A Novel Audio Watermark Embedding and Extraction Method Based on Compressive Sensing, Sinusoidal Coding, Reduced SVD, Over Complete Dictionary and L1 Optimization

  • G. Jyothish Lal
  • V. K. Veena
Part of the Communications in Computer and Information Science book series (CCIS, volume 420)


Digital audio watermarking is relatively a new technology to stop audio piracy and to ensure security of the ownership rights of the digital audio data. In this paper, a novel digital watermark embedding and extraction method for audio data is proposed, satisfying the demands of robustness and imperceptibility. This method is based on sinusoidal coding of speech, Compressive Sensing (CS), Reduced Singular Value Decomposition (RSVD), Over-Complete Dictionary (OCD) matrix and L1 optimization algorithm. The sinusoidal approximation of original watermark signal is embedded into the compressive measurements of the host audio signal by using RSVD. Random sampling through compressive sensing ensures compression as well as encryption of the host audio signal. The extraction procedure is based on over-complete dictionary matrix and L1 norm optimization. The over-complete dictionary is created by using sinusoidal speech coding bases and compressive sensing measurement matrix. Experimental results show that proposed method provide exact recovery of watermark information and host signal under noisy attacks.


Audio Watermarking Compressive Sensing (CS) Sinusoidal Speech Coding Reduced SVD Over-Complete Dictionary (OCD) L1 optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Podilchuk, C.I., Delp, E.J.: Digital Watermarkin- Algorithms and Applications. IEEE Signal Processing Magazine, 33–46 (July 2001)Google Scholar
  2. 2.
    Wang, X.-Y., Zhao, H.: A Blind Audio Watermarking Algorithm Robust Against Synchronization Attack. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-M., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3802, pp. 617–622. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Kim, Y.H., Kang Il, H., Kim Il, K., Han, S.-S.: A Digital Audio Watermarking Using Two Masking Effects. In: Chen, Y.-C., Chang, L.-W., Hsu, C.-T. (eds.) PCM 2002. LNCS, vol. 2532, pp. 655–662. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Lemma, A.N., Aprea, J., Oomen, W., VandeKerkhof, L.: A temporal domain audio watermarking technique. IEEE Trans. Signal Process. 51(4), 1088–1097 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Lie, W.N., Chang, L.C.: Robust high-quality time-domain audiowatermarking based on low-frequency amplitude modification. IEEE Trans. Multimedia 8(1), 46–59 (2006)CrossRefGoogle Scholar
  6. 6.
    Kirovski, D., Malvar, H.S.: Spread-spectrum watermarking of audio signals. IEEE Trans. Signal Process. 51(4), 1020–1033 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Wu, S., Huang, J., Huang, D., Shi, Y.Q.: Efficiently self-synchronized audio watermarking for assured audio data transmission. IEEE Trans. Broadcast. 51(1), 69–76 (2005)CrossRefGoogle Scholar
  8. 8.
    Wang, X.Y., Zhao, H.: A novel synchronization invariant audio watermarking scheme based on DWT and DCT. IEEE Trans.Signal Process. 54(12), 4835–4840 (2006)CrossRefGoogle Scholar
  9. 9.
    Blackledge, J., Omar, F.: Audio data verification and authentication using frequency modulation based watermarking. International society for advanced science and technology. J. Electron. Signal Process. 3(2), 51–63 (2008)Google Scholar
  10. 10.
    Chung, K., Yang, W., Huang, Y., Wu, S., Hsu, Y.: On SVD-based watermarking algorithm. Appl. Math. Comput. 188(1), 54–57 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hu, Y., Chen, Z.: An SVD-based watermarking method for image authentication. In: Proceedings of International Conference on Machine Learning and Cybernetics, vol. 30, pp. 1723–1728 (August 2007)Google Scholar
  12. 12.
    Liu, R.Z., Tan, T.N.: An SVD-Based Watermarking Scheme for Protecting Rightful Ownership. IEEE Trans. on Multimedia 4(1), 121–128 (2002)CrossRefGoogle Scholar
  13. 13.
    Wangn, J., Healy, R., Timoney, J.: A robust audio watermarking scheme based on reduced singular value decomposition and distortion removal. J. SignalProcessing 91, 1693–1708 (2011)Google Scholar
  14. 14.
    Candes, E., Wakin, M.: An introduction to compressive sampling- A sensing paradigm that goes against the common knowledge in data acquisition. IEEE Sig. Proc. Mag. 25(2), 21–30 (2008)CrossRefGoogle Scholar
  15. 15.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Orsdemir, A., Oktay Altun, H., Sharma, G., Mark Bocko, F.: On the security and robustness of encryption via compressed sensing. In: Proc. IEEE Military Communications Conference, MILCOM 2008, pp. 1–7 (November 2008)Google Scholar
  17. 17.
    Griffin, A., Hirvonen, T., Tzagkarakis, C., Mouchtaris, A., Tsakalides, P.: Single-Channel and Multi-Channel Sinusoidal Audio Coding Using Compressed Sensing. IEEE Trans. on Audio, Speech and Language Processing 19(5), 1382–1395 (2011)CrossRefGoogle Scholar
  18. 18.
    Johnson, R.M.: On a theorem stated by Eckart and Young. Psychometrika 28(3), 259–263 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Candes, E., Romberg, J.: l 1-magic : Recovery of Sparse Signals. Caltech, via Convex Programming (October 2005)Google Scholar
  20. 20.
    Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 52(12), 4655–4666 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • G. Jyothish Lal
    • 1
  • V. K. Veena
    • 2
  1. 1.Karpagam Institute of TechnologyCoimbatoreIndia
  2. 2.Cognizant Technology SolutionChennaiIndia

Personalised recommendations