase change materials for thermal energy storage: Experiments and simulation. Int. J. Energy Res. 26, 159–171 (2002)

    Google Scholar 

  220. L.F. Cabeza, C. Castellon, M. Nogues, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 39, 113–119 (2007)

    Google Scholar 

  221. L. Sanchez, P. Sanchez, A. Lucas, M. Carmona, J.F. Rodriguez, Microencapsulation of PCMs with a polystyrene shell. Colloid. Polymer Sci. 285, 1377–1385 (2007)

    Google Scholar 

  222. Y. Rao, F. Dammel, P. Stephen, G. Lin, Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat Mass Transf. 44, 175–186 (2007)

    Google Scholar 

  223. Y. Zhang, A. Faghri, Analysis of forced convection heat transfer in microencapsulated phase change material suspensions. J. Thermophys. Heat Transf. 9, 727–732 (1995)

    Google Scholar 

  224. M.N.A. Hawlader, M.S. Uddin, H.J. Zhu, Preparation and evaluation of a novel solar storage material: microencapsulated paraffin. Int. J. Sol. Energy 20, 227–238 (2000)

    Google Scholar 

  225. Y. Ozonur, M. Mazman, H.O. Paksoy, H. Evliya, Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int. J. Energy Res. 30, 741–749 (2006)

    Google Scholar 

  226. A.F. Regin, S.C. Solanki, J.S. Saini, Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew. Sustain. Energy Rev. 12, 2438–2458 (2008)

    Google Scholar 

  227. Y. Fang, S. Kuang, X. Gao, Z. Zhang, Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers. Manage. 49, 3704–3707 (2008)

    Google Scholar 

  228. Z.H. Chen, F. Yu, X.R. Zeng, Z.G. Zhang, Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Appl. Energy 91, 7–12 (2012)

    Google Scholar 

  229. G. Fang, H. Li, F. Yang, X. Liu, S. Wu, Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem. Eng. J. 153, 217–221 (2009)

    Google Scholar 

  230. A. Michel, A. Kugi, Accurate low-order dynamic model of a compact plate heat exchanger. Int. J. Heat and Mass Transf. 61, 323–331 (2013)

    Google Scholar 

  231. A. Abhat, Performance studies of a finned heat pipe latent heat thermal energy storage system, in Sun (Pergamon Press, NY, 1981) pp. 541–546

    Google Scholar 

  232. C.D. Maccracken, PCM bulk storage, in Proceedings of the international conference on energy storage, pp. 159–165 (1981)

    Google Scholar 

  233. R.N. Smith, T.E. Ebersole, F.P. Griffin, Heat-exchanger performance in latent-heat thermal-heat thermal-energy storage. J. Sol. Energy Eng. Trans. ASME 102, 112–118 (1980)

    Google Scholar 

  234. D. Buddhi, Thermal performance of a shell and tube PCM storage heat exchanger for industrial waste heat recovery, in Solar World Congress, Taejon, Korea, Aug 24–30 (1977)

    Google Scholar 

  235. V.M. Morcos, Investigation of a latent heat thermal energy storage system. Solar Wind Techn. 7, 197–202 (1990)

    Google Scholar 

  236. M.J. Santamouris, C.C. Lefas, On the coupling of PCM stores to active solar systems. Int. J. Energy Res. 12, 603–610 (1988)

    Google Scholar 

  237. M.M. Farid, A. Kanzawa, Thermal performance of heat storage module using PCMs with different melting temperatures: mathematical modeling. J. Sol. Energy Eng. Trans. ASME 111, 152–157 (1989)

    Google Scholar 

  238. D.R. Biswas, Thermal energy storage using sodium sulphate decahydrate and water. Sol. Energy 19, 99–100 (1977)

    Google Scholar 

  239. F.C. Porisini, Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance. Sol. Energy 41, 193–197 (1988)

    Google Scholar 

  240. L. Cabeza, J. Illa, J. Roca, F. Badia, H. Mehling, S. Hiebler, F. Ziegler, Immersion corrosion tests on melt-salt hydrate pairs used for latent heat storage in the 32–36 °C temperature range. Mater. Corrosion 52, 140–146 (2201)

    Google Scholar 

  241. R.W. Bradshaw, S.H. Goods, Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts, SANDIA Report, SAND2001-8518 (2001)

    Google Scholar 

  242. R.W. Bradshaw, S.H. Goods, Corrosion of alloys and metals molten nitrates, SADIA Report, SAND2000-8727 (2000)

    Google Scholar 

  243. A. Baraka, A.I. Abdel-Rohman, A.A. El Hosary, Corrosion of mild steel in molten sodium nitrate-potassium nitrate eutectic. Brit. Corrosion J. 11, 44–46 (1976)

    Google Scholar 

  244. I.B. Singh, U. Sen, Influence of temperature and sulphate ion on corrosion of mild steel in molten NaNO3. Brit. Corrosion J. 27, 299–304 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kong, L.B., Li, T., Hng, H.H., Boey, F., Zhang, T., Li, S. (2014). Waste Thermal Energy Harvesting (III): Storage with Phase Change Materials. In: Waste Energy Harvesting. Lecture Notes in Energy, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54634-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54634-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54633-4

  • Online ISBN: 978-3-642-54634-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics