Skip to main content

A Personal Account of the Development of the Field Theory of Large-Scale Brain Activity from 1945 Onward

  • Chapter
  • First Online:
Neural Fields

Abstract

In this paper I give my personal perspective on the development of a field theory of large-scale brain activity. I review early work by Pitts, Wiener, Beurle and others, and give an account of the development of the mean-field Wilson-Cowan equations. I then outline my reasons for trying to develop a stochastic version of these equations, and recall the steps leading to the discovery that one can use field theory and the van Kampen system-size expansion of a neural master equation to obtain stochastic Wilson-Cowan equations. I then describe how stochastic neural field theory led to the discovery that there is a directed percolation phase transition in large-scale brain activity, and how the stochastic Wilson-Cowan equations can provide insight into many aspects of large-scale brain activity, such as the generation of fluctuation-driven avalanches and oscillations.

Ah, but a man’s reach should exceed his grasp, Or what’s a heaven for?

Robert Browning (1855)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abarbanel, H., Broznan, J.: Structure of the vacuum singularity in Reggeon field theory. Phys. Lett. B 48, 345–348 (1974)

    Article  Google Scholar 

  2. Abarbanel, H., Broznan, J., Schwimmer, A., Sugar, R.: Intercept of the Pomeron. Phys. Rev. D 14(2), 632–646 (1976)

    Article  Google Scholar 

  3. Abarbanel, H., Broznan, J., Sugar, R., White, A.: Reggeon field theory: formulation and use. Phys. Rep. 21(3), 119–182 (1975)

    Article  Google Scholar 

  4. Alstrom, P.: Mean-field exponents for self-organized critical phenomena. Phys. Rev. A 38(9), 4905–4906 (1988)

    Article  Google Scholar 

  5. Amari, S.I.: A method of statistical neurodynamics. Kybernetik 14, 201–215 (1974)

    MATH  MathSciNet  Google Scholar 

  6. Amari, S.I., Yoshida, K., Kanatani, K.: A mathematical foundation for statistical neurodynamics. SIAM J. Appl. Math. 33, 95–126 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Amati, D., Marchesini, G., Ciafoloni, M., Parisi, G.: Expanding disc as a dynamical vacuum instability in Reggeon field theory. Nucl. Phys. B 114, 483–504 (1976)

    Article  Google Scholar 

  8. Beggs, J., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23(35), 11167–11177 (2003)

    Google Scholar 

  9. Benayoun, M., Cowan, J., van Drongelen, W., Wallace, E.: Avalanches in a stochastic model of spiking neurons. PLoS Comput. Biol. 6(7), e1000846 (2010)

    Article  Google Scholar 

  10. Beurle, R.L.: Properties of a mass of cells capable of regenerating pulses. Philos. Trans. R. Soc. Lond. B 240(669), 55–94 (1956)

    Google Scholar 

  11. Bressloff, P.: Stochastic neural field theory and the system-size expansion. SIAM J. Appl. Math. 70(5), 1488–1521 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Buice, M.: Neural networks, field theory, directed percolation, and critical branching. Ph.D. thesis, University of Chicago (2005)

    Google Scholar 

  13. Buice, M.A., Cowan, J.D.: Field theoretic approach to fluctuation effects for neural networks. Phys. Rev. E 75, 051919 (2007)

    Article  MathSciNet  Google Scholar 

  14. Buice, M., Cowan, J.: Statistical mechanics of the neocortex. Prog. Biophys. Theor. Biol. 99(2,3), 53–86 (2009)

    Google Scholar 

  15. Buice, M.A., Cowan, J.D., Chow, C.C.: Systematic fluctuation expansion for neural network activity equations. Neural Comput. 22(2), 377–426 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Burns, B.D.: Some properties of isolated cerebral cortex in the unanaesthetized cat. J. Physiol. 112, 156–175 (1951)

    Google Scholar 

  17. Butler, T., Benayoun, M., Wallace, E., van Drongelen, W., Goldenfeld, N., Cowan, J.: Evolutionary constraints on visual cortex architecture from the dynamics of hallucinations. PNAS 109(2), 606–609 (2012)

    Article  Google Scholar 

  18. Cai, D., Tao, L., Shelley, M., McLaughlin, D.: An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc. Nat. Acad. Sci. USA 101(20), 7757–7762 (2004)

    Article  Google Scholar 

  19. Cardy, J., Sugar, R.: Directed percolation and Reggeon field theory. J. Phys. A 13, L423–L427 (1980)

    Article  MathSciNet  Google Scholar 

  20. Chen, L.Y., Goldenfeld, N., Oono, Y.: Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 54(1), 376–394 (1996)

    Article  Google Scholar 

  21. Cowan, J.: A mathematical theory of central nervous activity. Ph.D. thesis, Imperial College of Science and Technology, University of London (1967)

    Google Scholar 

  22. Cowan, J.: Statistical mechanics of nervous nets. In: Caianiello E.R. (ed.) Neural Networks, pp. 181–188. Springer, Berlin/Heidelberg/New York (1968)

    Chapter  Google Scholar 

  23. Cowan, J.: A statistical mechanics of nervous activity. In: Gerstenhaber, M. (ed.) Some Mathematical Questions in Biology, vol. 2. American Mathematical Society, Providence (1971)

    Google Scholar 

  24. Cowan, J.D.: Stochastic neurodynamics. In: Touretzsky, D., Lippman, R., Moody, J. (eds.) Advances in Neural Information Processing Systems, vol. 3, pp. 62–68. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  25. Cragg, B., Temperley, H.: The organization of neurones: a cooperative analogy. Electroencephalogr. Clin. Neurophysiol. 6, 85–92 (1954)

    Article  Google Scholar 

  26. Davidsen, J., Schuster, H.: Simple model for 1∕f α noise. Phys. Rev. E 65(2), 026120–026123 (2002)

    Article  Google Scholar 

  27. Destexhe, A., Sejnowski, T.: The Wilson-Cowan model, 36 years later. Biol. Cybern. 101(1), 1–2 (2009)

    Article  MATH  Google Scholar 

  28. Dickman, R.: Nonequilibrium lattice models: series analysis of steady states. J. Stat. Phys. 55(5–6), 997–1026 (1989)

    Article  MathSciNet  Google Scholar 

  29. Doi, M.: Second quantization representation for classical many-particle system. J. Phys. A Math. Gen. 9(9), 1465–1477 (1976)

    Article  Google Scholar 

  30. Doi, M.: Stochastic theory of diffusion controlled reaction. J. Phys. A Math. Gen. 9(9), 1479–1495 (1976)

    Article  Google Scholar 

  31. Fetter, A., Walecka, J.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)

    Google Scholar 

  32. Feynman, R.P.: Space–time approach to non–relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367–387 (1948)

    Article  MathSciNet  Google Scholar 

  33. Georgi, H.: Lie Algebras in Particle Physics. Benjamin Books, Menlo Park (1982)

    MATH  Google Scholar 

  34. Gillespie, D.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)

    Article  Google Scholar 

  35. Glauber, R.: Photon correlations. Phys. Rev. Lett. 10(3), 84–86 (1963)

    Article  MathSciNet  Google Scholar 

  36. Grassberger, P., de la Torre, A.: Reggeon field theory (Schlögle’s first model) on a lattice: Monte carlo calculations of critical behaviour. Ann. Phys. 122, 373–396 (1979)

    Article  Google Scholar 

  37. Grassberger, P., Scheunert, M.: Fock–space methods for identical classical objects. Fortschr. Phys. 28, 547–578 (1980)

    Article  MathSciNet  Google Scholar 

  38. Gribov, V.: A Reggeon diagram technique. Sov. Phys. JETP 26, 414 (1968)

    Google Scholar 

  39. Hecht, K.: The Vector Coherent State Method. Springer, New York (1987)

    Google Scholar 

  40. Hopfield, J.: Neural networks and physical systems with emergent collective computational properties. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  41. Hoppensteadt, F., Izhikevich, E.: Weakly Connected Neural Networks. Springer, New York (1997)

    Book  Google Scholar 

  42. Kerner, E.: A statistical mechanics of interacting species. Bull. Math. Biophys. 19, 121–146 (1957)

    Article  MathSciNet  Google Scholar 

  43. Kirkwood, J.: The statistical mechanical theory of transport processes i: general theory. J. Chem. Phys. 14(2), 180–201 (1946)

    Article  Google Scholar 

  44. Kobayashi, T.: f −1 series generated by using the branching process model. J. Phys. A 22, L931–L938 (1989)

    Article  Google Scholar 

  45. Kramers, H.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  46. Lampl, I., Reichova, I., Ferster, D.: Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22, 361–374 (1999)

    Article  Google Scholar 

  47. Liggett, T.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, New York (1985)

    Book  Google Scholar 

  48. Little, W.: The existence of persistent states in the brain. Math. Biosci. 19, 101–120 (1974)

    Article  MATH  Google Scholar 

  49. Lotka, A.: Elements of Physical Biology. Williams and Wilkins Co., Baltimore (1925)

    MATH  Google Scholar 

  50. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous tissue. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  51. McKane, A., Newman, T.: Stochastic models in population biology and their deterministic analogs. Phys. Rev. E 70(4), 41902 (2004)

    Article  MathSciNet  Google Scholar 

  52. McKane, A., Newman, T.: Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev. Lett. 94(21), 218102 (2005)

    Article  Google Scholar 

  53. Mobilia, M., Georgiev, I., Taüber, U.: Fluctuations and correlations in lattice models of predator-prey interactions. Phys. Rev. E 73(4), 04093–04096 (2006)

    Article  Google Scholar 

  54. Mobilia, M., Georgiev, I., Taüber, U.: Phase transitions and spatio-temporal fluctuations in stochastic Lotka-Volterra models. J. Stat. Phys. 123(6), 1061–1097 (2006)

    Google Scholar 

  55. Moyal, J.: Stochastic processes and statistical physics. J. R. Stat. Soc. B 11(2), 150–210 (1949)

    MATH  MathSciNet  Google Scholar 

  56. Murphy, B., Miller, K.: Balanced amplification: a new mechanism of selective amplification of neural activity patterns. Neuron 61(4), 635–648 (2009)

    Article  Google Scholar 

  57. Nauhaus, I., Busse, L., Carandini, M., Ringach, D.: Stimulus contrast modulates functional connectivity in visual cortex. Nat. Neurosci. 12(1), 70–76 (2009)

    Article  Google Scholar 

  58. Ohira, T.: A master equation approach to stochastic neurodynamics. Ph.D. thesis, University of Chicago (1993)

    Google Scholar 

  59. Ohira, T., Cowan, J.: Stochastic neurodynamics and the system size expansion. In: Ellacort, S., Anderson, I. (eds.) Proceedings of the First International Conference on the Mathematics of Neural Networks, pp. 290–294. Kluwer, Boston (1997)

    Chapter  Google Scholar 

  60. Pearl, R.: The growth of populations. Q. Rev. Biol. 2, 532–548 (1927)

    Article  Google Scholar 

  61. Peliti, L.: Path integral approach to birth–death processes on a lattice. J. Phys. 46, 1469–1483 (1985)

    Article  MathSciNet  Google Scholar 

  62. Perelomov, A.: Generalized Coherent States and Their Applications. Springer, New York (1986)

    Book  MATH  Google Scholar 

  63. Rose, H.: Renormalised kinetic theory for nonequilibrium many-particle classical systems. J. Stat. Phys. 20(4), 415–447 (1980)

    Article  Google Scholar 

  64. Rosenblatt, F.: The perceptron, a probabilistic model for information storage and organization in the brain. Psychol. Rev. 62, 386–408 (1958)

    Article  Google Scholar 

  65. Rowe, D., Robinson, P., Rennie, C.: Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. J. Theor. Biol. 231, 413–433 (2004)

    Article  MathSciNet  Google Scholar 

  66. Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: Rumelhart, D., McClelland, J. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. I: foundations. MIT, Cambridge (1986)

    Google Scholar 

  67. Schulman, L.: Techniques and Applications of Path Integration. Wiley, New York (1981)

    MATH  Google Scholar 

  68. Schwinger, J.: On angular momentum. In: Biedenharn, L., van Dam, H. (eds.) Quantum Theory of Angular Momentum, pp. 229–279. Academic, New York (1965)

    Google Scholar 

  69. Smith, D., Davidson, C.: Maintained activity in neural nets. J. ACM 9(2), 268–279 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  70. Stevens, C.: How cortical interconnectedness varies with network size. Neural Comput. 1, 473–479 (1989)

    Article  Google Scholar 

  71. Uttley, A.: The probability of neural connexions. Proc. R. Soc. Lond. B 144(915), 229–240 (1955)

    Google Scholar 

  72. Uttley, A.: A theory of the mechanism of learning based on the computation of conditional probabilities. In: Proceedings of the 1st International Congress on Cybernetics, Namur, pp. 830–856. Gauthier-Villars, Paris (1956)

    Google Scholar 

  73. Van Kampen, N.: Stochastic Processes in Physics and Chemistry. North Holland, Amsterdam/New York (1981)

    MATH  Google Scholar 

  74. Verhulst, P.: Recherches mathématiques sur la loi d’accroissment de la population. Mem. Acad. R. Belg. 18, 1–38 (1845)

    Google Scholar 

  75. Volterra, V.: Leçons sur la Théorie Mathématique de la Lutte pour la Vie. Gauthier-Villars, Paris (1931)

    Google Scholar 

  76. Wallace, E., Benayoun, M., van Drongelen, W., Cowan, J.: Emergent oscillations in networks of stochastic spiking neurons. PLoS ONE 6(5), e14804 (2011)

    Article  Google Scholar 

  77. Wiener, N.: Nonlinear Problems in Random Theory. MIT, Cambridge (1958)

    MATH  Google Scholar 

  78. Wilson, K.: Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4(9), 3174–3183 (1971)

    MATH  Google Scholar 

  79. Wilson, H., Cowan, J.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–22 (1972)

    Article  Google Scholar 

  80. Wilson, H., Cowan, J.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge with thanks the financial support from ONR on two separate contracts, and that from the Grant Foundation and the James S. McDonnell Foundation, which greatly facilitated the development of this work. I will always appreciate the many contributions to this work made by my Postdoctoral Fellow and later colleague Hugh Wilson in the early days of this work, and the more recent contributions of my graduate students Toru Ohira, Michael Buice, Edward Wallace and Marc Benayoun, and of my collaborators Paul Bressloff and Wim van Drongelen, and of Nigel Goldenfeld and his graduate student Tom Butler at the University of Illinois, Urbana-Champaign, not to speak of the many other colleagues at the University of Chicago who, over the years since 1967, have provided much stimulation and constructive criticism.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cowan, J. (2014). A Personal Account of the Development of the Field Theory of Large-Scale Brain Activity from 1945 Onward. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds) Neural Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54593-1_2

Download citation

Publish with us

Policies and ethics