Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8372))

  • 599 Accesses

Abstract

On any set X may be defined the free algebra RX〉 (respectively, free commutative algebra R[X]) with coefficients in a ring R. It may also be equivalently described as the algebra of the free monoid X * (respectively, free commutative monoid . Furthermore, the algebra of differential polynomials R{X} with variables in X may be constructed. The main objective of this contribution is to provide a functorial description of this kind of objects with their relations (including abelianization and unitarization) in the category of differential algebras, and also to introduce new structures such as the differential algebra of a semigroup, of a monoid, or the universal differential envelope of an algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergman, G.M.: The diamond lemma for ring theory. Advances in Mathematics 29, 178–218 (1978)

    Article  MathSciNet  Google Scholar 

  2. Bergman, G.M., Hausknecht, A.O.: Cogroups and co-rings in categories of associative rings. Memoirs of the American Mathematical Society, vol. 45 (1996)

    Google Scholar 

  3. Bourbaki, N.: Éléments de mathématique - Groupes et algèbres de Lie, (ch. 1). Springer (2007)

    Google Scholar 

  4. Cartier, P., Foata, D.: Problèmes combinatoires de commutation et réarrangements. Lecture Notes in Mathematics, vol. 85. Springer (1969)

    Google Scholar 

  5. Chen, Y., Chen, Y., Li, Y.: Composition-diamond lemma for differential algebras. The Arabian Journal for Science and Engineering A 34(2), 135–145 (2009)

    Google Scholar 

  6. Cohn, P.M.: Universal algebra. Mathematics and its applications, vol. 6. Kluwer (1981)

    Google Scholar 

  7. Demazure, M., Gabriel, P.: Introduction to algebraic geometry and algebraic groups. North-Holland Mathematical Studies, vol. 39. North-Holland Publishing Company (1980)

    Google Scholar 

  8. Deneufchâtel, M., Duchamp, G.H.E., Hoang Ngoc Minh, V., Solomon, A.I.: Independence of hyperlogarithms over function fields via algebraic combinatorics. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742, pp. 127–139. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Duboc, C.: Commutations dans les monoïdes libres: Un cadre théorique pour l’étude du parallélisme, PhD thesis, Université de Rouen (1986)

    Google Scholar 

  10. Duchamp, G.H.E., Krob, D.: Partially commutative formal power series. In: Proceedings of the LITP Spring School on Theoretical Computer Science on Semantics of Systems of Concurrent Processes, pp. 256–276 (1990)

    Google Scholar 

  11. Eilenberg, S.: Automata, languages, and machines, Volume A. Pure and Applied Mathematics, vol. 59. Academic Press (1974)

    Google Scholar 

  12. Gillet, H.: Differential algebra - a scheme theory approach. In: Guo, L., Cassidy, P.J., Keigher, W.F., Sit, W.Y. (eds.) Proceedings of the International Workshop on Differential Algebra and Related Topics, Newark, November 2000, pp. 95–123. World Scientific (2002)

    Google Scholar 

  13. Kaplansky, I.: An introduction to differential algebra. The Publications de l’Institut Mathématiques de l’Université de Nancago, vol. V. Hermann (1957)

    Google Scholar 

  14. Mac Lane, S.: Categories for the working mathematician. Graduate Texts in Mathematics, vol. 5. Springer (1971)

    Google Scholar 

  15. Mansfield, E.: Differential Gröbner bases, PhD thesis, University of Sydney (1991)

    Google Scholar 

  16. Poinsot, L.: Wronskian envelope of a Lie algebra. Algebra 2013, Article ID 341631, 8 (2013)

    Google Scholar 

  17. Pareigis, B.: Categories and functors. Pure and Applied Mathematics, vol. 39. Academic Press (1970)

    Google Scholar 

  18. van der Put, M., Singer, M.F.: Galois theory of linear differential equations. Grundlehren der mathematischen Wissenschaften, vol. 328. Springer (2003)

    Google Scholar 

  19. Ritt, J.F.: Differential equations from the algebraic standpoint. Colloquium Publications, vol. XIV. American Mathematical Society (1932)

    Google Scholar 

  20. Viennot, G.X.: Heaps of pieces I: Basic definitions and combinatorial lemmas. In: Labelle, G., et al. (eds.) Proceedings Combinatoire Énumérative, Montréal, Québec (Canada) 1985. Lecture Notes in Mathematics, vol. 1234, pp. 321–350 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poinsot, L. (2014). Differential (Monoid) Algebra and More. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds) Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012. Lecture Notes in Computer Science, vol 8372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54479-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54479-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54478-1

  • Online ISBN: 978-3-642-54479-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics