Skip to main content

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

  • 588 Accesses

Abstract

Arctic marine ecosystems are largely impacted by global warming. The sea ice in Greenland Sea plays an important role in regional climate system and even to the global climate changing. The special characters of the surface current in Greenland Sea are outlined. The melting ice (MI) effect on the climate system is emphasized. The relationships between North Atlantic Oscillation (NAO) and ice cover (ICE) for different situations are also listed. Finally, the important roles of sea ice on the ecosystem for different aspects are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrigo, K. R. (2014). Sea-ice ecosystems. Annual Review of Marine Science, 6, 439–467. doi:10.1146/annurev-marine-010213-135103.

    Article  Google Scholar 

  • Arrigo, K. R., Sullivan, C. W., & Kremer, J. N. (1991). A bio-optical model of Antarctic sea-ice. Journal Geophysical Research, 96(C6), 1058192.

    Article  Google Scholar 

  • Arrigo, K. R., & van Dijken, G. L. (2011). Secular trends in Arctic Ocean net primary production. Journal of Geophys. Res., 116, C09011.

    Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., & Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655–661.

    Article  Google Scholar 

  • Cherkasheva, A., Nöthig, E. M., Bauerfeind, E., Melsheimer, C., & Bracher, A. (2014). From the chlorophyll-a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications. Ocean Science, 9, 431–445.

    Article  Google Scholar 

  • Cui, S., He, J., He, P., Zhang, F., Lin, L., & Ma, Y. (2012). The adaptation of Arctic phytoplankton to low light and salinity in Kongsfjorden (Spitsbergen). Advances in Polar Science, 23, 19–24.

    Article  Google Scholar 

  • Delille, D., Fiala, M., Kuparinen, J., Kuosa, H., & Plessis, C. (2002). Seasonal changes in microbial biomass in the first-year ice of the Terre Adelié area (Antarctica). Aquatic Microbial Ecology, 28, 257–265.

    Article  Google Scholar 

  • Hurrell, J. W. (1995). Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science, 269, 676–679.

    Article  Google Scholar 

  • Jaiser, R., Dethloff, K., Handorf, D., Rinke, A., & Cohen, J. (2012) Impact of sea-ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A 64.

    Google Scholar 

  • Lara, R. J., KATTNER, G., Tillmann, U., & Hirche, H. J. (1994). The North East Water polynya (Greenland Sea) II. Mechanisms of nutrient supply and influence on phytoplankton distribution. Polar Biology, 14, 483–490.

    Article  Google Scholar 

  • Martin J, Tremblay JÉ, Gagnon J, Tremblay G and others (2010) Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar Ecol Prog Ser 412:69-84.

    Google Scholar 

  • Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., & Holland, M. M. (2009). The emergence of surface-based Arctic amplification. The Cryosphere, 3, 11–19.

    Article  Google Scholar 

  • Serreze, M., & Barry, R. (2011). Processes and impacts of Arctic Amplification Global and Planetary Change:A research synthesis. Global and Planetary Change, 77, 85–96.

    Article  Google Scholar 

  • Slagstad, D., Ellingsen, I. H., & Wassmann, P. (2011). Evaluating primary and secondary production in an Arctic Ocean void of summer sea-ice: An experimental simulation approach. Progress in Oceanography, 90, 117–131.

    Article  Google Scholar 

  • Stroeve, J., Holland, M. M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic sea-ice decline: Faster than forecast. Geophysical Research Letters, 34, L09501.

    Article  Google Scholar 

  • Vancoppenolle, M., Bopp, L., Madec, G., Dunne, J., Ilyina, T., Halloran, P. R., et al. (2013). Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms. Global Biogeochemical Cycles, 27(3), 605–619.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Qu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Qu, B. (2015). Overview Greenland Sea. In: The Impact of Melting Ice on the Ecosystems in Greenland Sea. SpringerBriefs in Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54498-9_1

Download citation

Publish with us

Policies and ethics