Advertisement

Natural Heat Engine

  • Achintya Kumar PramanickEmail author
Chapter
Part of the Heat and Mass Transfer book series (HMT)

Abstract

In this chapter, we study the thermoelectric generator from the perspective of a heat engine, which in turn falls into a class of thermal insulation systems. We employ the method of finite-time thermodynamics to take into account the essential features of a realistic heat engine. We directly look into the geometrical shape and structure of the building blocks of each thermoelectric module of the cascaded assembly that eventually causes a better global performance.

Keywords

Heat Engine Joulean Heat Thermoelectric Generator Thermoelectric Module Thermoelectric Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 665–682. Wiley, New York (2006)Google Scholar
  2. 2.
    Bridgman, P.W.: Thermoelectric phenomena in crystals and general electrical concepts. Phys. Rev. 31, 221–235 (1928)CrossRefGoogle Scholar
  3. 3.
    Goldsmid, H.J.: Thermoelectric Refrigeration. Plenum, New York (1964)CrossRefGoogle Scholar
  4. 4.
    Heikes, R.R., Ure Jr., R.W. (eds.) A.A. (rev.).: Thermoelectricity: science and engineering. Am. J. Phys. 30, 78 (1962)Google Scholar
  5. 5.
    Ioffe, A.F.: The revival of thermoelectricity. Sci. Am. 199, 31–37 (1958)CrossRefGoogle Scholar
  6. 6.
    Ioffe, A.F.: Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch Limited, London (1957)Google Scholar
  7. 7.
    Thomson, W.: Thermoelectric currents. In: Mathematical and Physical Papers-I, pp. 232–291. Cambridge University Press, Cambridge (1882)Google Scholar
  8. 8.
    Wiśniewski, S., Staniszewski, B., Szymanik, R.: Thermodynamics of Nonequilibrium Processes (trans: Lepa, E.), pp. 128–180. D. Reidel, Boston (1976)Google Scholar
  9. 9.
    Gupta, V.K., Gauri, S., Sarat, B., Sharma, N.K.: Experiment to verify the second law of thermodynamics using a thermoelectric device. Am. J. Phys. 52, 625–628 (1984)CrossRefGoogle Scholar
  10. 10.
    Yan, Z., Chen, J.: Comment on “Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration”. Am. J. Phys. 61, 380 (1993)CrossRefGoogle Scholar
  11. 11.
    Gordon, J.M.: Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration. Am. J. Phys. 59, 551–555 (1991)CrossRefGoogle Scholar
  12. 12.
    Gordon, J.M.: A response to Yan and Chen’s “Comment on ‘Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration’”. Am. J. Phys. 61, 381 (1993)CrossRefGoogle Scholar
  13. 13.
    Luke, W.H.: Reply to experiment in thermoelectricity. Am. J. Phys. 28, 563 (1960)CrossRefGoogle Scholar
  14. 14.
    Noon, J.H., O’Brien, B.J.: Sophomore experiment in thermoelectricity. Am. J. Phys. 26, 373–375 (1958)CrossRefGoogle Scholar
  15. 15.
    Andresen, B., Salamon, P., Berry, R.S.: Thermodynamics in finite time. Phys. Today 37, 62–70 (1984)CrossRefGoogle Scholar
  16. 16.
    Chen, J.: The maximum power output and maximum efficiency of an irreversible Carnot heat engine. J. Phys. D Appl. Phys. 27, 1144–1149 (1994)CrossRefGoogle Scholar
  17. 17.
    Curzon, F.L., Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975)CrossRefGoogle Scholar
  18. 18.
    De Mey, G., De Vos, A.: On the optimum efficiency of endoreversible thermodynamic processes. J. Phys. D Appl. Phys. 27, 736–739 (1994)CrossRefGoogle Scholar
  19. 19.
    De Vos, A.: Reflections on the power delivered by endoreversible engines. J. Phys. D Appl. Phys. 20, 232–236 (1987)CrossRefGoogle Scholar
  20. 20.
    Gordon, J.M.: Maximum power point characteristics of heat engines as a general thermodynamic problem. Am. J. Phys. 57, 1136–1142 (1989)CrossRefGoogle Scholar
  21. 21.
    Yan, Z., Chen, L.: The fundamental optimal relation and the bounds of power output and efficiency for an endoreversible Carnot engine. J. Phys. A Math. Gen. 28, 6167–6175 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Månsson, B.Å.: Thermodynamics and economics. In: Sieniutycz, S., Salamon, P. (eds.) Finite-Time Thermodynamics and Thermoeconomics. Taylor & Francis, New York (1991)Google Scholar
  23. 23.
    Rubin, M.H.: Optimal configuration of a class of irreversible heat engines-I. Phys. Rev. A 19, 1272–1276 (1977)CrossRefGoogle Scholar
  24. 24.
    Bejan, A., Paynter, H.M.: Solved Problems in Thermodynamics. Problem VIID. MIT, Cambridge (1976)Google Scholar
  25. 25.
    El-Wakil, M.M.: Nuclear Power Engineering, pp. 162–165. McGraw-Hill, New York (1962)Google Scholar
  26. 26.
    Lu, P.C.: On optimal disposal of waste heat. Energy 5, 993–998 (1980)CrossRefGoogle Scholar
  27. 27.
    Novikov, I.I.: The efficiency of atomic power stations. J. Nucl. Energy II 7, 125–128 (1958)Google Scholar
  28. 28.
    Bejan, A.: Shape and Structure, from Engineering to Nature. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  29. 29.
    Sherman, B., Heikes, R.R., Ure Jr., R.W.: Calculation of efficiency of thermoelectric devices. J. Appl. Phys. 31, 1–16 (1960)CrossRefGoogle Scholar
  30. 30.
    De Vos, A., Desoete, B.: Equipartition principle in finite-time thermodynamics. J. Non-Equilib. Thermodyn. 25, 1–13 (2000)CrossRefzbMATHGoogle Scholar
  31. 31.
    Pramanick, A.K., Das, P.K.: Constructal design of a thermoelectric device. Int. J. Heat Mass Transf. 49, 1420–1429 (2006)CrossRefzbMATHGoogle Scholar
  32. 32.
    Pramanick, A.K.: Equipartition of Joulean heat in thermoelectric generators. In: Rocha, L.A.O., Lorente, S., Bejan, A. (eds.) Constructal Law and the Unifying Principle of Design. Springer, New York (2013)Google Scholar
  33. 33.
    Boerdijk, A.H.: Contribution to a general theory of thermocouples. J. Appl. Phys. 30, 1080–1083 (1959)CrossRefzbMATHGoogle Scholar
  34. 34.
    Harman, T.C., Honig, J.M.: Thermoelectric and Thermomagnetic Effects and Applications, p. 276. McGraw-Hill, New York (1967)Google Scholar
  35. 35.
    De Groot, S.R.: Thermodynamics of Irreversible Processes, pp. 141–162. Wiley-Interscience, New York (1952)Google Scholar
  36. 36.
    Bejan, A.: Entropy Generation Through Heat and Fluid Flow, pp. 173–187. Wiley, New York (1982)Google Scholar
  37. 37.
    Kadanoff, L.P.: Fractals: where’s the physics? Phys. Today 39, 6–7 (1986)CrossRefGoogle Scholar
  38. 38.
    McMahon, T.A., Kronauer, R.E.: Tree structures: deducing the principle of mechanical design. J. Theor. Biol. 59, 443–466 (1976)CrossRefGoogle Scholar
  39. 39.
    Jain, S.C., Krishnan, K.S.: The distribution of temperature along a thin rod electrically heated in vacuo. I. Theoretical. Proc. R. Soc. Lond. A 222, 167–180 (1954)Google Scholar
  40. 40.
    Jain, S.C., Krishnan, K.S.: The distribution of temperature along a thin rod electrically heated in vacuo. II. Theoretical. Proc. R. Soc. Lond. A 225, 1–7 (1954)Google Scholar
  41. 41.
    Jain, S.C., Krishnan, K.S.: The distribution of temperature along a thin rod electrically heated in vacuo. III. Experimental. Proc. R. Soc. Lond. A 225, 7–18 (1954)Google Scholar
  42. 42.
    Jain, S.C., Krishnan, K.S.: The distribution of temperature along a thin rod electrically heated in vacuo. IV. Many useful formulae verified. Proc. R. Soc. Lond. A 225, 19–32 (1954)Google Scholar
  43. 43.
    Salamon, P., Nitzan, A.: Finite time optimizations of a Newton’s law Carnot cycle. J. Chem. Phys. 74, 3546–3560 (1981)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Rektorys, K. (ed.): Survey of Applicable Mathematics, pp. 70–75. Liffe Books, London (1969)Google Scholar
  45. 45.
    Min, G., Rowe, D.M.: Thermoelectric figure-of-merit barrier at minimum lattice thermal conductivity? Appl. Phys. Lett. 77, 860–862 (2000)CrossRefGoogle Scholar
  46. 46.
    Ait-Ali, M.: Maximum power and thermal efficiency of an irreversible power cycle. J. Appl. Phys. 78, 4313–4318 (1995)CrossRefGoogle Scholar
  47. 47.
    Bejan, A.: Theory of heat transfer-irreversible power plants—II. The optimal allocation of heat exchange equipment. Int. J. Heat Mass Transf. 38, 433–444 (1995)CrossRefGoogle Scholar
  48. 48.
    Klein, S.A.: Design considerations for refrigeration cycles. Int. J. Refrg. 15, 181–185 (1992)CrossRefGoogle Scholar
  49. 49.
    Antar, M.A., Zubair, S.M.: Thermoeconomic considerations in the optimum allocation of heat exchanger inventory for a power plant. Energ. Convers. Manage. 42, 1169–1179 (2001)CrossRefGoogle Scholar
  50. 50.
    Andresen, B.: Comment on “A fallacious argument in the finite time thermodynamic concept of endoreversibility”. J. Appl. Phys. 90, 6557–6559 (2001)CrossRefGoogle Scholar
  51. 51.
    Sekulic, D.P.: A fallacious argument in the finite time thermodynamics concept of endoreversibility. J. Appl. Phys. 83, 4561–4565 (1998)CrossRefGoogle Scholar
  52. 52.
    Sekulic, D.P.: Response to “Comment on ‘A fallacious argument in the finite time thermodynamics concept of endoreversibility’”. J. Appl. Phys. 90, 6560–6561 (2001)CrossRefGoogle Scholar
  53. 53.
    Andresen, B., Salamon, P., Berry, R.S.: Thermodynamics in finite time: extremals for imperfect heat engines. J. Chem. Phys. 66, 1571–1577 (1977)CrossRefGoogle Scholar
  54. 54.
    Logan, J.K., Clement, J.R., Jeffers, H.R.: Resistance minimum of magnesium: heat capacity between 3°K and 13°K. Phys. Rev. 105, 1435–1437 (1957)CrossRefGoogle Scholar
  55. 55.
    Pramanick, A.K., Das, P.K.: Note on constructal theory of organization in nature. Int. J. Heat Mass Transf. 48, 1974–1981 (2005)CrossRefzbMATHGoogle Scholar
  56. 56.
    Gray, A.: Tubes. Birkhäuser, Boston (2004)CrossRefGoogle Scholar
  57. 57.
    Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Elsevier, London (1992)zbMATHGoogle Scholar
  58. 58.
    Bern, M.W., Graham, R.L.: The shortest network problem. Sci. Am. 260, 84–89 (1989)CrossRefGoogle Scholar
  59. 59.
    Rubinstein, J.H., Thomas, D.A.: A variational approach to the Steiner network problem. Ann. Oper. Res. 33, 481–499 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Ivanov, A.O., Tuzhilin, A.A.: Branching Solutions to One-Dimensional Variational Problems. World Scientific, Philadelphia (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology DurgapurDurgapurIndia

Personalised recommendations