Advertisement

Abstract

Malware analysis forms a critical component of cyber defense mechanism. In the last decade, lot of research has been done, using machine learning methods on both static as well as dynamic analysis. Since the aim and objective of malware developers have changed from just for fame to political espionage or financial gain, the malware is also getting evolved in its form, and infection methods. One of the latest form of malware is known as targeted malware, on which not much research has happened. Targeted malware, which is a superset of Advanced Persistent Threat (APT), is growing in its volume and complexity in recent years. Targeted Cyber attack (through targeted malware) plays an increasingly malicious role in disrupting the online social and financial systems. APTs are designed to steal corporate / national secrets and/or harm national/corporate interests. It is difficult to recognize targeted malware by antivirus, IDS, IPS and custom malware detection tools. Attackers leverage compelling social engineering techniques along with one or more zero day vulnerabilities for deploying APTs. Along with these, the recent introduction of Crypto locker and Ransom ware pose serious threats to organizations/nations as well as individuals. In this paper, we compare various machine-learning techniques used for analyzing malwares, focusing on static analysis.

Keywords

Malware Static Analysis Machine Learning Advanced Persistent Threat Cyber Defence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The ‘ICEFOG’ APT: A tale of cloak and three daggers. Kaspersky Lab Global Research And Analysis Team(GREAT) (2013)Google Scholar
  2. 2.
    Balduzzi, M., Ciangaglini, V., McArdle, R.: Targeted attacks detection with spunge. Trend Micro Research, EMEA (2013)Google Scholar
  3. 3.
    Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hardware trojans (2013)Google Scholar
  4. 4.
    Bencsáth, B., Pék, G., Buttyán, L., Félegyházi, M.: The cousins of stuxnet: Duqu, flame, and gauss. Future Internet 4(4), 971–1003 (2012)CrossRefGoogle Scholar
  5. 5.
    Bilar, D.: Opcodes as predictor for malware. International Journal of Electronic Security and Digital Forensics 1(2), 156–168 (2007)CrossRefGoogle Scholar
  6. 6.
    Blonce, A., Filiol, E., Frayssignes, L.: Portable document format (pdf) security analysis and malware threats. Tech. rep., Virology and Cryptology Laboratory, French Army Signals Academy (2008)Google Scholar
  7. 7.
    Cohen, W.W.: Fast effective rule induction. ICML 95, 115–123 (1995)Google Scholar
  8. 8.
    Desnos, A., Erra, R., Filiol, E.: Processor-dependent malware... and codes. arXiv preprint arXiv:1011.1638 (2010)Google Scholar
  9. 9.
    Dube, T., Raines, R., Peterson, G., Bauer, K., Grimaila, M., Rogers, S.: Malware type recognition and cyber situational awareness. In: Second International Conference on Social Computing (SocialCom), pp. 938–943. IEEE (2010)Google Scholar
  10. 10.
    Dube, T., Raines, R., Peterson, G., Bauer, K., Grimaila, M., Rogers, S.: Malware target recognition via static heuristics. Computers & Security 31(1), 137–147 (2012)CrossRefGoogle Scholar
  11. 11.
    Dube, T.E.: A Novel Malware Target Recognition Architecture for Enhanced Cyberspace Situation Awareness. Ph.D Thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (September 2011)Google Scholar
  12. 12.
    Dube, T.E., Raines, R.A., Grimaila, M.R., Bauer, K., Rogers, S.: Malware target recognition of unknown threats. IEEE Systems Journal 7(3) (September 2013)Google Scholar
  13. 13.
    Dube, T.E., Raines, R.A., Rogers, S.K.: Malware target recognition. US Patent 20, 120, 260, 342 (October 11, 2012)Google Scholar
  14. 14.
    Filiol, E.: Formalisation and implementation aspects of k-ary (malicious) codes. Journal in Computer Virology 3(2), 75–86 (2007)CrossRefGoogle Scholar
  15. 15.
    Filiol, E.: Malicious cryptography techniques for unreversable (malicious or not) binaries. arXiv preprint arXiv:1009.4000 (2010)Google Scholar
  16. 16.
    Filiol, E., Helenius, M., Zanero, S.: Open problems in computer virology. Journal in Computer Virology 1(3-4), 55–66 (2006)CrossRefGoogle Scholar
  17. 17.
    Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild. The Journal of Machine Learning Research 7, 2721–2744 (2006)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for drifting concepts. The Journal of Machine Learning Research 8, 2755–2790 (2007)zbMATHGoogle Scholar
  19. 19.
    Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 470–478. ACM (2004)Google Scholar
  20. 20.
    Kolter, J.Z., Maloof, M.A.: Using additive expert ensembles to cope with concept drift. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 449–456. ACM (2005)Google Scholar
  21. 21.
    Li, F., Lai, A., Ddl, D.: Evidence of advanced persistent threat: A case study of malware for political espionage. In: 6th International Conference on Malicious and Unwanted Software (Malware), pp. 102–109. IEEE (2011)Google Scholar
  22. 22.
    Lin, L., Kasper, M., Güneysu, T., Paar, C., Burleson, W.: Trojan side-channels: Lightweight hardware trojans through side-channel engineering. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 382–395. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Liu, S.-T., Chen, Y.-M., Hung, H.-C.: N-victims: An approach to determine n-victims for apt investigations. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 226–240. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Lu, Y., Din, S., Zheng, C., Gao, B.: Using multi-feature and classifier ensembles to improve malware detection. Journal of CCIT 39(2), 57–72 (2010)Google Scholar
  25. 25.
    Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed malware. IEEE Security & Privacy 5(2), 40–45 (2007)CrossRefGoogle Scholar
  26. 26.
    McDonald, G., Murchu, L.O., Doherty, S., Chien, E.: Stuxnet 0.5: The missing link. Symantec Security Response (online) 26 (2013)Google Scholar
  27. 27.
    Menn, J.: Key internet operator verisign hit by hackers. Reuters (February 2, 2012)Google Scholar
  28. 28.
    Muttik, I.: Zero-day malware. In: Virus Bulletin Conference (2010)Google Scholar
  29. 29.
    Prosecutors, Public: Messiah spyware infects middle east targetsGoogle Scholar
  30. 30.
    Rafiq, N., Mao, Y.: Improving heuristics. In: Virus Bulletin Conference, pp. 9–12 (2008)Google Scholar
  31. 31.
    Raymond, D., Conti, G., Cross, T., Fanelli, R.: A control measure framework to limit collateral damage and propagation of cyber weapons. In: Fifth International Conference on Cyber Conflict (CyCon), pp. 1–16. IEEE (2013)Google Scholar
  32. 32.
    Santos, I., Brezo, F., Sanz, B., Laorden, C., Bringas, P.G.: Using opcode sequences in single-class learning to detect unknown malware. IET Information Security 5(4), 220–227 (2011)CrossRefGoogle Scholar
  33. 33.
    Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode sequences as representation of executables for data-mining-based unknown malware detection. Information Sciences (2011)Google Scholar
  34. 34.
    Santos, I., Nieves, J., Bringas, P.G.: Semi-supervised learning for unknown malware detection. In: Abraham, A., Corchado, J.M., González, S.R., De Paz Santana, J.F. (eds.) International Symposium on DCAI. AISC, vol. 91, pp. 415–422. Springer, Heidelberg (2011)Google Scholar
  35. 35.
    Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data mining methods for detection of new malicious executables. In: Proceedings of the 2001 IEEE Symposium on Security and Privacy, S&P 2001, pp. 38–49. IEEE (2001)Google Scholar
  36. 36.
    Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey. Information Security Technical Report 14(1), 16–29 (2009)CrossRefGoogle Scholar
  37. 37.
    Shafiq, M., Tabish, S., Farooq, M.: Pe-probe: leveraging packer detection and structural information to detect malicious portable executables. In: Proceedings of the Virus Bulletin Conference (VB), pp. 29–33 (2009)Google Scholar
  38. 38.
    Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: A framework for efficient mining of structural information to detect zero-day malicious portable executables. Tech. rep., TR-nexGINRC-2009-21 (January 2009), http://www.nexginrc.org/papers/tr21-zubair.pdf
  39. 39.
    Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: Pe-miner: mining structural information to detect malicious executables in realtime. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 121–141. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  40. 40.
    Sood, A., Enbody, R.: Targeted cyber attacks-a superset of advanced persistent threats. In: IEEE Computer and Reliability Societies, Michigan State University (2013)Google Scholar
  41. 41.
    Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Gpu-assisted malware. In: 2010 5th International Conference on Malicious and Unwanted Software (MALWARE), pp. 1–6. IEEE (2010)Google Scholar
  42. 42.
    White, S.R.: Open problems in computer virus research. In: Virus Bulletin Conference (1998)Google Scholar
  43. 43.
    Zetter, K.: Google hack attack was ultra sophisticated, new details show. Wired Magazine 14 (2010)Google Scholar
  44. 44.
    Zhang, B., Yin, J., Hao, J., Zhang, D., Wang, S.: Malicious codes detection based on ensemble learning. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 468–477. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hiran V. Nath
    • 1
    • 2
  • Babu M. Mehtre
    • 1
  1. 1.Center for Information Assurance & ManagementInstitute for Development and Research in Banking TechnologyIndia
  2. 2.School of Computer and Information Sciences (SCIS)University of HyderabadIndia

Personalised recommendations