Advertisement

Behaviour, Interaction and Dynamics

  • Roberto Bruni
  • Hernán Melgratti
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8373)

Abstract

The growth and diffusion of reconfigurable and adaptive systems motivate the foundational study of models of software connectors that can evolve dynamically, as opposed to the better understood notion of static connectors. In this paper we investigate the interplay of behaviour, interaction and dynamics in the context of the BIP component framework, here denoted BI(P), as we disregard priorities. We introduce two extensions of BIP: 1)  reconfigurable BI(P) allows to reconfigure the set of admissible interactions, while preserving the set of interacting components; 2) dynamic BI(P) allows to spawn new components and interactions during execution. Our main technical results show that reconfigurable BI(P) is as expressive as BI(P), while dynamic BI(P) allows to deal with infinite state systems. Still, we show that reachability remains decidable for dynamic BI(P).

Keywords

Pairwise Disjoint Dynamic Transition Operational Semantic Atomic Component Static Port 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM 2006), pp. 3–12. IEEE Computer Society (2006)Google Scholar
  3. 3.
    Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 508–522. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal Methods in System Design 36(2), 167–194 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bliudze, S., Sifakis, J.: Synthesizing glue operators from glue constraints for the construction of component-based systems. In: Apel, S., Jackson, E. (eds.) SC 2011. LNCS, vol. 6708, pp. 51–67. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS, vol. 7306, pp. 1–16. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comput. Sci. 366(1-2), 98–120 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bruni, R., Melgratti, H., Montanari, U.: Connector algebras, Petri nets, and BIP. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 19–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Bruni, R., Melgratti, H., Montanari, U., Sobocinski, P.: Connector algebras for C/E and P/T nets’ interactions. Logical Methods in Comp. Sci. (2013) (to appear)Google Scholar
  10. 10.
    Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Esparza, J., Nielsen, M.: Decidability issues for Petri nets. Petri Nets Newsletter 94, 5–23 (1994)zbMATHGoogle Scholar
  12. 12.
    Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction, pp. 133–166. The MIT Press (2000)Google Scholar
  13. 13.
    Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of ws-bpel. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I–ii. Inf. Comput. 100(1), 1–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Perry, D.E., Wolf, E.L.: Foundations for the study of software architecture. ACM SIGSOFT Software Engineering Notes 17, 40–52 (1992)CrossRefGoogle Scholar
  16. 16.
    Sobociński, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Viroli, M.: A core calculus for correlation in orchestration languages. J. Log. Algebr. Program. 70(1), 74–95 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Roberto Bruni
    • 1
  • Hernán Melgratti
    • 2
  • Ugo Montanari
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaItaly
  2. 2.Departamento de Computación, FCEyNUniversidad de Buenos Aires - ConicetArgentina

Personalised recommendations