Skip to main content

Application of Footprint Models to Different Measurement Techniques

  • Chapter
  • First Online:
Footprints in Micrometeorology and Ecology

Abstract

Footprint models were mainly developed to interpret the results of flux measurement techniques. The aim was to replace the ad hoc typical ‘empirical rule’ used in the past to determine optimal measurement conditions. As the eddy-covariance flux method grew in popularity, more sophisticated approaches with realistic assumptions—a footprint analysis—had to be developed and applied along with the need for a theoretical framework explaining its physical underpinnings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assc Comp Mach 17:589–602

    Article  Google Scholar 

  • André J-C, Bougeault P, Goutorbe J-P (1990) Regional estimates of heat and evaporation fluxes over non-homogeneous terrain, examples from the HAPEX-MOBILHY programme. Bound-Layer Meteorol 50:77–108

    Article  Google Scholar 

  • Andreas EL (1989) Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J Atm Oceanic Tech 6:280–292

    Article  Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology. Academic Press, San Diego 415 pp

    Google Scholar 

  • Aubinet M (2008) Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem. Ecol Appl 18:1368–1378

    Article  Google Scholar 

  • Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht 438 pp

    Book  Google Scholar 

  • Baldocchi D (1997) Flux footprints within and over forest canopies. Bound-Layer Meteorol 85:273–292

    Article  Google Scholar 

  • Bowen IS (1926) The ratio of heat losses by conduction and by evaporation from any water surface. Phys Rev 27:779–787

    Article  Google Scholar 

  • Businger JA (1982) Equations and concepts. In: Nieuwstadt FTM, Van Dop H (eds) Atmospheric turbulence and air pollution modelling: a course held in the hague, 21-25 September 1981. D. Reidel Publishing Company, Dordrecht, pp 1–36

    Google Scholar 

  • Businger JA (1986) Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J Appl Meteorol 25:1100–1124

    Article  Google Scholar 

  • Chen JM, Leblanc SG, Cihlar J, Desjardins RL, MacPherson IJ (1999) Extending aircraft- and tower-based CO2 flux measurements to a boreal region using a Landsat thematic mapper land cover map. J Geophys Res 104(D14):16,859–816,877

    Google Scholar 

  • DeBruin HAR (2002) Introduction: renaissance of scintillometry. Bound-Layer Meteorol 105:1–4

    Article  Google Scholar 

  • Desjardins RL, MacPherson JI, Schuepp PH, Karanja F (1989) An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Bound-Layer Meteorol 47:55–69

    Article  Google Scholar 

  • Desjardins RL, MacPherson JI, Schuepp PH, Hayhoe HN (1994) Airborne flux measurements of CO2, sensible, and latent heat over the hudson bay lowland. J Geophys Res Atmos 99:1551–1561

    Article  Google Scholar 

  • Desjardins RL et al (1997) Scaling up flux measurements for the boreal forest using aircraft-tower combination. J Geophys Res 102(D24):29125–29133

    Article  Google Scholar 

  • Detto M, Montaldo N, Albertson JD, Mancini M, Katul G (2006) Soil moisture and vegetation controls on evapotranspiration in a heterogeneous mediterranean ecosystem on sardinia. Italy Water Resour Res 42:W08419

    Google Scholar 

  • Dugas WA, Fritschen LJ, Gay LW, Held AA, Matthias AD, Reicosky DC, Steduto P, Steiner JL (1991) Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat. Agric For Meteorol 56:12–20

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques, part I: averaging and coordinate rotation. Bound-Layer Meteorol 107:1–48

    Article  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105

    Article  Google Scholar 

  • Foken T, Richter SH, Müller H (1997) Zur Genauigkeit der Bowen-Ratio-Methode. Wetter Leben 49:57–77

    Google Scholar 

  • Foken T (1998) Genauigkeit meteorologischer Messungen zur Bestimmung des Energie- und Stoffaustausches über hohen Pflanzenbeständen. Ann Meteorol 37:513–514

    Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X et al (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208

    Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Berlin, 308 pp

    Google Scholar 

  • Foken T, Leuning R, Oncley SP, Mauder M, Aubinet M (2012a) Corrections and data quality. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131

    Chapter  Google Scholar 

  • Foken T, Aubinet M, Leuning R (2012b) The eddy-covarianced method. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 1–19

    Chapter  Google Scholar 

  • Fritschen LJ, Fritschen CL (2005) Bowen ratio energy balance method. In: Hatfield JL, Baker JM (eds) Micrometeorology in agricultural systems. American Society of Agronomy, Madison, pp 397–405

    Google Scholar 

  • Gioli B et al (2004) Comparison between tower and aircraft-based eddy covariance fluxes in five European regions. Agric For Meteorol 127:1–16

    Article  Google Scholar 

  • Göckede M, Markkaken T, Mauder M, Arnold K, Leps JP, Foken T (2005) Validation of footprint models using natural tracer measurements from a field experiment. Agric For Meteorol 135:314–325

    Article  Google Scholar 

  • Gurjanov AE, Zubkovskij SL, Fedorov MM (1984) Mnogokanalnaja avtomatizirovannaja sistema obrabotki signalov na baze EVM (automatic multi-channel system for signal analysis with electronic data processing). Geod Geophys Veröff R II 26:17–20

    Google Scholar 

  • Haugen DA (ed) (1973) Workshop on micrometeorology. American Meteorological Society, Boston, 392 pp

    Google Scholar 

  • Hill R (1997) Algorithms for obtaining atmospheric surface-layer from scintillation measurements. J Atm Oceanic Tech 14:456–467

    Article  Google Scholar 

  • Hill RJ, Clifford SF, Lawrence RS (1980) Refractive index and absorption fluctuations in the infrared caused by temperature, humidity and pressure fluctuations. J Opt Soc Am 70:1192–1205

    Article  Google Scholar 

  • Horst TW, Weil JC (1992) Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound-Layer Meteorol 59:279–296

    Article  Google Scholar 

  • Horst TW, Weil JC (1994) How far is far enough?: the fetch requirements for micrometeorological measurement of surface fluxes. J Atm Oceanic Tech 11:1018–1025

    Article  Google Scholar 

  • Horst TW (1999) The footprint for estimation of atmosphere-surface exchange fluxes by profile techniques. Bound-Layer Meteorol 90:171–188

    Article  Google Scholar 

  • Hsieh C-I, Katul G, Chi T-W (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Res 23:765–772

    Article  Google Scholar 

  • Hutjes RWA, Vellinga OS, Gioli B, Miglietta F (2010) Dis-aggregation of airborne flux measurements using footprint analysis. Agric For Meteorol 150:966–983

    Article  Google Scholar 

  • Kaharabata SK, Schuepp PH, Ogunjemiyo S, Shen S, Leclerc MY, Desjardins RL, MacPherson JI (1997) Footprint considerations in BOREAS. J Geophys Res 102(D24):29113–29124

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York 289 pp

    Google Scholar 

  • Kirby S, Dobosy R, Williamson D, Dumas E (2008) An aircraft-based data analysis method for discerning individual fluxes in a heterogeneous agricultural landscape. Agric For Meteorol 148:481–489

    Article  Google Scholar 

  • Kljun N, Rotach MW, Schmid HP (2002) A three-dimensional backward Lagrangian footprint model for a wide range of boundary layer stratification. Bound-Layer Meteorol 103:205–226

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach M, Schmid HP (2004) A simple parameterization for flux footprint predictions. Bound-Layer Meteorol 112:503–523

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Bound-Layer Meteorol 99:207–224

    Article  Google Scholar 

  • Leclerc MY, Thurtell GW (1990) Footprint prediction of scalar fluxes using a Markovian analysis. Bound-Layer Meteorol 52:247–258

    Article  Google Scholar 

  • Lee X (2004) A model for scalar advection inside canopies and application to footprint investigation. Agric For Meteorol 127:131–141

    Article  Google Scholar 

  • Lee X, Massman WJ, Law B (eds) (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, 250 pp

    Google Scholar 

  • Liu H, Foken T (2001) A modified Bowen ratio method to determine sensible and latent heat fluxes. Meteorol Z 10:71–80

    Article  Google Scholar 

  • Mahrt L, Sun J, Vickers D, MacPherson JI, Pederson JR, Desjardins RL (1994) Observations of fluxes and inland breezes over a heterogeneous surface. J Atmos Sci 51:2484–2499

    Article  Google Scholar 

  • Marquardt D (1983) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  • Mauder M, Desjardins R, MacPherson I (2008) Creating surface flux maps from airborne measurements: application to the Mackenzie area GEWEX study MAGS 1999. Bound-Layer Meteorol 129:431–450

    Article  Google Scholar 

  • Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, DeBruin HAR (2002) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface: Flevoland field experiment. Bound-Layer Meteorol 105:63–83

    Article  Google Scholar 

  • Metzger S, Junkermann W, Butterbach-Bahl K, Schmid HP, Foken T (2011) Corrigendum to “Measuring the 3-D wind vector with a weight-shiftmicrolight aircraft” published in atmospheric measuring technique, 4:1421–1444, 1515–1539

    Google Scholar 

  • Metzger S, Junkermann W, Mauder M, Beyrich F, Butterbach-Bahl K, Schmid HP, Foken T (2012) Eddy-covariance flux measurements with a weight-shift microlight aircraft. Atmos Meas Tech 5:1699–1717

    Article  Google Scholar 

  • Metzger S et al (2013) Spatial resolution and regionalization of airborne flux measurements using environmental response functions. Biogeochemistry 10:2193–2217

    Google Scholar 

  • Moncrieff J (2004) Surface turbulent fluxes. In: Kabat P et al (eds) Vegetation, water, humans and the climate: a new perspective on an interactive system. Springer, Berlin, pp 173–182

    Chapter  Google Scholar 

  • Nappo CJ et al (1982) The workshop on the representativeness of meteorological observations, June 1981, Boulder CO. Bull Am Meteorol Soc 63:761–764

    Google Scholar 

  • Nieuwstadt FTM (1978) The computation of the friction velocity u* and the temperature scale T* from temperature and wind velocity profiles by least-square method. Bound-Layer Meteorol 14:235–246

    Article  Google Scholar 

  • Ogunjemiyo SO, Kaharabata SK, Schuepp PH, MacPherson IJ, Desjardins RL, Roberts DA (2003) Methods of estimating CO2, latent heat and sensible heat fluxes from estimates of land cover fractions in the flux footprint. Agric For Meteorol 117:125–144

    Article  Google Scholar 

  • Ohmura A (1982) Objective criteria for rejecting data for Bowen ratio flux calculations. J Climate Appl Meteorol 21:595–598

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, New York 397 pp

    Google Scholar 

  • Rannik Ü, Aubinet M, Kurbanmuradov O, Sabelfeld KK, Markkanen T, Vesala T (2000) Footprint analysis for measurements over heterogeneous forest. Bound-Layer Meteorol 97:137–166

    Article  Google Scholar 

  • Rannik Ü, Markkanen T, Raittila T, Hari P, Vesala T (2003) Turbulence statistics inside and above forest: Influence on footprint prediction. Bound-Layer Meteorol 109:163–189

    Article  Google Scholar 

  • Samuelsson P, Tjernström M (1999) Airborne flux measurements in NOPEX: comparison with footprint estimated surface heat fluxes. Agric For Meteorol 98–99:205–225

    Article  Google Scholar 

  • Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric For Meteorol 87:179–200

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, DeBruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Bound-Layer Meteorol 26:81–93

    Article  Google Scholar 

  • Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound-Layer Meteorol 50:355–373

    Article  Google Scholar 

  • Schuepp PH, MacPherson JI, Desjardins RL (1992) Adjustment of footprint correction for airborne flux mapping over the FIFE site. J Geophys Res 97(D17):18455–18466

    Article  Google Scholar 

  • Sellers PJ, Hall FG, Asrar G, Strebel DE, Murphy RE (1988) The first ISLSCP field experiment (FIFE). Bull Am Meteorol Soc 69:22–27

    Article  Google Scholar 

  • Sellers PJ et al (1997) BOREAS in 1997: experiment overview, scientific results, and future directions. J Geophys Res 102:28(769)731–728

    Google Scholar 

  • Stannard DI (1997) A theoretically based determination of Bowen-ratio fetch requirements. Bound-Layer Meteorol 83:375–406

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publisher, Dordrecht, 666 pp

    Book  Google Scholar 

  • Tanner BD (1988) Use requirements for Bowen ratio and eddy correlation determination of evapotranspiration. In: Proceedings of the 1988 speciality conference of the irrigation and drainage devisions, ASCE Lincoln, Nebraska, 19–21 July 1988

    Google Scholar 

  • Thiermann V, Grassl H (1992) The measurement of turbulent surface layer fluxes by use of bichromatic scintillation. Bound-Layer Meteorol 58:367–391

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atm Oceanic Tech 14:512–526

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Layer Meteorol 99:127–150

    Article  Google Scholar 

  • Wyngaard JC, Izumi Y, Collins SA (1971) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Am 61:1646–1650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Y. Leclerc .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leclerc, M.Y., Foken, T. (2014). Application of Footprint Models to Different Measurement Techniques. In: Footprints in Micrometeorology and Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54545-0_7

Download citation

Publish with us

Policies and ethics