Advertisement

On the k-error Joint Linear Complexity and Error Multisequence over Fq(charFq = p, prime)

  • M. Sindhu
  • M. Sethumadhavan
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 420)

Abstract

Finding fast and efficient algorithms for computing the k-error joint linear complexity and error multisequence of multisequences is of great importance in cryptography, mainly for the security analysis of word based stream ciphers. There is no efficient algorithm for finding the error multisequence of a prime power periodic multisequence. In this paper we propose an efficient algorithm for finding the k-error joint linear complexity together with an error multisequence of m fold prime power periodic multisequences over F q ,where char F q = p, a prime.

Keywords

Word based stream ciphers Multisequences Error Joint Linear Complexity Error multisequence Generalized Stamp-Martin Algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ding, C., Xiao, G., Shan, W. (eds.): The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  2. 2.
    Kaida, T.: On Algorithms for the k-Error Linear Complexity of Sequences over GF(p m ) with Period p n, Ph. D. Thesis, Kyusu Institute of Tech. (1999) Google Scholar
  3. 3.
    Kaida, T., Uehara, S., Imamaura, K.: An Algorithm for the k-Error Linear Complexity of Sequences over GF(pm) with period pn, p a prime. Information and Computation 151(1-2), 137–147 (1999)CrossRefGoogle Scholar
  4. 4.
    Kaida, T.: On the generalized Lauder Paterson algorithm and profiles of the k-error linear complexity for exponent periodic sequences. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 166–178. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Lauder, A.G.B., Paterson, K.G.: Computing the Error Linear Complexity Spectrum of a Binary Sequence of Period 2n. IEEE Transactions on Information Theory 49(1), 273–281 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Meidl, W.: Discrete Fourier Transform, Joint Linear Complexity and Generalised Joint Linear Complexity of Multisequences. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 101–112. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Meidl, W., Niederreiter, H., Venkateswarlu, A.: Error linear complexity Measures for Multisequences. Journal of Complexity 23(2), 169–192 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Meidl, W., Niederreiter, H.: The expected value of the joint linear complexity of periodic multisequences. Journal of Complexity 19(1), 61–72 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Niederreiter, H.: Linear Complexity and Related Complexity Measures for Sequences. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 1–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Sethumadhavan, M., Sindhu, M., Srinivasan, C., Kavitha, C.: An algorithm for k-error joint linear complexity of binary multisequences. Journal of Discrete Mathematical Sciences & Cryptography 11(3), 297–304 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Sethumadhavan, M., Yogha Laxmie, C., Vijaya Govindan, C.: A construction of p-ary balanced sequence with large k-error linear complexity. Journal of Discrete Mathematical Sciences and Cryptography 9(2), 253–261 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Sindhu, M., Sethumadhavan, M.: Linear Complexity Measures of Binary Multisequences. International Journal of Computer Applications 16, 6–10 (2013)Google Scholar
  13. 13.
    Stamp, M., Martin, C.F.: An Algorithm for the k-Error Linear Complexity of Binary Sequences with Period 2n. IEEE Trans. Inf. Theory 39, 1398–1407 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Venkateswarlu, Studies on error linear complexity measures for multisequences, PhD thesis (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Sindhu
    • 1
  • M. Sethumadhavan
    • 1
  1. 1.TIFAC CORE in Cyber SecurityAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations