Skip to main content

A Dynamic Neural Field Approach to Natural and Efficient Human-Robot Collaboration

  • Chapter
  • First Online:
Neural Fields

Abstract

A major challenge in modern robotics is the design of autonomous robots that are able to cooperate with people in their daily tasks in a human-like way. We address the challenge of natural human-robot interactions by using the theoretical framework of Dynamic Neural Fields (DNFs) to develop processing architectures that are based on neuro-cognitive mechanisms supporting human joint action . By explaining the emergence of self-stabilized activity in neuronal populations, Dynamic Field Theory provides a systematic way to endow a robot with crucial cognitive functions such as working memory , prediction and decision making . The DNF architecture for joint action is organized as a large scale network of reciprocally connected neuronal populations that encode in their firing patterns specific motor behaviors, action goals, contextual cues and shared task knowledge. Ultimately, it implements a context-dependent mapping from observed actions of the human onto adequate complementary behaviors that takes into account the inferred goal of the co-actor. We present results of flexible and fluent human-robot cooperation in a task in which the team has to assemble a toy object from its components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    But see http://www.youtube.com/watch?v=A0qemfXnWiE for a video with the complete construction task.

  2. 2.

    Video of the human-robot interactions depicted in Fig. 13.3 can be found in http://dei-s1.dei.uminho.pt/pessoas/estela/Videos/JAST/Video_Fig4_Aros_Human_Toy_Vehicle.mpg.

  3. 3.

    For the video see http://www.youtube.com/watch?v=7t5DLgH4DeQ.

References

  1. Alami, R., Clodic, A., Montreuil, V., Sisbot, E.A., Chatila, R.: Task planning for human-robot interaction. In: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence, Genoble. ACM International Conference Proceeding Series, vol. 121, pp. 81–85 (2005)

    Google Scholar 

  2. Amari, S.: Dynamics of pattern formation in lateral-inhibitory type neural fields. Biol. Cybern. 27, 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bicho, E., Mallet, P., Schöner, G.: Target representation on an autonomous vehicle with low-level sensors. Int. J. Robot. Res. 19, 424–447 (2000)

    Article  Google Scholar 

  4. Bicho, E., Louro, L., Erlhagen, W.: Integrating verbal and nonverbal communication in a dynamic neural field architecture for human-robot interaction. Front. Neurorobotics (2010). doi:10.3389/fnbot.2010.0005

    Google Scholar 

  5. Bicho, E., Erlhagen, W., Louro, L., Costa e Silva, E.: Neuro-cognitive mechanisms of decision making in joint action: a human-robot interaction study. Hum. Mov. Sci. 30, 846–868 (2011a)

    Google Scholar 

  6. Bicho, E., Erlhagen, W., Louro, L., Costa e Silva, E., Silva, R., Hipolito, N.: A dynamic field approach to goal inference, error detection and anticipatory action selection in human-robot collaboration. In: Dautenhahn, K., Saunders, J. (eds.) New Frontiers in Human-Robot Interaction, pp. 135–164. John Benjamins, Amsterdam (2011b)

    Google Scholar 

  7. Cisek, P.: Cortical mechanisms of action selection: the affordance competition hypothesis. Philos. Trans. R. Soc. B 362, 1585–1599 (2007)

    Article  Google Scholar 

  8. Cohen, P., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42, 213–261 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coombes, S.: Waves, bumps, and patterns in neural field theories. Biol. Cybern. 93, 91–108 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Costa e Silva, E., Costa, F., Bicho, E., Erlhagen, W.: Nonlinear optimization for human-like movements of a high degree of freedom robotics arm-hand system. In: Murante, B. (ed.) Computational Science and Its Applications – ICCSA 2011. Lecture Notes in Computer Science, vol. 6794, Part III, pp. 327–342. Springer, Berlin/Heidelberg (2011)

    Google Scholar 

  11. Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., Rasmussen, D.: A large scale model of the functioning brain. Science 338, 1202–1205 (2012)

    Article  Google Scholar 

  12. Erlhagen, W., Bicho, E.: The dynamic neural field approach to cognitive robotics. J. Neural Eng. 3, R36–R54 (2006)

    Article  Google Scholar 

  13. Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psychol. Rev. 109, 545–572 (2002)

    Article  Google Scholar 

  14. Erlhagen, W., Bastian, A., Jancke, D., Riehle, A., Schöner, G.: The distribution of neuronal population activation as a tool to study interaction and integration in cortical representations. J. Neurosci. Methods 94, 53–66 (1999)

    Article  Google Scholar 

  15. Erlhagen, W., Mukovskiy, A., Bicho, E.: A dynamic model for action understanding and goal-directed imitation. Brain Res. 1083, 174–188 (2006)

    Article  Google Scholar 

  16. Erlhagen, W., Mukovskiy, A., Chersi, F., Bicho, E.: On the development of intention understanding for joint action tasks. In: 6th IEEE International Conference on Development and Learning, Imperial College London, pp. 140–145 (2007)

    Google Scholar 

  17. Ferreira, F., Erlhagen, W., Bicho, E.: A dynamic field model of ordinal and timing properties of sequential events. In: Honkela, T., Duch, W., Giorlami, M., Kaski, S. (eds.) Artificial Neural Networks and Machine Learning – ICANN 2011. Lecture Notes in Computer Science vol. 6792, Part II, pp. 325–332. Springer, Berlin/Heidelberg (2011)

    Google Scholar 

  18. Flanagan, J.R., Bowman, M.C., Johansson, R.S.: Control strategies in object manipulation tasks. Curr. Opin. Neurobiol. 16, 650–659 (2006)

    Article  Google Scholar 

  19. Fogassi, L., Ferrari, P.F., Gesierich, B., Rozzi, S., Chersi, F., Rizzolatti, G.: Parietal lobe: from action organization to intention understanding. Science 308, 662–667 (2005)

    Article  Google Scholar 

  20. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robot. Auton. Syst. 42, 143–166 (2003)

    Article  MATH  Google Scholar 

  21. Fuster, J.M.: A cognit: a network model of cortical representation. Int. J. Psychophysiol. 60, 125–132 (2006)

    Article  Google Scholar 

  22. Genovesio, A., Brasted, P.J., Wise, P.: Representation of future and previous spatial goals by separate neural populations in prefrontal cortex. J. Neurosci. 26(27), 7305–7316 (2006)

    Article  Google Scholar 

  23. Gerstner, W., Kistler, W.M.: Mathematical formulations of Hebbian learning. Biol. Cybern. 87, 404–415 (2002)

    Article  MATH  Google Scholar 

  24. Gibbson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)

    Google Scholar 

  25. Gold, J.I., Shadlen, M.: The neural basis of decision making. Ann. Rev. Neurosci. 30, 535–574 (2007)

    Article  Google Scholar 

  26. Haazebroek, P., van Dantzig, A., Hommel, B.: A computational model of perception and action for cognitive robots. Cognit. Process 12, 355–365 (2011)

    Article  Google Scholar 

  27. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  28. Hoffman, G., Breazeal, C.: Cost-based anticipatory action selection for human-robot fluency. IEEE Trans. Robot. 23, 952–961 (2007)

    Article  Google Scholar 

  29. Kishimoto, K., Amari, S.: Existence and stability of local excitations in homogeneous neural fields. J. Math. Biol. 7, 303–318 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kozma, R.: Intentional systems: review of neurodynamics, modelling, and robotics implementations. Phys. Life Rev. 5, 1–21 (2008)

    Article  Google Scholar 

  31. Laing, C.R., Troy, W.C., Gutkin, B., Ermentrout, G.B.: Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math 63, 62–97 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Levesque, H., Lakemeyer, G.: Cognitive robotics. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 869–886. Elsevier B. V., Amsterdam (2008)

    Chapter  Google Scholar 

  33. Newman-Norlund, R.D., van Schie, H.T., van Zuijlen, A.M.J., Bekkering, H.: The mirror neuron system is more active during complementary compared with imitative action. Nat. Neurosci. 10, 817–818 (2007)

    Article  Google Scholar 

  34. Pinheiro, M., Bicho, E., Erlhagen, W.: A dynamic neural field architecture for a pro-active assistant robot. In: Proceedings of the 3rd IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (IEEE BioRob 2010), Tokyo, pp. 777–784 (2010)

    Google Scholar 

  35. Rizzolatti, G., Luppino, G.: The cortical motor system. Neuron 31, 889–901 (2001)

    Article  Google Scholar 

  36. Rizzolatti, G., Sinigaglia, C.: The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 11, 264–274 (2010)

    Article  Google Scholar 

  37. Sandamirskaya, Y., Schöner, G.: An embodied account for serial order: how instabilities drive sequence generation. Neural Netw. 23, 1164–1179 (2010)

    Article  Google Scholar 

  38. Schaal, S.: The new robotics: towards human-centered machines. HFSP J. 1, 115–126 (2007)

    Article  Google Scholar 

  39. Schöner, G.: Dynamical systems approaches to cognition. In: Sun, R. (ed.) The Cambridge Handbook of Computational Psychology, pp. 101–125. Cambridge University Press, Cambridge (2008)

    Chapter  Google Scholar 

  40. Sebanz, N., Bekkering, H., Knoblich, G.: Joint action: bodies and minds moving together. Trends Cognit. Sci. 10, 70–76 (2006)

    Article  Google Scholar 

  41. Shepard, R.N.: Toward a universal law of generalization for psychological science. Science 237, 1317–1323 (1997)

    Article  MathSciNet  Google Scholar 

  42. Steil, J.J., Röthling, F., Haschke, R., Ritter, H.: Situated robot learning for multi-modal instruction and imitation of grasping. Robot. Auton. Syst. 47, 129–141 (2004)

    Article  Google Scholar 

  43. Tanji, J., Shima, K., Mushiake, H.: Concept-based behavioural planning and the lateral prefrontal cortex. Trends Cognit. Sci. 11, 528–534 (2007)

    Article  Google Scholar 

  44. Trappenbeg, T., Standage, D.I.: Multi-packet regions in stabilized continuous attractor networks. Neurocomputing 65–66, 617–625 (2005)

    Article  Google Scholar 

  45. Umiltà, M.A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., Rizzolatti, G.: I know what you are doing: a neurophysiological study. Neuron 31, 155–165 (2001)

    Article  Google Scholar 

  46. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. IEEE Trans. Evol. Comput. 2, 151–181 (2007)

    Article  Google Scholar 

  47. Westphal, G., von der Malsburg, C., Würtz, R.P.: Feature-driven emergence of model graphs for object recognition and categorization. In: Bunke, H., Kandel, A., Last, M. (eds.) Applied Pattern Recognition. Sudies in Computational Intelligence, vol. 91, pp. 155–199. Springer, Berlin (2008)

    Google Scholar 

  48. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The present research was conducted in the context of the fp6-IST2 EU-IP Project JAST (proj. nr. 003747) and partly financed by fp7-people-2011-itn NETT (proj. nr. 289146) and FCT grants POCI/V.5/A0119/2005 and CONC-REEQ/17/2001. We would like to thank Luis Louro, Emanuel Sousa, Flora Ferreira, Eliana Costa e Silva, Rui Silva and Toni Machado for their assistance during the robotic experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Erlhagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Erlhagen, W., Bicho, E. (2014). A Dynamic Neural Field Approach to Natural and Efficient Human-Robot Collaboration. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds) Neural Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54593-1_13

Download citation

Publish with us

Policies and ethics