Skip to main content

Diabetic Macular Edema

  • Chapter
  • First Online:
  • 1270 Accesses

Abstract

Diabetic macular edema (DME) is the most common cause of visual deterioration in patients affected by diabetes mellitus. Grid and focal laser photocoagulation, according to the ETDRS recommendations, have been considered the mainstay treatment for a long time. With the advent of the new intravitreal pharmacotherapies, such as anti-vascular endothelium growth factor (VEGF) agents and steroids, a new scenario has been opened in the management of this complex disease. The main advantage of the intravitreal injections compared to laser procedure is the chance not only to prevent the visual decline but also to promote a visual recovery. Nevertheless, this approach requiring repeated monthly interventions might amplify the procedure-related adverse effects. Thus, in order to improve the patient’s response and reduce the frequency of re-treatments, several investigations have tried to demonstrate the role of the combination therapy as a validated, long-lasting option.

Moreover, new ocular agents are currently under investigation to refine upon the therapeutic strategy. However, in this deluge of different treatment options, ophthalmologists could find it difficult to choose the best correct management of the DME, and head-to-head comparison between the different drugs and procedures is still needed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Green WR (1996) Retina. In: Spencer W (ed) Ophthalmic pathology. W.B. Saunders, Philadelphia

    Google Scholar 

  2. Ophir A, Martinez MR, Mosqueda P et al (2010) Vitreous traction and epiretinal membranes in diabetic macular oedema using spectral-domain optical coherence tomography. Eye 24:1545–1553

    PubMed  CAS  Google Scholar 

  3. Apple DJ, Rabb M (1998) Fundus. In: Ocular pathology: clinical applications and self assessment. St. Louis, Mosby

    Google Scholar 

  4. Early Treatment Diabetic Retinopathy Study Research Group (1985) Photocoagulation for diabetic macular edema, ETDRS report no 1. Arch Ophthalmol 103:1796–1806

    Google Scholar 

  5. Wilkinson CP, Ferris FL III, Klein RE et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110:1677–1682

    PubMed  CAS  Google Scholar 

  6. Bandello F, Battaglia Parodi M, Tremolada G et al (2010) Steroids as part of combination treatment: the future for the management of macular edema? Ophthalmologica 224:41–45

    Google Scholar 

  7. Do Carmo A, Ramos P, Reis A et al (1998) Breakdown of the inner and outer blood retinal barrier in streptozotocin-induced diabetes. Exp Eye Res 67:569–575

    PubMed  CAS  Google Scholar 

  8. Nishikiori N, Osanai M, Chiba H et al (2007) Glial cell-derived cytokines attenuate the breakdown of vascular integrity in diabetic retinopathy. Diabetes 56:1333–1340

    PubMed  CAS  Google Scholar 

  9. Cohen AI (1965) A possible cytological basis for the “R” membrane in the vertebrate eye. Nature 205:1222–1223

    Google Scholar 

  10. Early Treatment Diabetic Retinopathy Study Research Group (1987) Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 2. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 94:761–764

    Google Scholar 

  11. Aroca PR, Salvat M, Fernandez J, Mendez I (2004) Risk factors for diffuse and focal macular edema. J Diabetes Complications 18:211–215

    PubMed  Google Scholar 

  12. Weinberger D, Fink-Cohen S, Gaton DD et al (1995) Non-retinovascular leakage in diabetic maculopathy. Br J Ophthalmol 79:728–731

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Wessel MM, Nair N, Aaker GD (2012) Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular oedema. Br J Ophthalmol 96:694–698

    PubMed Central  PubMed  Google Scholar 

  14. Horii T, Murakami T, Nishijima K et al (2012) Relationship between fluorescein pooling and optical coherence tomographic reflectivity of cystoid spaces in diabetic macular edema. Ophthalmology 119:1047–1055

    PubMed  Google Scholar 

  15. Byeon SH, Chu YK, Hong YT et al (2012) New insights into the pathoanatomy of diabetic macular edema: angiographic patterns and optical coherence tomography. Retina 32:1087–1099

    PubMed  Google Scholar 

  16. Deák GG, Bolz M, Ritter M et al (2010) Diabetic Retinopathy Research Group Vienna. A systematic correlation between morphology and functional alterations in diabetic macular edema. Invest Ophthalmol Vis Sci 51:6710–6714

    PubMed  Google Scholar 

  17. Framme C, Schweizer P, Imesch M et al (2012) Behavior of SD-OCT-detected hyperreflective foci in the retina of anti-VEGF treated patients with diabetic macular edema. Invest Ophthalmol Vis Sci 53:5814–5818

    PubMed  CAS  Google Scholar 

  18. Uji A, Murakami T, Nishijima K et al (2012) Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol 153:710–717, 717.e1

    PubMed  Google Scholar 

  19. Comyn O, Heng LZ, Ikeji F et al (2012) Repeatability of Spectralis OCT measurements of macular thickness and volume in diabetic macular edema. Invest Ophthalmol Vis Sci 53:7754–7759

    PubMed  Google Scholar 

  20. Chan A, Duker JS (2005) A standardized method for reporting changes in macular thickening using optical coherence tomography. Arch Ophthalmol 123:939–943

    PubMed  Google Scholar 

  21. Diabetic Retinopathy Clinical Research Network, Bressler NM, Miller KM, Beck RW et al (2012) Observational study of subclinical diabetic macular edema. Eye 26:833–840

    PubMed Central  PubMed  Google Scholar 

  22. Tremolada G, Pierro L, de Benedetto U et al (2011) Macular micropseudocysts in early stages of diabetic retinopathy. Retina 31:1352–1358

    PubMed  Google Scholar 

  23. Murakami T, Nishijima K, Akagi T et al (2012) Optical coherence tomographic reflectivity of photoreceptors beneath cystoid spaces in diabetic macular edema. Invest Ophthalmol Vis Sci 53:1506–1511

    Google Scholar 

  24. Lee DH, Kim JT, Jung DW et al (2013) The relationship between foveal ischemia and spectral-domain Optical Coherence Tomography Findings in ischemic diabetic macular edema. Invest Ophthalmol Vis Sci 54:1080–1085

    PubMed  Google Scholar 

  25. Querques G, Lattanzio R, Querques L et al (2012) Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci 53:6017–6024

    PubMed  Google Scholar 

  26. Esmaeelpour M, Povazay B, Hermann B et al (2011) Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci 52:5311–5316

    PubMed  Google Scholar 

  27. Vujosevic S, Martini F, Cavarzeran F et al (2012) Macular and peripapillary choroidal thickness in diabetic patients. Retina 32:1781–1790

    PubMed  Google Scholar 

  28. Wanek J, Zelkha R, Lim JI, Shahidi M (2012) Feasibility of a method for en face imaging of photoreceptor cell integrity. Am J Ophthalmol 152:807–14.e1

    Google Scholar 

  29. Somfai GM, Tátrai E, Ferencz M et al (2010) Retinal layer thickness changes in eyes with preserved visual acuity and diffuse diabetic macular edema on optical coherence tomography. Ophthalmic Surg Lasers Imaging 41:593–597

    PubMed  Google Scholar 

  30. Hatef E, Colantuoni E, Wang J et al (2011) The relationship between macular sensitivity and retinal thickness in eyes with diabetic macular edema. Am J Ophthalmol 152:400–405.e2

    PubMed  Google Scholar 

  31. Grenga P, Lupo S, Domanico D, Vingolo EM (2008) Efficacy of intravitreal triamcinolone acetonide in long standing diabetic macular edema: a microperimetry and optical coherence tomography study. Retina 28:1270–1275

    PubMed  Google Scholar 

  32. Nakamura Y, Mitamura Y, Ogata K et al (2010) Functional and morphological changes of macula after subthreshold micropulse diode laser photocoagulation for diabetic macular oedema. Eye (Lond) 24:784–788

    CAS  Google Scholar 

  33. Vujosevic S, Bottega E, Casciano M (2010) Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina 30:908–916

    PubMed  Google Scholar 

  34. Vujosevic S, Casciano M, Pilotto E et al (2011) Diabetic macular edema: fundus autofluorescence and functional correlations. Invest Ophthalmol Vis Sci 52:442–448

    PubMed  Google Scholar 

  35. Lövestam-Adrian M, Holm K (2010) Multifocal electroretinography amplitudes increase after photocoagulation in areas with increased retinal thickness and hard exudates. Acta Ophthalmol 88:188–192

    PubMed  Google Scholar 

  36. Terasaki H, Kojima T, Niwa H et al (2003) Changes in focal macular electroretinograms and foveal thickness after vitrectomy for diabetic macular edema. Invest Ophthalmol Vis Sci 44:4465–4472

    PubMed  Google Scholar 

  37. Greenstein VC, Chen H, Hood DC et al (2000) Retinal function in diabetic macular edema after focal laser photocoagulation. Invest Ophthalmol Vis Sci 41:3655–3664

    PubMed  CAS  Google Scholar 

  38. Waldstein SM, Hickey D, Mahmud I et al (2012) Two-wavelength fundus autofluorescence and macular pigment optical density imaging in diabetic macular oedema. Eye 26:1078–1085

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Chung H, Park B, Shin HJ et al (2012) Correlation of fundus autofluorescence with spectral-domain optical coherence tomography and vision in diabetic macular edema. Ophthalmology 119:1056–1065

    PubMed  Google Scholar 

  40. Vujosevic S, Trento B, Bottega E (2012) Scanning laser ophthalmoscopy in the retromode in diabetic macular edema. Acta Ophthalmol 90:e374–e380

    PubMed  Google Scholar 

  41. Han DP, Croskrey JA, Dubis AM et al (2012) Adaptive optics and spectral-domain optical coherence tomography of human photoreceptor structure after short-duration [corrected] pascal macular grid and panretinal laser photocoagulation. Arch Ophthalmol 130:518–521

    PubMed Central  PubMed  Google Scholar 

  42. Early Treatment Diabetic Retinopathy Study Research Group (1987) Techniques for scatter and local photocoagulation treatment of diabetic retinopathy. ETDRS report number 3. Int Ophthalmol Clin 27:254–264

    Google Scholar 

  43. Early Treatment Diabetic Retinopathy Study Research Group (1987) Photocoagulation for diabetic macular edema. ETDRS report number 4. Int Ophthalmol Clin 27:265–272

    Google Scholar 

  44. Ferris F III, Davis MD (1999) Treating 20/20 eyes with diabetic macular edema. Arch Ophthalmol 117:675–676

    PubMed  Google Scholar 

  45. Early Treatment Diabetic Retinopathy Study (Research) Group (1985) Focal photocoagulation treatment of diabetic macular edema. Relationship of treatment effect to fluorescein angiographic and other retinal characteristics at baseline: ETDRS report no. 19. Arch Ophthalmol 113:1144–1155

    Google Scholar 

  46. Wilson DJ, Finkelstein D, Quigley HA, Green WR (1988) Macular grid photocoagulation. An experimental study on the primate retina. Arch Ophthalmol 106:100–105

    PubMed  CAS  Google Scholar 

  47. Arnarsson A, Stefansson E (2000) Laser treatment and the mechanism of edema reduction in branch retinal vein occlusion. Invest Ophthalmol Vis Sci 41:877–879

    PubMed  CAS  Google Scholar 

  48. Ogata N, Tombran-Tink J, Jo N et al (2001) Upregulation of pigment epithelium-derived factor after laser photocoagulation. Am J Ophthalmol 132:427–429

    PubMed  CAS  Google Scholar 

  49. Diabetic Retinopathy Clinical Research Network (2007) Comparison of the modified Early Treatment Diabetic Retinopathy Study and mild macular grid laser photocoagulation strategies for diabetic macular edema. Arch Ophthalmol 125:469–480

    PubMed Central  Google Scholar 

  50. Bandello F, Polito A, Del Borrello M et al (2005) ‘Light’ versus ‘classic’ laser treatment for clinically significant diabetic macular oedema. Br J Ophthalmol 89:864–870

    Google Scholar 

  51. Desmettre TJ, Mordon SR, Buzawa DM et al (2006) Micropulse and continuous wave diode retinal photocoagulation: visible and subvisible lesion parameters. Br J Ophthalmol 90:709–712

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Kumar V, Ghosh B, Mehta DK et al (2010) Functional outcome of subthreshold versus threshold diode laser photocoagulation in diabetic macular oedema. Eye 24:1459–1465

    Google Scholar 

  53. Figueira J, Khan J, Nunes S et al (2008) Prospective randomized controlled trial comparing subthreshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol 93:1341–1344

    PubMed  Google Scholar 

  54. Blumenkranz MS, Yellachich D, Andersen DE et al (2006) Semiautomated patterned scanning laser for retinal photocoagulation. Retina 26:370–376

    PubMed  Google Scholar 

  55. Paulus YM, Jain A, Gariano RF et al (2008) Healing of retinal photocoagulation lesions. Invest Ophthalmol Vis Sci 49:5540–5545

    PubMed  Google Scholar 

  56. Sheth S, Lanzetta P, Veritti D et al (2011) Experience with the Pascal® photocoagulator: an analysis of over 1,200 laser procedures with regard to parameter refinement. Indian J Ophthalmol 59:87–91

    Google Scholar 

  57. Jain A, Collen J, Kaines A et al (2010) Short-duration focal pattern grid macular photocoagulation for diabetic macular edema: four-month outcomes. Retina 30:1622–1626

    PubMed  Google Scholar 

  58. Inagaki K, Ohkoshi K, Ohde S (2012) Spectral-domain optical coherence tomography imaging of retinal changes after conventional multicolor laser, subthreshold micropulse diode laser, or pattern scanning laser therapy in Japanese with macular edema. Retina 32:1592–1600

    PubMed  Google Scholar 

  59. Kozak I, Oster SF, Cortes MA et al (2011) Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS. Ophthalmology 118:1119–1124

    PubMed  Google Scholar 

  60. Kernt M, Cheuteu RE, Cserhati S et al (2012) Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (Navilas). Clin Ophthalmol 6:289–296

    PubMed Central  PubMed  Google Scholar 

  61. Ober MD, Kernt M, Cortes MA, Kozak I (2013) Time required for navigated macular laser photocoagulation treatment with the Navilas®. Graefes Arch Clin Exp Ophthalmol 251:1049–1053

    PubMed  CAS  Google Scholar 

  62. Bamforth SD, Lightman S, Greenwood J (1996) The effect of TNF- alpha and IL-6 on the permeability of the rat blood-retinal barrier in vivo. Acta Neuropathol 91:624–632

    PubMed  CAS  Google Scholar 

  63. Funatsu H, Yamashita H, Noma H et al (2002) Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol 133:70–77

    PubMed  CAS  Google Scholar 

  64. Yilmaz T, Weaver CD, Gallagher MJ et al (2009) Intravitreal triamcinolone acetonide injection for treatment of refractory diabetic macular edema: a systematic review. Ophthalmology 116:902–911

    PubMed  Google Scholar 

  65. Audren F, Erginay A, Haouchine B et al (2006) Intravitreal triamcinolone acetonide for diffuse diabetic macular oedema: 6-month results of a prospective controlled trial. Acta Ophthalmol Scand 84:624–630

    PubMed  CAS  Google Scholar 

  66. Massin P, Audren F, Haouchine B et al (2004) Intravitreal triamcinolone acetonide for diabetic diffuse macular edema: preliminary results of a prospective controlled trial. Ophthalmology 111:218–224

    PubMed  Google Scholar 

  67. Avitabile T, Longo A, Reibaldi A (2005) Intravitreal triamcinolone compared with macular laser grid photocoagulation for the treatment of cystoid macular edema. Am J Ophthalmol 140:695–702

    PubMed  CAS  Google Scholar 

  68. Jonas JB, Kampperter BA, Harder B et al (2006) Intravitreal triamcinolone acetonide for diabetic macular edema: a prospective, randomized study. J Ocul Pharmacol Ther 22:200–207

    PubMed  CAS  Google Scholar 

  69. Gillies MC, Sutter FK, Simpson JM et al (2006) Intravitreal triamcinolone for refractory diabetic macular edema two-year results of a double-masked, placebo-controlled, randomized clinical trial. Ophthalmology 113:1533–1538

    PubMed  Google Scholar 

  70. Sutter FK, Simpson JM, Gillies MC (2004) Intravitreal triamcinolone for diabetic macular edema that persists after laser treatment: three-month efficacy and safety results of a prospective, randomized, double-masked, placebo controlled clinical trial. Ophthalmology 111:2044–2049

    PubMed  Google Scholar 

  71. Gillies MC, Simpson JM, Gaston C et al (2009) Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema. Ophthalmology 116:2182–2187

    PubMed  Google Scholar 

  72. Diabetic Retinopathy Clinical Research Network (2008) A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology 115:1447–1449

    PubMed Central  Google Scholar 

  73. Diabetic Retinopathy Clinical Research Network (2009) Three-year follow-up of a randomized clinical trial comparing focal/grid laser photocoagulation and intravitreal triamcinolone for diabetic macular edema. Arch Ophthalmol 127:245–251

    PubMed Central  Google Scholar 

  74. Bressler NM, Edwards AR, Beck RW et al (2009) Exploratory analysis of diabetic retinopathy progression through 3 years in a randomized clinical trial that compares intravitreal triamcinolone acetonide with focal/grid photocoagulation. Arch Ophthalmol 127:1566–1571

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Campochiaro PA, Brown DM, Pearson A et al (2012) Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology 119:2125–2132

    PubMed  Google Scholar 

  76. Diabetic Retinopathy Clinical Research Network (2010) Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 117:1064–1077

    Google Scholar 

  77. Diabetic Retinopathy Clinical Research Network (2011) Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 118:609–614

    PubMed Central  Google Scholar 

  78. Haller JA, Dugel P, Weinberg DV et al (2009) Evaluation of safety and performance of an applicator for a novel intravitreal dexamethasone drug delivery system for the treatment of macular edema. Retina 29:46–51

    PubMed  Google Scholar 

  79. Kuppermann BD, Blumenkranz MS, Haller JA et al (2007) Dexamethasone DDS Phase II Study Group. Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol 125:309–317

    PubMed  CAS  Google Scholar 

  80. Haller JA, Kuppermann BD, Blumenkranz MS et al (2010) Randomized controlled trial of an intravitreous dexamethasone drug delivery system in patients with diabetic macular edema. Arch Ophthalmol 128:289–296

    PubMed  CAS  Google Scholar 

  81. Boyer DS, Faber D, Gupta S et al (2011) Ozurdex Champlain Study Group. Dexamethasone intravitreal implant for treatment of diabetic macular edema in vitrectomized patients. Retina 31:915–923

    PubMed  CAS  Google Scholar 

  82. Zucchiatti I, Lattanzio R, Querques G et al (2012) Intravitreal dexamethasone implant in patients with persistent diabetic macular edema. Ophthalmologica 228:117–122

    PubMed  CAS  Google Scholar 

  83. A study of the safety and efficacy of a new treatment for diabetic macular edema [ClinicalTrials.gov identifier NCT00168337]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov

  84. Jaffe GJ, Martin D, Callanan D et al (2006) Fluocinolone Acetonide Uveitis Study Group. Fluocinolone acetonide implant (Retisert) for non infectious posterior uveitis: thirty-four-week results of a multicenter randomized clinical study. Ophthalmology 113:1020–1027

    PubMed  Google Scholar 

  85. Pearson PA, Comstock TL, Ip M et al (2011) Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial. Ophthalmology 118:1580–1587

    PubMed  Google Scholar 

  86. Campochiaro PA, Hafiz G, Shah SM et al (2010) Sustained ocular delivery of fluocinolone acetonide by an intravitreal insert. Ophthalmology 117:1393–1399

    PubMed  Google Scholar 

  87. Campochiaro PA, Brown DM, Pearson A et al (2011) Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology 118:626–635

    PubMed  Google Scholar 

  88. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    PubMed  CAS  Google Scholar 

  89. Nguyen QD, Tatlipinar S, Shah SM et al (2006) Vascular endothelial growth factor is a critical stimulus for diabetic macular edema. Am J Ophthalmol 142:961–969

    PubMed  CAS  Google Scholar 

  90. Massin P, Bandello F, Garweg JG et al (2010) Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care 33:2399–2405

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Nguyen QD, Brown DM, Marcus DM et al (2012) Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119:789–801

    PubMed  Google Scholar 

  92. Do DV, Nguyen QD, Khwaja AA et al (2012) Ranibizumab for Edema of the Macula in Diabetes Study: 3-year outcomes and the need for prolonged frequent treatment. Arch Ophthalmol 8:1–7

    Google Scholar 

  93. Mitchell P, Bandello F, Schmidt-Erfurth U et al (2011) The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 118:615–625

    PubMed  Google Scholar 

  94. Diabetic Retinopathy Clinical Research Network, Elman MJ, Qin H, Aiello LP et al (2012) Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: three-year randomized trial results. Ophthalmology 119:2312–2318

    PubMed  Google Scholar 

  95. Diabetic Retinopathy Clinical Research Network, Scott IU, Edwards AR, Beck RW et al (2007) A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology 114:1860–1867

    PubMed  Google Scholar 

  96. Rajendram R, Fraser-Bell S, Kaines A et al (2012) A 2-year prospective randomized controlled trial of Intravitreal Bevacizumab or Laser Therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophthalmol 130:972–979

    PubMed  CAS  Google Scholar 

  97. Soheilian M, Ramezani A, Obudi A et al (2009) Randomized trial of intravitreal bevacizumab alone or combined with triamcinolone versus macular photocoagulation in diabetic macular edema. Ophthalmology 116:1142–1150

    PubMed  Google Scholar 

  98. Cunningham ET Jr, Adamis AP, Altaweel M et al (2005) Macugen Diabetic Retinopathy Study Group. A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112:1747–1757

    PubMed  Google Scholar 

  99. Sultan MB, Zhou D, Loftus J et al (2011) Macugen 1013 Study Group. A phase 2/3, multicenter, randomized, double-masked, 2-year trial of pegaptanib sodium for the treatment of diabetic macular edema. Ophthalmology 118:1107–1118

    PubMed  Google Scholar 

  100. Do DV, Nguyen QD, Boyer D et al (2012) One-year outcomes of the DA VINCI Study of VEGF Trap-Eye in eyes with diabetic macular edema. Ophthalmology 119:1658–1665

    PubMed  Google Scholar 

  101. Nguyen QD, Shah SM, Heier JS et al (2009) Primary end point (six months) results of the Ranibizumab for Edema of the mAcula in Diabetes (READ-2) study. Ophthalmology 116:2175–81.e1

    PubMed  Google Scholar 

  102. Nguyen QD, Shah SM, Khwaja AA et al (2010) Two-year outcomes of the Ranibizumab for Edema of the mAcula in Diabetes (READ-2) Study. Ophthalmology 117:2146–2151

    PubMed  Google Scholar 

  103. A 12 month core study to assess the efficacy and safety of ranibizumab (intravitreal injections) in patients with visual impairment due to diabetic macular edema and a 24 month open-label extension study (RESTORE) [ClinicalTrials.gov identifier NCT00687804]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov

  104. Lam DS, Lai TY, Lee VY et al (2009) Efficacy of 1.25 mg versus 2.5 mg intravitreal bevacizumab for diabetic macular edema: six-month results of a randomized controlled trial. Retina 29:292–299

    PubMed  Google Scholar 

  105. Arevalo JF, Sanchez JG, Wu L et al; Pan-American Collaborative Retina Study Group (2009) Primary intravitreal bevacizumab for diffuse diabetic macular edema: the Pan-American Collaborative Retina Study Group at 24 months. Ophthalmology 116:1488–1497

    Google Scholar 

  106. Kook D, Wolf A, Kreutzer T et al (2008) Long-term effect of intravitreal bevacizumab (avastin) in patients with chronic diffuse diabetic macular edema. Retina 28:1053–1060

    PubMed  Google Scholar 

  107. Michaelides M, Kaines A, Hamilton RD et al (2010) A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: report 2. Ophthalmology 117:1078–1086.e2

    PubMed  Google Scholar 

  108. Paccola L, Costa RA, Folgosa MS et al (2008) Intravitreal triamcinolone versus bevacizumab for treatment of refractory diabetic macular oedema (IBEME study) Br J Ophthalmol 92:76–80

    PubMed  CAS  Google Scholar 

  109. Shimura M, Nakazawa T, Yasuda K et al (2008) Comparative therapy evaluation of intravitreal bevacizumab and triamcinolone acetonide on persistent diffuse diabetic macular edema. Am J Ophthalmol 145:854–861

    PubMed  CAS  Google Scholar 

  110. Gragoudas ES, Adamis AP, Cunningham ET Jr et al (2004) VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351:2805–2816

    PubMed  CAS  Google Scholar 

  111. Loftus JV, Sultan MB, Pleil AM et al (2011) Macugen 1013 Study Group. Changes in vision- and health-related quality of life in patients with diabetic macular edema treated with pegaptanib sodium or sham. Invest Ophthalmol Vis Sci 52:7498–7505

    PubMed  CAS  Google Scholar 

  112. Do DV, Schmidt-Erfurth U, Gonzalez VH et al (2011) The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema. Ophthalmology 118:1819–1826

    PubMed  Google Scholar 

  113. Ikeda T, Sato K, Katano T, Hayashi Y (2000) Improved visual acuity following pars plana vitrectomy for diabetic cystoid macular edema and detached posterior hyaloid. Retina 20:220–222

    PubMed  CAS  Google Scholar 

  114. Lewis H, Abrams GW, Blumenkranz MS et al (1992) Vitrectomy for diabetic macular traction and edema associated with posterior hyaloidal traction. Ophthalmology 99:753–759

    PubMed  CAS  Google Scholar 

  115. Harbour JW, Smiddy WE, Flynn HW Jr et al (1996) Vitrectomy for diabetic macular edema associated with a thickened and taut posterior hyaloid membrane. Am J Ophthalmol 121:405–413

    PubMed  CAS  Google Scholar 

  116. Hikichi T, Fujio N, Akiba J et al (1997) Association between the short-term natural history of diabetic macular edema and the vitreomacular relationship in type II diabetes mellitus. Ophthalmology 104:473–478

    PubMed  CAS  Google Scholar 

  117. Hartley KL, Smiddy WE, Flynn HW Jr et al (2008) Pars plana vitrectomy with internal limiting membrane peeling for diabetic macular edema. Retina 28:410–419

    PubMed  Google Scholar 

  118. Pendergast SD, Hassan TS, Williams GA et al (2000) Vitrectomy for diffuse diabetic macular edema associated with a taut premacular posterior hyaloid. Am J Ophthalmol 130:178–186

    PubMed  CAS  Google Scholar 

  119. Stefánsson E, Novack RL, Hatchell DL (1990) Vitrectomy prevents hypoxia in branch retinal vein occlusion. Invest Ophthalmol Vis Sci 31:284–289

    PubMed  Google Scholar 

  120. Stefánsson E (2001) Therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand 79:435–440

    PubMed  Google Scholar 

  121. Gandorfer A, Messmer EM, Ulbig MW et al (2000) Resolution of diabetic macular edema after surgical removal of the posterior hyaloid and the inner limiting membrane. Retina 20:126–133

    PubMed  CAS  Google Scholar 

  122. Bahadir M, Ertan A, Mertoglu O (2005) Visual acuity comparison of vitrectomy with and without internal limiting membrane removal in the treatment of diabetic macular edema. Int Ophthalmol 26:3–8

    PubMed  Google Scholar 

  123. Recchia FM, Ruby AJ, Carvalho Recchia CA (2005) Pars plana vitrectomy with removal of the internal limiting membrane in the treatment of persistent diabetic macular edema. Am J Ophthalmol 139:447–454

    PubMed  Google Scholar 

  124. Rosenblatt BJ, Shab GK, Sharma S, Bakal J (2005) Pars plana vitrectomy with internal limiting membranectomy for refractory diabetic macular edema without a taut posterior hyaloid. Graefes Arch Clin Exp Ophthalmol 243:20–25

    PubMed  Google Scholar 

  125. Diabetic Retinopathy Clinical Research Network Writing Committee, Haller JA, Qin H, Apte RS et al (2010) Vitrectomy outcomes in eyes with diabetic macular edema and vitreomacular traction. Ophthalmology 117:1087–1093.e3

    PubMed  Google Scholar 

  126. Gandorfer A (2008) Enzymatic vitreous disruption. Eye 22:1273–1277

    PubMed  CAS  Google Scholar 

  127. Kuppermann BD, Thomas EL, De Smet MD et al (2005) Pooled efficacy results from two multinational randomized controlled clinical trials of a single intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage. Am J Ophthalmol 140:573–584

    PubMed  CAS  Google Scholar 

  128. Kuppermann BD, De Smet MD, Grillone LR (2005) Safety results of two phase III trials of an intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage. Am J Ophthalmol 140:585–597

    PubMed  CAS  Google Scholar 

  129. Codenotti M, Maestranzi G, De Benedetto U et al (2013) Vitreomacular traction syndrome: a comparison of treatment with intravitreal plasmin enzyme vs spontaneous vitreous separation without treatment. Eye 27:22–27

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Azzolini C, D’Angelo A, Maestranzi G et al (2004) Intrasurgical plasmin enzyme in diabetic macular edema. Am J Ophthalmol 138:560–566

    PubMed  CAS  Google Scholar 

  131. Bandello F, Cunha-Vaz J, Chong NV et al (2012) New approaches for the treatment of diabetic macular oedema: recommendations by an expert panel. Eye (Lond) 26:485–493

    CAS  Google Scholar 

  132. Bressler SB, Qin H, Beck RW et al (2012) Factors associated with changes in visual acuity and central subfield thickness at 1 year after treatment for diabetic macular edema with ranibizumab. Arch Ophthalmol 130:1153–1161

    PubMed Central  PubMed  CAS  Google Scholar 

  133. Chhablani JK, Kim JS, Cheng L et al (2012) External limiting membrane as a predictor of visual improvement in diabetic macular edema after pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol 250:1415–1420

    PubMed  Google Scholar 

  134. Aiello LP, Edwards AR, Beck RW et al (2010) Factors associated with improvement and worsening of visual acuity 2 years after focal/grid photocoagulation for diabetic macular edema. Ophthalmology 117:946–953

    PubMed Central  PubMed  Google Scholar 

  135. Mohamed S, Leung GM, Chan CK et al (2009) Factors associated with variability in response of diabetic macular oedema after intravitreal triamcinolone. Clin Experiment Ophthalmol 37:602–608

    PubMed  Google Scholar 

  136. Yamada Y, Suzuma K, Kumagami T et al (2012) Systemic factors influence the prognosis of diabetic macular edema after pars plana vitrectomy with internal limiting membrane peeling. Ophthalmologica 229:142–6

    Google Scholar 

  137. Shin HJ, Lee SH, Chung H, Kim HC (2012) Association between photoreceptor integrity and visual outcome in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 250:61–70

    PubMed  Google Scholar 

  138. Yanyali A, Bozkurt KT, Macin A et al (2011) Quantitative assessment of photoreceptor layer in eyes with resolved edema after pars plana vitrectomy with internal limiting membrane removal for diabetic macular edema. Ophthalmologica 226:57–63

    PubMed  Google Scholar 

  139. Shimura M, Yasuda K, Yasuda M et al (2013) Visual outcome after intravitreal bevacizumab depends on the optical coherence tomographic patterns of patients with diffuse diabetic macular edema. Retina 33:740–747

    PubMed  CAS  Google Scholar 

  140. Kim YM, Lee SY, Koh HJ (2010) Prediction of postoperative visual outcome after pars plana vitrectomy based on preoperative multifocal electroretinography in eyes with diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 248:1387–1393

    PubMed  Google Scholar 

  141. Manousaridis K, Talks J (2012) Macular ischaemia: a contraindication for anti-VEGF treatment in retinal vascular disease? Br J Ophthalmol 96:179–184

    PubMed  Google Scholar 

  142. Goel N, Kumar V, Ghosh B (2011) Ischemic maculopathy following intravitreal bevacizumab for refractory diabetic macular edema. Int Ophthalmol 31:39–42

    PubMed  Google Scholar 

  143. Nakamura Y, Takeda N, Tatsumi T (2012) [Macular ischemia following intravitreal bevacizumab therapy for diabetic macular edema]. Nihon Ganka Gakkai Zasshi 116:108–113

    PubMed  Google Scholar 

  144. Battaglia Parodi M, Iacono P, Cascavilla ML et al (2010) Sequential anterior ischemic optic neuropathy and central retinal artery and vein occlusion after ranibizumab for diabetic macular edema. Eur J Ophthalmol 20:1076–8

    Google Scholar 

  145. Singerman LJ (2007) Intravitreal bevasiranib in exudative age-related macular degeneration or diabetic macular edema. In: 25th Annual Meeting of the American Society of Retina Specialists, Indian Wells

    Google Scholar 

  146. Safety and efficacy study of small interfering RNA molecule (Cand5) to treat diabetic macular edema [ClinicalTrials.gov identifier NCT00306904]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov

  147. Nguyen QD, Schachar RA, Nduaka CI et al (2012) Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (the DEGAS study). Invest Ophthalmol Vis Sci 53:7666–7674

    PubMed  Google Scholar 

  148. PF-04523655 dose escalation study, and evaluation of PF-04523655 with/without ranibizumab in diabetic macular edema (DME) (MATISSE) [ClinicalTrials.gov identifier NCT01445899]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov

  149. Krishnadev N, Forooghian F, Cukras C et al (2011) Subconjunctival sirolimus in the treatment of diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 249:1627–1633

    PubMed Central  PubMed  CAS  Google Scholar 

  150. Dugel PU, Blumenkranz MS, Haller JA et al (2012) A randomized, dose-escalation study of subconjunctival and intravitreal injections of sirolimus in patients with diabetic macular edema. Ophthalmology 119:124–131

    PubMed  Google Scholar 

  151. Wu L, Hernandez-Bogantes E, Roca JA et al (2011) intravitreal tumor necrosis factor inhibitors in the treatment of refractory diabetic macular edema: a pilot study from the Pan-American Collaborative Retina Study Group. Retina 31:298–303

    PubMed  CAS  Google Scholar 

  152. Owen ME, Beare NA, Pearce IA, Mewar D (2012) Intravitreal tumor necrosis factor inhibitors in the treatment of refractory diabetic macular edema. Retina 32:2179–80

    Google Scholar 

  153. Tsilimbaris MK, Panagiotoglou TD, Charisis SK et al (2007) The use of intravitreal etanercept in diabetic macular oedema. Semin Ophthalmol 22:75–79

    PubMed  Google Scholar 

  154. Hariprasad SM, Callanan D, Gainey S (2007) Cystoid and diabetic macular edema treated with nepafenac 0.1 %. J Ocul Pharmacol Ther 23:585–590

    PubMed  CAS  Google Scholar 

  155. Callanan D, Williams P (2008) Topical nepafenac in the treatment of diabetic macular edema. Clin Ophthalmol 2:689–692

    PubMed Central  PubMed  Google Scholar 

  156. Singh R, Alpern L, Jaffe GJ et al (2012) Evaluation of nepafenac in prevention of macular edema following cataract surgery in patients with diabetic retinopathy. Clin Ophthalmol 6:1259–1269

    PubMed Central  PubMed  CAS  Google Scholar 

  157. Cable M (2012) Comparison of bromfenac 0.09% QD to nepafenac 0.1% TID after cataract surgery: pilot evaluation of visual acuity, macular volume, and retinal thickness at a single site. Clin Ophthalmol 6:997–1004

    PubMed Central  PubMed  CAS  Google Scholar 

  158. Elbendary AM, Shahin MM (2011) Intravitreal diclofenac versus intravitreal triamcinolone acetonide in the treatment of diabetic macular edema. Retina 31:2058–2064

    PubMed  CAS  Google Scholar 

  159. Maldonado RM, Vianna RN, Cardoso GP (2011) Intravitreal injection of commercially available ketorolac tromethamine in eyes with diabetic macular edema refractory to laser photocoagulation. Curr Eye Res 36:768–773

    PubMed  CAS  Google Scholar 

  160. Tanito M, Hara K, Takai Y (2011) Topical dexamethasone-cyclodextrin microparticle eye drops for diabetic macular edema. Invest Ophthalmol Vis Sci 52:7944–7948

    PubMed  CAS  Google Scholar 

  161. Cukras CA, Petrou P, Chew EY et al (2012) Oral minocycline for the treatment of diabetic macular edema (DME): results of a phase I/II clinical study. Invest Ophthalmol Vis Sci 53:3865–3874

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Thakur A, Scheinman RI, Rao VR, Kompella UB (2011) Pazopanib, a multitargeted tyrosine kinase inhibitor, reduces diabetic retinal vascular leukostasis and leakage. Microvasc Res 82:346–350

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bandello MD, FEBO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandello, F., Zucchiatti, I., Lattanzio, R., Preziosa, C. (2014). Diabetic Macular Edema. In: Bandello, F., Zarbin, M., Lattanzio, R., Zucchiatti, I. (eds) Clinical Strategies in the Management of Diabetic Retinopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54503-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54503-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54502-3

  • Online ISBN: 978-3-642-54503-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics