Skip to main content

Kinematic Control

  • Chapter
  • First Online:
  • 1691 Accesses

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 102))

Abstract

The primary purpose of an autonomous manipulation system is to perform intervention tasks with a limited exchange of information between the manipulator and the human supervisor. The information passed to the main control system is often only a high level decision command, and the controller must be capable of following the command by providing reliable control references to the actuators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In case that \(\left\| \frac{\partial m \left( \varvec{q} \right) }{\partial \varvec{q}} \varvec{J}^+ \right\| = 0\), the normal (3.44) is not defined. However this means that, locally, \(\delta m \left( \varvec{q} \right) = 0\) in every direction, thus the value of \(\varvec{n}_m\) is not important.

References

  1. Sciavicco L, Siciliano B (2001) Modeling and control of robot manipulators, 2nd edn. Springer, Berlin

    Google Scholar 

  2. Aicardi M, Caiti A, Cannata G, Casalino G (1995) Stability and robustness analysis of a two layered hierarchical architecture for the closed loop control of robots in the operational space. In: Proceedings of 1995 IEEE international conference on robotics and automation, 1995, vol 3, pp 2771–2778. doi:10.1109/ROBOT.1995.526005

  3. Whitney DE (1969), Resolved motion rate control of manipualtors and human prostheses. IEEE Trans Man-Mach Syst MMS-10(2):47–53

    Google Scholar 

  4. Nakamura Y (1991) Advanced robotics: redundancy and optimization. Addison Wesley, Reading

    Google Scholar 

  5. Penrose R (1955) A generalized inverse for matrices. Math Proc Cambridge Philos Soc 51(03):406–413

    Article  MATH  MathSciNet  Google Scholar 

  6. Wampler CW (1986) Manipulator inverse kinematic solutions based on vector formualtions and damped least-squares methods. IEEE Trans Syst Man Cybern SMC-16(1):93–101

    Google Scholar 

  7. Chiaverini S (1997) Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans Robot Autom 13(3):398–410

    Article  Google Scholar 

  8. Nakamura Y, Hanafusa H (1986) Inverse kinematic solutions with singularity robustness for robot manipulator control. J Dyanmic Syst Meas Control 108:163–171

    Article  MATH  Google Scholar 

  9. Siciliano B, Slotine JJE (1991) A general framework for managing multiple tasks in highly redundant robotic systems. In: Proceedings of international conference on advanced robotics, pp 1211–1216

    Google Scholar 

  10. Baerlocher P, Boulic R (1998) Task-priority formulations for the kinematic control of highly redundant articulated structures. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 323–329

    Google Scholar 

  11. Maciejewski AA, Klein CA (1985) Obstacle avoidance for kinematically redunadant manipulators in dynamically varying environments. Int J Robot Res 4(3):109–117

    Google Scholar 

  12. Park J, Choi Y, Chung WK, Youm Y (2001) Multiple tasks kinematics using weighted pseudo-inverse for kinematically redundant manipulators. In: Proceedings of 2001 ICRA. IEEE international conference on robotics and automation, vol 4, pp 4041–4047. doi:10.1109/ROBOT.2001.933249

  13. Kim J, Marani G, Chung WK, Yuh J (2006) Task reconstruction method for real-time singularity avoidance for robotic manipulators. Adv Robot 20(4):453–481

    Google Scholar 

  14. Marani G, Kim J, Chung WK, Yuh J (2003) Algorithmic singularities avoidance in task-priority based controller for redundant manipulators. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 1942–1947

    Google Scholar 

  15. Marani G, Kim J, Yuh J, Chung WK (2002) A real-time approach for singularity avoidance in resolved motion rate control of robotic manipulators. In: Proceedings of IEEE international conference on robotics and automation, pp 1973–1978

    Google Scholar 

  16. Kim J, Marani G, Chung WK, Yuh J, Oh SR (2002b) Dynamic task priority approach to avoid kinematic singularity for autonomous manipulation. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 1942–1947

    Google Scholar 

  17. Yoshikawa T (1985) Manipulability of robotic mechanisms. Int J Robot Res 4(2):3–9

    Article  MathSciNet  Google Scholar 

  18. Park J (1999) Analysis and control of kinematically redundant manipulators: an approach based on kinematically decoupled joint space decomposition. Ph.D. thesis, Pohang University of Science and Technology (POSTECH)

    Google Scholar 

  19. Kim J, Marani G, Chung WK, Yuh J (2002) Kinematic singularity avoidance for autonomous manipulation in underwater. In: The fifth ISOPE Pacific/Asia offshore mechanics symposium, Daejeon, Korea

    Google Scholar 

  20. Kim J, Marani G, Chung WK, Yuh J (2004) A general singularity avoidance framework for robot manipulators: task reconstruction method. In: ICRA, New Orleans, USA, pp 4809–4814

    Google Scholar 

  21. Seraji H, Colbaugh R (1990) Singularity-robustness and task-prioritization in configuration control of redundant robots. In: Proceedings of IEEE conference on decision and control, pp 3089–3095

    Google Scholar 

  22. Marani G, Yuh J, Choi SK (2006) Autonomous manipulation for an intervention auv. In: Sutton B, Roberts G (eds) Guidance and control of unmanned marine vehicles. IEE’s control engineering series, pp 217–237

    Google Scholar 

  23. Marani G, Bozzo T, Choi SK, (2000) A fast prototyping approach for designing the maris manipulator control. In: Symposium on underwater robotic technology (SURT 2000), Wailea, Maui, Hawaii

    Google Scholar 

  24. Yuh J, Marani G (2001) An advanced underwater robotic manipulator for SAUVIM. In: 2001 IEEE international conference on robotics and automation, workshop W5 (Underwater Robotic Technologies), Seoul, Korea

    Google Scholar 

  25. Yuh J, Choi S, Kim T, Marani G, West M, Easterday O, Rosa K (2003) Real-time control architecture for SAUVIM. In: 1st IFAC workshop on guidance and control of underwater vehicles, Newport, South Wales, UK

    Google Scholar 

  26. Marani G, Medrano I, Choi SK, Yuh J (2005) A client-server oriented programming language for autonomous underwater manipulation. In: The proceedings of the fifteenth international offshore and polar engineering conference, Seoul, Korea

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Marani .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marani, G., Yuh, J. (2014). Kinematic Control. In: Introduction to Autonomous Manipulation. Springer Tracts in Advanced Robotics, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54613-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54613-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54612-9

  • Online ISBN: 978-3-642-54613-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics