Skip to main content

Everolimus

  • Chapter
  • First Online:
Small Molecules in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 201))

Abstract

Everolimus (RAD001, Afinitor®) is an oral protein kinase inhibitor of the mammalian target of rapamycin (mTOR) serine/threonine kinase signal transduction pathway. The mTOR pathway regulates cell growth, proliferation, and survival and is frequently deregulated in cancer. Everolimus has been approved by the FDA and the EMA for the treatment of advanced renal cell carcinoma (RCC), subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis (TSC), pancreatic neuroendocrine tumors (PNET), in combination with exemestane in advanced hormone-receptor (HR)-positive, HER2-negative breast cancer. Everolimus shows promising clinical activity in additional indications. Multiple phase 2 and phase 3 trials of everolimus alone or in combination are ongoing and will help to further elucidate the role of mTOR in oncology. For a review on everolimus as immunosuppressant, please consult other sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Novartis press release http://www.novartis.com/newsroom/media-releases/en/2013/1721562.shtml.

  2. 2.

    http://www.novctrd.com/ctrdWebApp/clinicaltrialrepository/displayFile.do?trialResult=8443

References

  • Andre F et al (2010) Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J Clin Oncol: Official J Am Soc Clin Oncol 28(34):5110–5115

    Article  CAS  Google Scholar 

  • Awada A et al (2008) The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase I study with pharmacokinetics. Eur J Cancer 44(1):84–91

    Article  PubMed  CAS  Google Scholar 

  • Barnes JA et al (2013) Everolimus in combination with rituximab induces complete responses in heavily pretreated diffuse large B-cell lymphoma. Haematologica 98(4):615–619

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baselga J et al (2009) Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol: Official J Am Soc Clin Oncol 27(16):2630–2637

    Article  CAS  Google Scholar 

  • Baselga J et al (2012a) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Eng J Med 366(6):520–529

    Article  CAS  Google Scholar 

  • Baselga J et al (2012b) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Eng J Med 366(2):109–119

    Article  CAS  Google Scholar 

  • Bissler JJ et al (2013) Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 381(9869):817–824

    Article  PubMed  CAS  Google Scholar 

  • Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348

    Article  PubMed  CAS  Google Scholar 

  • Boulay A et al (2005) Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clinical Cancer Res: Official J Am Assoc Cancer Res 11(14):5319–5328

    Article  CAS  Google Scholar 

  • Brown EJ et al (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483):756–758

    Article  PubMed  CAS  Google Scholar 

  • Carracedo A et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Investig 118(9):3065–3074

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chan S (2004) Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br J Cancer 91(8):1420–1424

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Crazzolara R et al (2009) Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 113(14):3297–3306

    Article  PubMed  CAS  Google Scholar 

  • Doi T et al (2010) Multicenter phase II study of everolimus in patients with previously treated metastatic gastric cancer. J Clin Oncol: Official J Am Soc Clin Oncol 28(11):1904–1910

    Article  CAS  Google Scholar 

  • Ehninger D et al (2008) Reversal of learning deficits in a Tsc2± mouse model of tuberous sclerosis. Nat Med 14(8):843–848

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eng CP et al (1991) Inhibition of skin graft rejection in mice by rapamycin: a novel immunosuppressive macrolide. Transpl Proc 23(1 Pt 1):868–869

    CAS  Google Scholar 

  • Franz DN et al (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381(9861):125–132

    Article  PubMed  CAS  Google Scholar 

  • Geoerger B et al (2001) Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 61(4):1527–1532

    PubMed  CAS  Google Scholar 

  • Hainsworth JD et al (2010) Phase II trial of bevacizumab and everolimus in patients with advanced renal cell carcinoma. J Clin Oncol: Official J Am Soc Clin Oncol 28(13):2131–2136

    Article  CAS  Google Scholar 

  • Haritunians T et al (2007) Antiproliferative activity of RAD001 (everolimus) as a single agent and combined with other agents in mantle cell lymphoma. Leukemia 21(2):333–339

    Article  PubMed  CAS  Google Scholar 

  • Houghton PJ (2010) Everolimus. Clinical cancer research: an official journal of the American Association for Cancer Research 16(5):1368–1372

    Article  CAS  Google Scholar 

  • Huynh H et al (2009) RAD001 (everolimus) inhibits tumour growth in xenograft models of human hepatocellular carcinoma. J Cell Mol Med 13(7):1371–1380

    Article  PubMed  CAS  Google Scholar 

  • Jacinto E et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Jerusalem G et al (2011) Phase I trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat 125(2):447–455

    Article  PubMed  CAS  Google Scholar 

  • Johnston PB et al (2010) A phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am J Hematol 85(5):320–324

    PubMed  CAS  Google Scholar 

  • Krueger DA et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Eng J Med 363(19):1801–1811

    Article  CAS  Google Scholar 

  • Lane HA et al (2009) mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res: Official J Am Assoc Cancer Res 15(5):1612–1622

    Article  CAS  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Levine AJ et al (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20(3):267–275

    Article  PubMed  CAS  Google Scholar 

  • Lu CH et al (2007) Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res: Official J Am Assoc Cancer Res 13(19):5883–5888

    Article  CAS  Google Scholar 

  • Majumder PK et al (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10(6):594–601

    Article  PubMed  CAS  Google Scholar 

  • Mak BC, Yeung RS (2004) The tuberous sclerosis complex genes in tumor development. Cancer Invest 22(4):588–603

    Article  PubMed  CAS  Google Scholar 

  • Manning BD, Cantley LC (2003) United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem Soc Trans 31(Pt 3):573–578

    Article  PubMed  CAS  Google Scholar 

  • Meikle L et al (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci: Official J Soc Neurosc 28(21):5422–5432

    Article  CAS  Google Scholar 

  • Mita M et al (2008) Deforolimus (AP23573) a novel mTOR inhibitor in clinical development. Expert Opin Investig Drugs 17(12):1947–1954

    Article  PubMed  CAS  Google Scholar 

  • Motzer RJ et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456

    Article  PubMed  CAS  Google Scholar 

  • Motzer RJ et al (2010) Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer 116(18):4256–4265

    Article  PubMed  CAS  Google Scholar 

  • Motzer RJ, Barrios CH, Kim TM, Falcon S, Cosgriff T, Harker WG, Pittman KB, Sabbatini R, Rha SY, Flaig TW et al (2012) Record-3: Phase II randomized trial comparing sequential first-line everolimus (EVE) and second-line sunitinib (SUN) versus first-line SUN and second-line EVE in patients with metastatic renal cell carcinoma (mRCC). ASCO Meeting Abstracts 31(15_suppl):4504

    Google Scholar 

  • Nagata Y et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127

    Article  PubMed  CAS  Google Scholar 

  • Nishioka C et al (2008) Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia 22(12):2159–2168

    Article  PubMed  CAS  Google Scholar 

  • O’Connor OA et al (2010) PILLAR-1: preliminary results of a phase II study of mTOR inhibitor everolimus in patients with mantle cell lymphoma (MCL) who are refractory or intolerant to bortezomib. ASH Annu Meet Abstr 116(21):3963

    Google Scholar 

  • O’Donnell A et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol: Official J Am Soc Clin Oncol 26(10):1588–1595

    Article  Google Scholar 

  • O’Reilly T, McSheehy PM (2010) Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol 3(2):65–79

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Reilly T et al (2010) Comparative pharmacokinetics of RAD001 (everolimus) in normal and tumor-bearing rodents. Cancer Chemother Pharmacol 65(4):625–639

    Article  PubMed  Google Scholar 

  • O'Regan R, Ozguroglu M, Andre F, Toi M, Jerusalem GHM, Wilks S, Isaacs C, Xu B, Masuda N, Arena FP et al (2013) Phase III, randomized, double-blind, placebo-controlled multicenter trial of daily everolimus plus weekly trastuzumab and vinorelbine in trastuzumab-resistant, advanced breast cancer (BOLERO-3). ASCO Meeting Abstracts 31(15_suppl):505

    Google Scholar 

  • Orlova KA, Crino PB (2010) The tuberous sclerosis complex. Ann N Y Acad Sci 1184:87–105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pavel ME et al (2011) Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378(9808):2005–2012

    Article  PubMed  CAS  Google Scholar 

  • Podsypanina K et al (2001) An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten± mice. Proc Natl Acad Sci USA 98(18):10320–10325

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Renner C et al (2012) A multicenter phase II trial (SAKK 36/06) of single-agent everolimus (RAD001) in patients with relapsed or refractory mantle cell lymphoma. Haematologica 97(7):1085–1091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sabatini DM et al (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78(1):35–43

    Article  PubMed  CAS  Google Scholar 

  • Saunders P et al (2011) The mammalian target of rapamycin inhibitor RAD001 (everolimus) synergizes with chemotherapeutic agents, ionizing radiation and proteasome inhibitors in pre-B acute lymphocytic leukemia. Haematologica 96(1):69–77

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schuler W et al (1997) SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 64(1):36–42

    Article  PubMed  CAS  Google Scholar 

  • Sehgal SN (1995) Rapamune (Sirolimus, rapamycin): an overview and mechanism of action. Ther Drug Monit 17(6):660–665

    Article  PubMed  CAS  Google Scholar 

  • Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot 28(10):727–732

    Article  PubMed  CAS  Google Scholar 

  • Singh JC, Stein S, Volm M, Smith JA, Novik Y, Speyer JL, Meyers M, Adams S, Omene CO, Muggia F et al (2012) Phase II trial of RAD001 plus carboplatin in patients with triple-negative metastatic breast cancer. ASCO Meeting Abstracts 30(15_suppl):e11529

    Google Scholar 

  • Swain SM et al (2013) Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 14(6):461–471

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F et al (2011) Efficacy of RAD001 (everolimus) against advanced gastric cancer with peritoneal dissemination. Invest New Drugs 29(6):1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Verma S et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Eng J Med 367(19):1783–1791

    Article  CAS  Google Scholar 

  • Villanueva A et al (2008) Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135(6):1972–1983 (e1-11)

    Google Scholar 

  • Wang M et al (2012) Pillar-1: multicenter phase 2 study of everolimus for patients with mantle cell lymphoma who are refractory or intolerant to bortezomib. ASH Annu Meet Abstr 120(21):2751

    Google Scholar 

  • Wanner K et al (2006) Mammalian target of rapamycin inhibition induces cell cycle arrest in diffuse large B cell lymphoma (DLBCL) cells and sensitises DLBCL cells to rituximab. Br J Haematol 134(5):475–484

    Article  PubMed  CAS  Google Scholar 

  • Witzig TE et al (2011) A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 25(2):341–347

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wong M (2012) mTOR as a potential treatment target for epilepsy. Future Neurol 7(5):537–545

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu ZZ et al (2010) Combination of rituximab and the mTOR inhibitor everolimus (RAD001) in diffuse large B cell lymphoma. Leuk Lymphoma 85(5):320–324

    Google Scholar 

  • Yao JC et al (2008) Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol: Official J Am Soc Clin Oncol 26(26):4311–4318

    Article  Google Scholar 

  • Yao JC et al (2010) Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol: Official J Am Soc Clin Oncol 28(1):69–76

    Article  CAS  Google Scholar 

  • Yao JC et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Eng J Med 364(6):514–523

    Article  CAS  Google Scholar 

  • Yoon DH et al (2012) Phase II study of everolimus with biomarker exploration in patients with advanced gastric cancer refractory to chemotherapy including fluoropyrimidine and platinum. Br J Cancer 106(6):1039–1044

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu AX et al (2011) Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer 117(22):5094–5102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Hasskarl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hasskarl, J. (2014). Everolimus. In: Martens, U. (eds) Small Molecules in Oncology. Recent Results in Cancer Research, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54490-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54490-3_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54489-7

  • Online ISBN: 978-3-642-54490-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics