Implementation of an Elliptic Curve Based Message Authentication Code for Constrained Environments

  • P. Jilna
  • P. P. Deepthi
Part of the Communications in Computer and Information Science book series (CCIS, volume 420)


This paper presents the hardware implementation of a new method for message authentication based on elliptic curves. The proposed method makes use of the elliptic curve point multiplication unit already available in the system as a part of key exchange. The point multiplication unit is time shared for generating the authentication code resulting in reduced hardware complexity. Hence it is suitable for applications with limited resources like wireless sensor networks and smart grid. The security of the proposed MAC is vested in Elliptic Curve Discrete Logarithm Problem(ECDLP).


Hash Function Elliptic Curve Elliptic Curf Hardware Implementation Message Authentication Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication HMAC (2001)Google Scholar
  3. 3.
    Deepakumara, J., Heys, H.M., Venkatesan, R.: Fpga implementation of md5 hash algorithm. In: Canadian Conference on Electrical and Computer Engineering, vol. 2, pp. 919–924. IEEE (2001)Google Scholar
  4. 4.
    Docherty, J., Koelmans, A.: A flexible hardware implementation of sha-1 and sha-2 hash functions. In: International Symposium on Circuits and Systems (ISCAS), pp. 1932–1935. IEEE (2011)Google Scholar
  5. 5.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. SpringerGoogle Scholar
  6. 6.
    Chevalier, C., Fouque, P.-A., Pointcheval, D., Zimmer, S.: Optimal randomness extraction from a diffie-hellman element. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 572–589. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Farashahi, R.R., Pellikaan, R., Sidorenko, A.: Extractors for binary elliptic curves. Designs, Codes and Cryptography 49(1-3), 171–186 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ciss, A.A., Sow, D.: On randomness extraction in elliptic curves. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 290–297. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Krawczyk, H.: Lfsr-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Dhanaraj, K.J., Deepthi, P.P., Sathidevi, P.S.: FPGA Implementation of a Pseudo Random Bit Sequence Generator Based on Elliptic Curves. ICGST-Programmable Devices, Circuits and Systems Journal 7(1), 23–31 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Jilna
    • 1
  • P. P. Deepthi
    • 1
  1. 1.National Institute of TechnologyCalicutIndia

Personalised recommendations