Advertisement

Real Heat Engine

  • Achintya Kumar PramanickEmail author
Chapter
Part of the Heat and Mass Transfer book series (HMT)

Abstract

In this chapter, we turn our attention to the features of a more realistic heat engine, unlike thermoelectric generator, which is considered to be the natural heat engine. In the first place, we abandon the linear heat transfer law for the external heat transfer resistance while adopting a generalized power law. Such a power law is immediately inclusive of linear model representing conventional Newton’s law of cooling, phenomenological heat transfer law, and radiative heat transmission mode among a host.

Keywords

Heat Transfer Heat Exchanger Heat Transfer Rate Heat Engine Cold Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Moran, M.J.: On the second-law analysis and the failed promise of finite-time thermodynamics. Energy 23, 517–519 (1998)CrossRefGoogle Scholar
  2. 2.
    Curzon, F.L., Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975)CrossRefGoogle Scholar
  3. 3.
    Carnot, S.: Reflections on the motive power of fire, and on machines fitted to develop that power (trans: Thurston, R.H.). In: Mendoza, E. (ed.) Reflections on the Motive Power of Fire. Dover, New York (2005)Google Scholar
  4. 4.
    Clapeyron, É.: Memoir on the motive power of heat (trans: Mendoza, E.). In: Mendoza, E. (ed.) Reflections on the Motive Power of Fire. Dover, New York (2005)Google Scholar
  5. 5.
    Landsberg, P.T., Leff, H.S.: Thermodynamic cycles with nearly universal maximum-work efficiencies. J. Phys. A Math. Gen. 22, 4019–4026 (1989)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Novikov, I.I.: The efficiency of atomic power stations. J. Nucl. Energy II 7, 125–128 (1958)Google Scholar
  7. 7.
    Bejan, A., Paynter, H.M.: Solved Problems in Thermodynamics. Problem VIID. MIT, Cambridge (1976)Google Scholar
  8. 8.
    Andresen, B., Salamon, P., Berry, R.S.: Thermodynamics in finite-time: extremals for imperfect heat engines. J. Chem. Phys. 66, 1571–1577 (1977)CrossRefGoogle Scholar
  9. 9.
    Lu, P.C.: On optimal disposal of waste heat. Energy 5, 993–998 (1980)CrossRefGoogle Scholar
  10. 10.
    Andresen, B., Salamon, P., Berry, R.S.: Thermodynamics in finite time. Phys. Today 37, 62–70 (1984)CrossRefGoogle Scholar
  11. 11.
    Wu, C., Kiang, R.L., Lopardo, V.J., Karpouzian, G.N.: Finite-time thermodynamics and endoreversible heat engines. Int. J. Mech. Eng. Ed. 21, 337–346 (1993)Google Scholar
  12. 12.
    Feidt, M., Ramany-Bala, P., Benelmir, R.: Synthesis, unification and generalization of preceding finite time thermodynamic studies devoted to Carnot cycles. In: Carnevalle, E., Manfrida, G., Martelli, F. (eds.) Proceedings of the Florence World Energy Research Symposium (FLOWERS’94), SGEditoriali, Padova (1994)Google Scholar
  13. 13.
    Rubin, M.H.: Optimal configuration of a class of irreversible heat engines-I. Phys. Rev. A 19, 1272–1276 (1977)CrossRefGoogle Scholar
  14. 14.
    Radcenco, V.: Definition of exergy, heat and mass fluxes based on the principle of minimum entropy generation. Rev. Chim. 41, 40–49 (1990) (in Romanian)Google Scholar
  15. 15.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 62–64. Wiley, New York (2006)Google Scholar
  16. 16.
    Berg, C.: Conceptual issues in energy efficiency. In: Valero, A., Tsatsaronis, G. (eds.) Proceedings of the International Symposium on Efficiency, Costs, Optimization and Simulation of Energy Systems (ECOS’92), Zaragoza (1992)Google Scholar
  17. 17.
    Andresen, B., Berry, R.S., Nitzan, A., Salamon, P.: Thermodynamics in finite time-I. The step-Carnot cycle. Phys. Rev. A 15, 2086–2093 (1977)CrossRefGoogle Scholar
  18. 18.
    Tolman, R.C., Fine, P.C.: On the irreversible production of entropy. Rev. Mod. Phys. 20, 51–77 (1948)CrossRefGoogle Scholar
  19. 19.
    Gutkowicz-Krusin, D., Procaccia, I., Ross, J.: On the efficiency of rate processes. Power and efficiency of heat engines. J. Chem. Phys. 69, 3898–3906 (1978)CrossRefGoogle Scholar
  20. 20.
    De Vos, A.: Efficiency of some heat engines at maximum-power conditions. Am. J. Phys. 53, 570–573 (1985)CrossRefGoogle Scholar
  21. 21.
    Chen, L., Yan, Z.: The effect of heat-transfer law on performance of a two-heat-source endoreversible cycle. J. Chem. Phys. 90, 3740–3743 (1989)CrossRefGoogle Scholar
  22. 22.
    Angulo-Brown, F., Páez-Hernández, R.: Endoreversible thermal cycle with a nonlinear heat transfer law. J. Appl. Phys. 74, 2216–2219 (1993)CrossRefGoogle Scholar
  23. 23.
    Lucca, G.: Un corollario al teorema di Carnot. Cond. Aria Risc. Refrig., pp. 19–42, January 1981 (in Italian)Google Scholar
  24. 24.
    Rozonoer, L.I., Tsirlin, A.M.: Optimal control of thermodynamic processes-III. Autom. Remote Control 44, 314–326 (1983)MathSciNetGoogle Scholar
  25. 25.
    Mozurkewich, M., Berry, R.S.: Optimization of a heat engine based on a dissipative system. J. Appl. Phys. 54, 3651–3661 (1983)CrossRefGoogle Scholar
  26. 26.
    Tsirlin, A.M.: Optimal control of irreversible heat and mass transfer processes. Tekh. Kybernet. 2, 171–177 (1991) (in Russian)Google Scholar
  27. 27.
    Pfreim, H.: Beitrag zur Theorie der Wärmeleitung bei periodisch veränderlichen (quasistationären) Temperaturfeldern. Ing. Arch. 6, 97–127 (1935) (in German)CrossRefGoogle Scholar
  28. 28.
    Pfreim, H.: Der periodische Wärmeübergang bei kleinen Druckschwankungen. Forsch. Ing. Wes. 11, 67–75 (1940) (in German)CrossRefGoogle Scholar
  29. 29.
    Pfreim, H.: Probleme der periodischen Wärmeübertragung mit Bezug auf Kolbenmaschinen. Forsch. Ing. Wes. 10, 27–40 (1939) (in German)CrossRefGoogle Scholar
  30. 30.
    Grazzini, G., Gori, F.: Influence of thermal irreversibilities on work producing systems. Rev. Gen. Therm. 312, 637–639 (1987)Google Scholar
  31. 31.
    Kiang, R.L., Wu, C.: Clarification of finite-time thermodynamic cycle analysis. Int. J. Power Energy Syst. 14, 68–71 (1994)Google Scholar
  32. 32.
    Angulo-Brown, F.: An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 69, 7465–7469 (1991)CrossRefGoogle Scholar
  33. 33.
    Ust, Y., Sahin, B., Kodal, A.: Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion. Int. J. Therm. Sci. 45, 94–101 (2006)CrossRefGoogle Scholar
  34. 34.
    Bejan, A.: Entropy Generation Minimization, p. 210. CRC Press, New York (1996)zbMATHGoogle Scholar
  35. 35.
    Kornhauser, A.A., Smith Jr., J.L.: Application of a complex Nusselt-number to heat transfers during compression and expansion. J. Heat Transf. 116, 536–542 (1994)CrossRefGoogle Scholar
  36. 36.
    Meixner, J.: Thermodynamic theory of relaxation phenomena. In: Donnelly, R.J., Herman, R., Prigogine, I. (eds.) Non-Equilibrium Thermodynamics, Variational Techniques and Stability. Chicago University Press, Chicago (1966)Google Scholar
  37. 37.
    Wu, F., Wu, C., Guo, F., Li, Q., Chen, L.: Optimization of a thermoacoustic engine with a complex heat transfer exponent. Entropy 5, 444–451 (2003)CrossRefGoogle Scholar
  38. 38.
    De Mey, G., De Vos, A.: On the optimum efficiency of endoreversible thermodynamic processes. J. Phys. D Appl. Phys. 27, 736–739 (1994)CrossRefGoogle Scholar
  39. 39.
    Gordon, J.M., Huleihil, M.: On optimizing maximum-power heat engines. J. Appl. Phys. 69, 1–7 (1991)CrossRefGoogle Scholar
  40. 40.
    Bejan, A.: Power and refrigeration plants for minimum heat exchanger size. J. Energy Res. Technol. 115, 148–150 (1993)CrossRefGoogle Scholar
  41. 41.
    Bejan, A.: Theory of heat transfer-irreversible power plants-II. The optimal allocation of heat exchange equipment. Int. J. Heat Mass Transf. 38, 433–444 (1995)CrossRefGoogle Scholar
  42. 42.
    Burzler, J.M., Amelkin, S.A., Tsirlin, A.M., Hoffmann, K.H.: Optimal allocation of heat exchanger investment. Open Sys. Inf. Dyn. 11, 291–306 (2004)CrossRefzbMATHGoogle Scholar
  43. 43.
    Odum, H.T., Pinkerton, R.C.: Time’s speed regulator: the optimum efficiency for maximum power output in physical and biological systems. Am. Sci. 43, 331–343 (1955)Google Scholar
  44. 44.
    Pramanick, A.K., Das, P.K.: Assessment of Bejan’s heat exchanger allocation model under the influence of generalized thermal resistance, relaxation effect, bypass heat leak, and internal irreversibility. Int. J. Heat Mass Transf. 51, 474–484 (2008)CrossRefzbMATHGoogle Scholar
  45. 45.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, pp. 30–33. Oxford University Press, Oxford (1959)Google Scholar
  46. 46.
    Attard, P.: Thermodynamics and Statistical Mechanics, pp. 21–23. Academic Press, London (2002)Google Scholar
  47. 47.
    Landsberg, P.T.: Thermodynamics, pp. 42, 45. Wiley-Interscience, New York (1961)Google Scholar
  48. 48.
    Bejan, A.: A general variational principle for thermal insulation system design. Int. J. Heat Mass Transf. 22, 219–228 (1979)CrossRefGoogle Scholar
  49. 49.
    Antar, M.A., Zubair, S.M.: Thermoeconomic considerations in the optimum allocation of heat exchanger inventory for a power plant. Energy Convers. Manage. 42, 1169–1179 (2001)CrossRefGoogle Scholar
  50. 50.
    Ait-Ali, M.: Maximum power and thermal efficiency of an irreversible power cycle. J. Appl. Phys. 78, 4313–4318 (1995)CrossRefGoogle Scholar
  51. 51.
    Pramanick, A.K., Das, P.K.: Constructal design of a thermoelectric device. Int. J. Heat Mass Transf. 49, 1420–1429 (2006)CrossRefzbMATHGoogle Scholar
  52. 52.
    Gelfand, I.M, Fomin, S.V.: Calculus of Variations (trans: Silverman, R.A.), pp. 59–61. Dover, New York (2000)Google Scholar
  53. 53.
    Knopp, K.: Elements of the Theory of Functions (trans: Bagemihl, F.), p. 134. Dover, New York (1952)Google Scholar
  54. 54.
    Lanczos, C.: Applied Analysis, pp. 19–22. Dover, New York (1988)Google Scholar
  55. 55.
    Dickson, L.E.: Elementary Theory of Equations, pp. 42–44. Wiley, New York (1914)zbMATHGoogle Scholar
  56. 56.
    McKelvey, J.P.: Simple transcendental expressions for the roots of cubic equations. Am. J. Phys. 52, 269–270 (1984)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran 77, pp. 178–180. Cambridge University Press, Cambridge (2001)Google Scholar
  58. 58.
    Chierici, A.: Planning of a geothermal power plant: technical and economic principles-III. In: U. N. Conference on New Sources of Energy, pp. 299–311, New York (1964)Google Scholar
  59. 59.
    Griffiths, G.M.: CANDU—a Canadian success story. Phys. Can. 30, 2–6 (1974)Google Scholar
  60. 60.
    Spalding, D.B., Cole, E.H.: Engineering Thermodynamics, p. 209. Edward Arnold, London (1973)Google Scholar
  61. 61.
    Chen, J., Yan, Z., Lin, G., Andresen, B.: On the Curzon-Ahlborn efficiency and its connection with the efficiencies of real heat engines. Energy Convers. Manage. 42, 173–181 (2001)CrossRefGoogle Scholar
  62. 62.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 377–378. Wiley, New York (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology DurgapurDurgapurIndia

Personalised recommendations