A Simple and Efficient Key-Dependent S-Box Design Using Fisher-Yates Shuffle Technique

  • Musheer Ahmad
  • Parvez Mahmood Khan
  • Mohd Zeeshan Ansari
Part of the Communications in Computer and Information Science book series (CCIS, volume 420)


The substitution boxes are the only components in most of symmetric encryption systems that induce nonlinearity to provide efficacious data confusion. The cryptographic potency of these systems primarily depends upon the caliber of their S-boxes. This brings new challenges to design cryptographically efficient S-boxes to develop strong encryption systems. Here, a simple and effective method to design an efficient 8×8 S-box is put forward. The proposed design methodology is based on the classical Fisher-Yates shuffle technique. A piece-wise linear chaotic map is incorporated to act as a source to generate random numbers for proficient execution of shuffle technique. The construction of dynamic S-box is under the control of secret key. The performance evaluation of proposed S-box against standard statistical tests like bijective property, nonlinearity, strict avalanche criteria and equiprobable I/O XOR distribution reveals its excellent performance. Moreover, the proposed S-box is also compared with some recent chaos-based S-boxes. The investigations confirm that the design is consistent and suitable for secure communication.


Fisher-Yates shuffle substitution-box chaotic map nonlinearity secure communication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Systems Technical Journal 28, 656–715 (1949)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of applied cryptography. CRC Press (1997)Google Scholar
  3. 3.
    Ahmad, M.: Design and FPGA implementation of LFSR based data encryption circuit for secure communication, M.Tech Dissertation, AMU Aligarh (2008)Google Scholar
  4. 4.
    Dawson, M.H., Tavares, S.E.: An expanded set of S-box design criteria based on information theory and its relation to differential-like attacks. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 352–367. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Chen, G.: A novel heuristic method for obtaining S-boxes. Chaos, Solitons & Fractals 36(4), 1028–1036 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Karaahmetoglu, O., Sakalli, M.T., Bulus, E., Tutanescu, I.: A new method to determine algebraic expression of power mapping based S-boxes. Information Processing Letters 113(7), 229–235 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Szaban, M., Seredynski, F.: Designing cryptographically strong S-boxes with the use of cellular automata. Annales UMCS Informatica Lublin-Polonia Sectio AI 8(2), 27–41 (2008)Google Scholar
  8. 8.
    Cusick, T.W., Stanica, P.: Cryptographic Boolean Functions and Applications. Elsevier, Amsterdam (2009)Google Scholar
  9. 9.
    Youssef, A.M., Tavares, S.E., Gong, G.: On some probabilistic approximations for AES-like S-boxes. Discrete Mathematics 306(16), 2016–2020 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bard, G.V.: Algebraic Cryptanalysis. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Jakimoski, G., Kocarev, L.: Chaos and cryptography: Block encryption ciphers based on chaotic maps. IEEE Transaction on Circuits Systems 48(2), 163–169 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Chen, G., Chen, Y., Liao, X.: An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps. Chaos, Solitons & Fractals 31(3), 571–577 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Asim, M., Jeoti, V.: Efficient and simple method for designing chaotic S-boxes. ETRI Journal 30(1), 170–172 (2008)CrossRefGoogle Scholar
  14. 14.
    Yin, R., Yuan, J., Wang, J., Shan, X., Wang, X.: Designing key-dependent chaotic S-box with large key space. Chaos, Solitons & Fractals 42(4), 2582–2589 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, Y., Wong, K.W., Liao, X., Xiang, T.: A block cipher with dynamic S-boxes based on tent map. Communications in Nonlinear Science and Numerical Simulations 14(7), 3089–3099 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Özkaynak, F., Özer, A.B.: A method for designing strong S-boxes based on chaotic Lorenz system. Physics Letters A 374(36), 3733–3738 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Özkaynak, F., Yavuz, S.: Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dynamics 74(3), 551–557 (2013)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Fisher, R.A., Yates, F.: Statistical tables for biological, agricultural and medical research, 3rd edn., pp. 26–27. London Oliver & Boyd. (1938)Google Scholar
  19. 19.
    Durstenfeld, R.: Algorithm 235: Random permutation. Communications of the ACM 7(7), 420 (1964)CrossRefGoogle Scholar
  20. 20.
    Knuth, D.E.: Seminumerical algorithms. In: The Art of Computer Programming, vol. 2, pp. 124–125. Addison–Wesley (1969)Google Scholar
  21. 21.
    Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. International Journal of Bifurcation and Chaos 15(10), 3119–3151 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Liu, Y., Tong, X.J.: A new pseudorandom number generator based on complex number chaotic equation. Chinese Physics B 21(9), 90506–90508 (2012)CrossRefGoogle Scholar
  23. 23.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. International Journal of Bifurcation and Chaos 16(8), 2129 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Hermassi, H., Rhouma, R., Belghith, S.: Improvement of an image encryption algorithm based on hyper-chaos. Telecommunication Systems 52(2), 539–549 (2013)Google Scholar
  25. 25.
    Kanso, A., Yahyaoui, H., Almulla, M.: Keyed hash function based on a chaotic map. Information Sciences 186(1), 249–264 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Dalai, D.K.: On some necessary conditions of boolean functions to resist algebraic attacks, PhD thesis, ISI Kolkata (2006)Google Scholar
  28. 28.
    Webster, A.F., Tavares, S.E.: On the design of S-boxes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)Google Scholar
  29. 29.
    Hussain, I., Shah, T., Gondal, M.A., Khan, W.A.: Construction of cryptographically strong 8x8 S-boxes. World Applied Sciences Journal 13(11), 2389–2395 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Musheer Ahmad
    • 1
  • Parvez Mahmood Khan
    • 2
  • Mohd Zeeshan Ansari
    • 1
  1. 1.Department of Computer Engineering, Faculty of Engineering and TechnologyJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of Computer Science & Engineering, Faculty of EngineeringIntegral UniversityLucknowIndia

Personalised recommendations