Skip to main content

Universal Neural Field Computation

  • Chapter
  • First Online:
Neural Fields

Abstract

Turing machines and Gödel numbers are important pillars of the theory of computation. Thus, any computational architecture needs to show how it could relate to Turing machines and how stable implementations of Turing computation are possible. In this chapter, we implement universal Turing computation in a neural field environment. To this end, we employ the canonical symbologram representation of a Turing machine obtained from a Gödel encoding of its symbolic repertoire and generalized shifts. The resulting nonlinear dynamical automaton (NDA) is a piecewise affine-linear map acting on the unit square that is partitioned into rectangular domains. Instead of looking at point dynamics in phase space, we then consider functional dynamics of probability distribution functions (p.d.f.s) over phase space. This is generally described by a Frobenius-Perron integral transformation that can be regarded as a neural field equation over the unit square as feature space of a Dynamic Field Theory (DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with rectangular support are mapped onto uniform p.d.f.s with rectangular support, again. We call the resulting representation dynamic field automaton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afraimovich, V.S., Zhigulin, V.P., Rabinovich, M.I.: On the origin of reproducible sequential activity in neural circuits. Chaos 14(4), 1123–1129 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amari, S.I.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks, 1st edn. MIT, Cambridge (1995)

    Google Scholar 

  4. beim Graben, P., Gerth, S.: Geometric representations for minimalist grammars. J. Log. Lang. Inf. 21(4), 393–432 (2012)

    Google Scholar 

  5. beim Graben, P., Hutt, A.: Attractor and saddle node dynamics in heterogeneous neural fields. EPJ Nonlinear Biomed. Phys. 2, 4 (2014). doi:10.1140/epjnbp17

    Google Scholar 

  6. beim Graben, P., Potthast, R.: Inverse problems in dynamic cognitive modeling. Chaos 19(1), 015103 (2009)

    Google Scholar 

  7. beim Graben, P., Potthast, R.: A dynamic field account to language-related brain potentials. In: Rabinovich, M., Friston, K., Varona, P. (eds.) Principles of Brain Dynamics: Global State Interactions, chap. 5, pp. 93–112. MIT, Cambridge (2012)

    Google Scholar 

  8. beim Graben, P., Potthast, R.: Implementing Turing machines in dynamic field architectures. In: Bishop, M., Erden, Y.J. (eds.) Proceedings of AISB12 World Congress 2012 – Alan Turing 2012, vol. 5th AISB Symposium on Computing and Philosophy: Computing, Philosophy and the Question of Bio-Machine Hybrids, Birmingham, pp. 36–40 (2012). http://arxiv.org/abs/1204.5462

  9. beim Graben, P., Jurish, B., Saddy, D., Frisch, S.: Language processing by dynamical systems. Int. J. Bifurc. Chaos 14(2), 599–621 (2004)

    Google Scholar 

  10. beim Graben, P., Gerth, S., Vasishth, S.: Towards dynamical system models of language-related brain potentials. Cogn. Neurodynamics 2(3), 229–255 (2008)

    Google Scholar 

  11. beim Graben, P., Pinotsis, D., Saddy, D., Potthast, R.: Language processing with dynamic fields. Cogn. Neurodynamics 2(2), 79–88 (2008)

    Google Scholar 

  12. Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22(4), 047510 (2012)

    Google Scholar 

  13. Cvitanović, P., Gunaratne, G.H., Procaccia, I.: Topological and metric properties of Hénon-type strange attractors. Phys. Rev. A 38(3), 1503–1520 (1988)

    Article  MathSciNet  Google Scholar 

  14. Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psychol. Rev. 109(3), 545–572 (2002)

    Article  Google Scholar 

  15. Fukai, T., Tanaka, S.: A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all. Neural Comput. 9(1), 77–97 (1997)

    Article  MATH  Google Scholar 

  16. Gayler, R.W.: Vector symbolic architectures are a viable alternative for Jackendoff’s challenges. Behav. Brain Sci. 29, 78–79 (2006)

    Article  Google Scholar 

  17. Gödel, K.: Über formal unentscheidbare Sätze der principia mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

    Article  Google Scholar 

  18. Hertz, J.: Computing with attractors. In: Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks, 1st edn, pp. 230–234. MIT, Cambridge (1995)

    Google Scholar 

  19. Hofstadter, D.R.: Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books, New York (1979)

    Google Scholar 

  20. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison–Wesley, Menlo Park (1979)

    MATH  Google Scholar 

  21. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81(10), 3088–3092 (1984)

    Article  Google Scholar 

  22. Jirsa, V.K., Kelso, J.A.S.: Spatiotemporal pattern formation in neural systems with heterogeneous connection toplogies. Phys. Rev. E 62(6), 8462–8465 (2000)

    Article  Google Scholar 

  23. Kennel, M.B., Buhl, M.: Estimating good discrete partitions from observed data: symbolic false nearest neighbors. Phys. Rev. Lett. 91(8), 084,102 (2003)

    Google Scholar 

  24. Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. USA 17, 315–318 (1931)

    Article  Google Scholar 

  25. Koopman, B.O., von Neumann, J.: Dynamical systems of continuous spectra. Proc. Natl. Acad. Sci. USA 18, 255–262 (1932)

    Article  Google Scholar 

  26. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  27. McCulloch, W.S., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  28. McMillan, B.: The basic theorems of information theory. Ann. Math. Stat. 24, 196–219 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  29. Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64(20), 2354–2357 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Moore, C.: Generalized shifts: unpredictability and undecidability in dynamical systems. Nonlinearity 4, 199–230 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Moore, C.: Dynamical recognizers: real-time language recognition by analog computers. Theor. Comput. Sci. 201, 99–136 (1998)

    Article  MATH  Google Scholar 

  32. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237, 275–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, New York (1993)

    MATH  Google Scholar 

  34. Pitts, W., McCulloch, W.S.: How we know universals: the perception of auditory and visual forms. Bull. Math. Biophys. 9, 127–147 (1947)

    Article  Google Scholar 

  35. Plate, T.A.: Holographic reduced representations. IEEE Trans. Neural Netw. 6(3), 623–641 (1995)

    Article  Google Scholar 

  36. Pollack, J.B.: The induction of dynamical recognizers. Mach. Learn. 7, 227–252 (1991). Also published in [37], pp. 283–312

    Google Scholar 

  37. Port, R.F., van Gelder, T. (eds.): Mind as Motion: Explorations in the Dynamics of Cognition. MIT, Cambridge (1995)

    Google Scholar 

  38. Potthast, R., beim Graben, P.: Inverse problems in neural field theory. SIAM J. Appl. Dyn. Syst. 8(4), 1405–1433 (2009)

    Google Scholar 

  39. Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4(5), e1000,072 (2008)

    Google Scholar 

  40. Sandamirskaya, Y., Schöner, G.: Dynamic field theory of sequential action: a model and its implementation on an embodied agent. In: Proceedings of the 7th IEEE International Conference on Development and Learning (ICDL), Monterey, pp. 133–138 (2008)

    Google Scholar 

  41. Sandamirskaya, Y., Schöner, G.: An embodied account of serial order: how instabilities drive sequence generation. Neural Netw. 23(10), 1164–1179 (2010)

    Article  Google Scholar 

  42. Schöner, G.: Neural systems and behavior: dynamical systems approaches. In: Smelser, N.J., Baltes, P.B. (eds.) International Encyclopedia of the Social & Behavioral Sciences, pp. 10571–10575. Pergamon, Oxford (2002)

    Google Scholar 

  43. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput. Syst. Sci. 50(1), 132–150 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  44. Smolensky, P.: Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif. Intell. 46(1–2), 159–216 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  45. Smolensky, P.: Harmony in linguistic cognition. Cogn. Sci. 30, 779–801 (2006)

    Article  Google Scholar 

  46. Sontag, E.D.: Automata and neural networks. In: Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks, 1st edn, pp. 119–123. MIT, Cambridge (1995)

    Google Scholar 

  47. Spencer, M.C., Tanay, T., Roesch, E.B., Bishop, J.M., Nasuto, S.J.: Abstract platforms of computation. AISB 2013, Exeter (2013)

    Google Scholar 

  48. Tabor, W.: Fractal encoding of context-free grammars in connectionist networks. Expert Syst.: Int. J. Knowl. Eng. Neural Netw. 17(1), 41–56 (2000)

    Google Scholar 

  49. Tabor, W., Cho, P.W., Szkudlarek, E.: Fractal analyis illuminates the form of connectionist structural gradualness. Top. Cogn. Sci. 5, 634–667 (2013)

    Article  Google Scholar 

  50. Tennent, R.D.: The denotational semantics of programming languages. Commun. ACM 19(8), 437–453 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  51. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 2(42), 230–265 (1937)

    Google Scholar 

Download references

Acknowledgements

We thank Slawomir Nasuto and Serafim Rodrigues for helpful comments improving this chapter. This research was supported by a DFG Heisenberg fellowship awarded to PbG (GR 3711/1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter beim Graben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

beim Graben, P., Potthast, R. (2014). Universal Neural Field Computation. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds) Neural Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54593-1_11

Download citation

Publish with us

Policies and ethics