Advertisement

A Hybrid Encryption Technique for Securing Biometric Image Data Based on Feistel Network and RGB Pixel Displacement

  • Quist-Aphetsi Kester
  • Laurent Nana
  • Anca Christine Pascu
  • Sophie Gire
  • Jojo Moses Eghan
  • Nii Narku Quaynnor
Part of the Communications in Computer and Information Science book series (CCIS, volume 420)

Abstract

Biometric data in a form of images collected from biometric devices and surveillance devices needed to be protected during storage and transmission. Due to the Nature of biometric data, information of the evidence or content of the images need to be preserve after encryption of the plain image and the decryption of the ciphered image. This has to be achieved with a good level of hardness encryption algorithm. Hence this work has proposed a hybrid encryption technique for securing biometric image data based on Feistel Network and RGB pixel displacement. The implementation was done using MATLAB.

Keywords

biometric data encryption RGB pixel displacement image Feistel Network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koga, Y., Yamazaki, Y., Ichino, M.: A study on the surveillance system using soft biometric information. In: 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), October 1-4, pp. 262–266 (2013), doi:10.1109/GCCE.2013.6664819Google Scholar
  2. 2.
    Hae-M. Moon, C., Won, P.S.B.: The Multi-Modal Human Identification Based on Smartcard in Video Surveillance System. In: 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cyber, Physical and Social Computing (CPSCom), Green Computing and Communications (GreenCom), December 18-20, pp. 691–698 (2010), doi:10.1109/GreenCom-CPSCom.2010.74Google Scholar
  3. 3.
    Khan, M.K., Zhang, J.: Enhancing the transmission security of content-based hidden biometric data. In: Proceedings of the Third international conference on Advances in Neural Networks, Chengdu, China, May 28-June 01 (2006)Google Scholar
  4. 4.
    Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for Distributed Resource Sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Goel, A., Chandra, N.: A Technique for Image Encryption Based on Explosive n*n Block Displacement Followed by Inter-pixel Displacement of RGB Attribute of a Pixel. In: 2012 International Conference on Communication Systems and Network Technologies (CSNT), May 11-13, pp. 884–888 (2012), doi:10.1109/CSNT.2012.190Google Scholar
  6. 6.
    Kester, Q., Koumadi, K.M.: Cryptographie technique for image encryption based on the RGB pixel displacement. In: 2012 IEEE 4th International Conference on Adaptive Science & Technology (ICAST), October 25-27, pp. 74–77 (2012), doi:10.1109/ICASTech.2012.6381069Google Scholar
  7. 7.
    Zhu, G., Wang, W., Zhang, X., Wang, M.: Digital image encryption algorithm based on pixels. In: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), vol. 1., October 29-31, pp. 769–772 (2010), doi:10.1109/ICICISYS.2010.5658790Google Scholar
  8. 8.
    Zhi, Z., Arce, G.R., Di Crescenzo, G.: Halftone visual cryptography. IEEE Transactions on Image Processing 15(8), 2441–2453 (2006), doi:10.1109/TIP.2006.875249CrossRefGoogle Scholar
  9. 9.
    Liu, F., Wu, C.-K., Lin, X.-J.: Colour visual cryptography schemes. Information Security, IET 2(4), 151–165 (2008), doi:10.1049/iet-ifs:20080066CrossRefGoogle Scholar
  10. 10.
    Kang, I., Arce, G.R., Lee, H.-K.: Color Extended Visual Cryptography Using Error Diffusion. IEEE Transactions on Image Processing 20(1), 132–145 (2011), doi:10.1109/TIP.2010.2056376CrossRefMathSciNetGoogle Scholar
  11. 11.
    Liu, F., Guo, T., Wu, C., Qian, L.: Improving the visual quality of size invariant visual cryptography scheme. J. Vis. Comun. Image Represent. 23(2), 331–342 (2012), doi:10.1016/j.jvcir.2011.11.003CrossRefGoogle Scholar
  12. 12.
    Tzeng, W.-G., Hu, C.-M.: A New Approach for Visual Cryptography. Des. Codes Cryptography 27(3), 207–227 (2002), doi:10.1023/A:1019939020426CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gao, W., Tian, Y., Huang, T., Yang, Q.: Vlogging: A survey of videoblogging technology on the web. ACM Comput. Surv. 42(4), Article 15, 57 pages (2010), doi:10.1145/1749603.1749606Google Scholar
  14. 14.
    Hui, S.C., Wang, F.: Remote Video Monitoring Over the WWW. Multimedia Tools Appl. 21(2), 73–195 (2003), doi:10.1023/A:1025520709481CrossRefGoogle Scholar
  15. 15.
    Esteve, M., Palau, C.E., Martnez-Nohales, J., Molina, B.: A video streaming application for urban traffic management. J. Netw. Comput. Appl. 30(2), 479–498 (2007), doi:10.1016/j.jnca.2006.06.001CrossRefGoogle Scholar
  16. 16.
    Turnbull, B., Slay, J.: Wireless Forensic Analysis Tools for Use in the Electronic Evidence Collection Process. In: 40th Annual Hawaii International Conference on System Sciences, HICSS 2007, p. 267a (January 2007), doi:10.1109/HICSS.2007.617Google Scholar
  17. 17.
    Aisha Al-Abdallah, A., Asma Al-Emadi, A., Mona Al-Ansari, M., Nassma Mohandes, N., Malluhi, Q.: Real-time traffic surveillance using ZigBee. In: 2010 International Conference on Computer Design and Applications (ICCDA), June 25-27, vol. 1, pp. V1-550–V1-554 (2010), doi:10.1109/ICCDA.2010.5540694Google Scholar
  18. 18.
    Zamin, N.: Information Extraction for Counter-Terrorism: A Survey. In: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, COMPUTATIONWORLD 2009, November 15-20, pp. 520–526 (2009), doi:10.1109/ComputationWorld.2009.105Google Scholar
  19. 19.
    Park, H., Ham, Y.-H., Park, S.-J., Woo, J.-M., Lee, J.-B.: Large Data Transport for Real-Time Services in Sensor Networks. In: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, COMPUTATIONWORLD 2009, November 15-20, pp. 404–408 (2009), doi:10.1109/ComputationWorld.2009.97Google Scholar
  20. 20.
    Papalilo, E., Freisleben, B.: Combining incomparable public session keys and certificateless public key cryptography for securing the communication between grid participants. In: Meersman, R. (ed.) OTM 2007, Part II. LNCS, vol. 4804, pp. 1264–1279. Springer, Heidelberg (2007)Google Scholar
  21. 21.
    Bansal, R., Sehgal, P., Bedi, P.: Securing fingerprint images using a hybrid technique. In: Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI 2012), pp. 557–565. ACM, New York (2012), doi:10.1145/2345396.2345488Google Scholar
  22. 22.
    Hasan, R., Sion, R., Winslett, M.: Preventing history forgery with secure provenance. Trans. Storage 5(4), Article 12, 43 pages (2009), doi:10.1145/1629080.1629082Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Quist-Aphetsi Kester
    • 1
  • Laurent Nana
    • 2
  • Anca Christine Pascu
    • 3
  • Sophie Gire
    • 2
  • Jojo Moses Eghan
    • 4
  • Nii Narku Quaynnor
    • 4
  1. 1.Faculty of InformaticsGhana Technology University CollegeAccraGhana
  2. 2.Lab-STICC (UMR CNRS 6285)European University of Brittany, UBOFrance
  3. 3.HCTI EA 4249 and Lab-STICC (UMR CNRS 6285)European University of BrittanyFrance
  4. 4.Department of Computer ScienceUniversity of Cape CoastCape CoastGhana

Personalised recommendations