Skip to main content

Fluid Flow Systems

  • Chapter
  • First Online:
The Nature of Motive Force

Part of the book series: Heat and Mass Transfer ((HMT))

  • 676 Accesses

Abstract

In this chapter, we focus on the physics of the flow systems with reference to fluid elements. The law of motive force for the flow physics is explored in point-to-point and volume-to-volume flow situations. It attempts to enunciate a clear demarcation between the constructal theory, Fermat’s principle, and the law of motive force.

So how do you go about teaching them something new? By mixing what they know with what they don’t know. Then, when they see in their fog something they recognize they think, “Ah I know that!” And then it’s just one more step to “Ah, I know the whole thing.” And their mind thrusts forward into the unknown and they begin to recognize what they don’t know before and they increase their powers of understanding.

P. Picasso

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bejan, A.: Entropy Generation Minimization. CRC, Boca Raton (1996)

    MATH  Google Scholar 

  2. Bejan, A.: Notes on the history of the method of entropy generation minimization (finite time thermodynamics). J. Non-Equilib. Thermodyn. 21, 239–242 (1996)

    Google Scholar 

  3. Szargut, J., Morris, D.R., Steward, F.R.: Exergy Analysis of Thermal, Chemical and Metallurgical Processes. Hemisphere, New York (1988)

    Google Scholar 

  4. Yantovskii, E.I.: Energy and Exergy Currents. Nova Science, New York (1994)

    Google Scholar 

  5. Chen, L., Sun, F. (eds.): Advances in Finite Time Thermodynamics: Analysis and Optimization. Nova Science, New York (2004)

    Google Scholar 

  6. Sieniutycz, S., Salamon, P. (eds.): Finite-Time Thermodynamics and Thermoeconomics. Taylor & Francis, New York (1990)

    Google Scholar 

  7. Chambadal, P.: Les Centrales Nucleaires, pp. 41–58. Armand Colin, Paris (1957) (in French)

    Google Scholar 

  8. Landsberg, P.T., Leff, H.S.: Thermodynamic cycles with nearly universal maximum-work efficiencies. J. Phys. A Math. Gen. 22, 4019–4026 (1989)

    Article  MathSciNet  Google Scholar 

  9. Gaggioli, R. (ed.): Efficiency and Costing. ACS Symposium Series, vol. 235. ACS, Washington (1983)

    Google Scholar 

  10. Tribus, M., Evans, R.: The thermoeconomics of sea water conversion. UCLA Report No. 62-63, August 1962

    Google Scholar 

  11. Rozonoer, L.I., Tsirlin, A.M.: Optimal control of thermodynamic processes-I. Autom. Remote Control 44, 55–62 (1983)

    MathSciNet  Google Scholar 

  12. Rozonoer, L.I., Tsirlin, A.M.: Optimal control of thermodynamic processes-II. Autom. Remote Control 44, 209–220 (1983)

    MathSciNet  Google Scholar 

  13. Rozonoer, L.I., Tsirlin, A.M.: Optimal control of thermodynamic processes-III. Autom. Remote Control 44, 314–326 (1983)

    MathSciNet  Google Scholar 

  14. Salamon, P., Nulton, J.D., Siragusa, G., Andresen, T.R., Limon, A.: Principles of control thermodynamics. Energy 26, 307–319 (2001)

    Article  Google Scholar 

  15. Bejan, A.: Advanced Engineering Thermodynamics, p. 807. Wiley, New York (1997)

    Google Scholar 

  16. Bejan, A.: Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transf. 40, 799–816 (1997)

    Article  MATH  Google Scholar 

  17. Bejan, A.: Shape and Structure, from Engineering to Nature, pp. 60–62. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Bejan, A., Dan, N.: Two constructal routes to minimal heat flow resistance via greater internal complexity. J. Heat Transf. 121, 6–14 (1999)

    Article  Google Scholar 

  19. Bejan, A., Errera, M.R.: Deterministic tree networks for fluid flow: geometry of minimum flow resistance between a volume and one point. Fractals 5, 685–695 (1997)

    Article  MATH  Google Scholar 

  20. Bejan, A., Ledezma, G.A.: Streets tree networks and urban growth: optimal geometry for quickest access between finite-size volume and one point. Physica A 255, 211–217 (1998)

    Article  Google Scholar 

  21. Dan, N., Bejan, A.: Constructal tree networks for the time dependent discharge of a finite-size volume to one point. J. Appl. Phys. 84, 3042–3050 (1998)

    Article  Google Scholar 

  22. Ledezma, G.A., Bejan, A., Errera, M.R.: Constructal tree networks for heat transfer. J. Appl. Phys. 82, 89–100 (1997)

    Article  Google Scholar 

  23. Crammer, F.: Chaos and Order. VCH, Weinheim (1993)

    Google Scholar 

  24. Prigogine, I.: From Being to Becoming. Freeman, New York (1980)

    Google Scholar 

  25. Thompson, D.W.: On Growth and Form. Cambridge University Press, Cambridge (1942)

    MATH  Google Scholar 

  26. Avnir, D., Biham, O., Lidar, D., Malacai, O.: Is the geometry of nature fractal? Science 279, 39–40 (1998)

    Article  MATH  Google Scholar 

  27. Bejan, A.: Advanced Engineering Thermodynamics, pp. 739–742. Wiley, New York (1997)

    Google Scholar 

  28. Nottale, L.: Fractal Space-Time and Microphysics. World Scientific, Philadelphia (1982)

    Google Scholar 

  29. Bejan, A.: Advanced Engineering Thermodynamics, p. 724. Wiley, New York (1997)

    Google Scholar 

  30. Bejan, A.: Advanced Engineering Thermodynamics, p. 727. Wiley, New York (1997)

    Google Scholar 

  31. Bejan, A.: Advanced Engineering Thermodynamics, p. 745. Wiley, New York (1997)

    Google Scholar 

  32. Bejan, A.: Advanced Engineering Thermodynamics, p. 749. Wiley, New York (1997)

    Google Scholar 

  33. Bejan, A.: Advanced Engineering Thermodynamics, p. 743. Wiley, New York (1997)

    Google Scholar 

  34. Bejan, A.: Shape and Structure, from Engineering to Nature. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Parkus, H., Sedov, L.I. (eds.): Irreversible Aspect of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids. Springer, Berlin (1968)

    Google Scholar 

  36. Sedov, L.I.: Introduction to the Mechanics of Continuous Medium. Addison-Wesley, New York (1965)

    MATH  Google Scholar 

  37. Sedov, L.I. (ed.): Macroscopic Theories of Matter and Fields: A Thermodynamic Approach (trans: Yankovsky, E.), pp. 19–42, 43–97. Mir, Moscow (1983)

    Google Scholar 

  38. Van Der Waals, J.D.: On the Continuity of Gaseous and Liquid States. In: Rowlinson, J.S. (ed.). Dover, New York (2004)

    Google Scholar 

  39. Bejan, A.: Advanced Engineering Thermodynamics, pp. 352–356, 464–466, 569–571, 709–721, 782–788, 816–820. Wiley, New York (2006)

    Google Scholar 

  40. Bejan, A.: Shape and Structure, from Engineering to Nature, pp. 53–56, 84–88, 99–108, 151–161, 220–223, 234–242, 287–288. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  41. Bejan, A., Tondeur, D.: Equipartition, optimal allocation, and the constructal approach to predicting organization in nature. Rev. Gen. Therm. 37, 165–180 (1998)

    Article  Google Scholar 

  42. De Vos, A., Desoete, B.: Equipartition principle in finite-time thermodynamics. J. Non-Equilib. Thermodyn. 25, 1–13 (2000)

    Article  MATH  Google Scholar 

  43. Pramanick, A.K., Das, P.K.: Note on constructal theory of organization in nature. Int. J. Heat Mass Transf. 48, 1974–1981 (2005)

    Article  MATH  Google Scholar 

  44. Bejan, A.: Constructal comment on a Fermat-type principle for heat flow. Int. J. Heat Mass Transf. 46, 1885–1886 (2003)

    Article  MATH  Google Scholar 

  45. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics-I. In: Lumley, J.L. (ed.). Dover, New York (2007)

    Google Scholar 

  46. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics-II. In: Lumley, J.L. (ed.). Dover, New York (2007)

    Google Scholar 

  47. Yanenko, N.N., Shokin, Yu.I. (eds.): Numerical Methods in Fluid Dynamics (trans: Shokurov, V., Hainsworth, R.N. (ed.) Mir, Moscow (1984)

    Google Scholar 

  48. Sagdeev, R.Z.: Nonlinear Phenomena in Plasma Physics and Hydrodynamics (trans: Ilyushchenko, V.). Mir, Moscow (1986)

    Google Scholar 

  49. Bergman, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematical Physics, pp. 59–64. Dover, New York (2005)

    MATH  Google Scholar 

  50. Friedman, A.: Variational Principles and Free-Boundary Problems. Dover, New York (2010)

    Google Scholar 

  51. Lavrent’ev, M.A.: Variational Methods for Boundary Value Problems for Systems of Elliptic Equations (trans: Radok, J.R.M.), pp. 42–71. Dover, New York (2006)

    Google Scholar 

  52. Hornung, H.G.: Dimensional Analysis. Dover, New York (2006)

    Google Scholar 

  53. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics (trans: Kisin, V.I.). Mir, Moscow (1982)

    Google Scholar 

  54. Yarin, L.P.: The Pi-Theorem. Springer, New York (2012)

    Book  Google Scholar 

  55. Bejan, A.: Convection Heat Transfer, pp. 19–23. Wiley, New York (2004)

    Google Scholar 

  56. Bejan, A.: The method of scale analysis: natural convection in fluids. In: Kakac, S., Aung, W., Viskanta, R. (eds.) Natural Convection: Fundamentals and Applications. Hemisphere, Washington (1985)

    Google Scholar 

  57. Bejan, A.: The method of scale analysis: natural convection in porous media. In: Kakac, S., Aung, W., Viskanta, R. (eds.) Natural Convection: Fundamentals and Applications. Hemisphere, Washington (1985)

    Google Scholar 

  58. Bejan, A.: Advanced Engineering Thermodynamics, p. 811. Wiley, New York (1997)

    Google Scholar 

  59. Sychev, V.V.: Complex Thermodynamic Systems (trans: Yankovsky, E.), pp. 165–182. Mir, Moscow (1981)

    Google Scholar 

  60. Courant, R., Robbins, H.: What is Mathematics? (Stewart, I., Revised), pp. 9–20. Oxford University Press, Oxford (2007)

    Google Scholar 

  61. Vardy, A.: Fluid Principles, pp. 57–58. McGraw-Hill, New York (1990)

    Google Scholar 

  62. Courant, R., Robbins, H.: What is Mathematics? (Stewart, I., Revised), p. 478. Oxford University Press, Oxford (2007)

    Google Scholar 

  63. Vardy, A.: Fluid Principles, p. 73. McGraw-Hill, New York (1990)

    Google Scholar 

  64. Bejan, A.: Advanced Engineering Thermodynamics, p. 70. Wiley, New York (1997)

    Google Scholar 

  65. Lamb, H.: Hydrodynamics, pp. 384–394. Cambridge University Press, Cambridge (1974)

    Google Scholar 

  66. Rayleigh, L.: On the theory of long waves and bores. Proc. R. Soc. Lond. A 90, 324–328 (1914)

    Article  MATH  Google Scholar 

  67. Kochin, N.E.: On the theory of Cauchy-Poisson waves. Tr. MIAN SSSR 9 (1935) (in Russian)

    Google Scholar 

  68. Sedov, L.I.: On the theory of small-amplitude waves on the surface of an incompressible fluid. Vestnik MGU 11, 71–77 (1948) (in Russian)

    Google Scholar 

  69. Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 174, 935–982 (1883)

    Article  MATH  Google Scholar 

  70. Bejan, A.: On the buckling property of inviscid jets and the origin of turbulence. Lett. Heat Mass Transf. 8, 187–194 (1981)

    Article  Google Scholar 

  71. Bejan, A.: Entropy Generation Through Heat and Fluid Flow, p. 75. Wiley, New York (1982)

    Google Scholar 

  72. Crow, S.C., Champagne, F.H.: Orderly structure in jet turbulence. J. Fluid Mech. 48, 547–591 (1971)

    Article  Google Scholar 

  73. Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations, pp. 126–153. Wiley-Interscience, New York (1971)

    MATH  Google Scholar 

  74. Heisenberg, W.: Uber Stabilitat und Turbulenz von Flussigkeitsstromen. Ann. Phy. Lpz. 74, 577–627 (1924) (in German). Also NACA TM-1291 (1951)

    Google Scholar 

  75. Lin, C.-C.: On the stability of two-dimensional parallel flows. Proc. NAS 30, 316–324 (1944)

    Article  MATH  Google Scholar 

  76. Rayleigh, L.: On the stability, or instability of certain fluid motions. Proc. Lond. Math. Soc. 11, 57–70 (1880)

    MATH  MathSciNet  Google Scholar 

  77. Tollmien, W.: Ein allgemeines Kriterum der Instabilitat laminarer Gesegwindigkeitsverteilungen. Nachr. Wissfachgruppe, Göttingen Math. Phys. 1, 79–114 (1935) (in German). Also NACA TM-792 (1936)

    Google Scholar 

  78. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, pp. 272–342. Dover, New York (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achintya Kumar Pramanick .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pramanick, A.K. (2014). Fluid Flow Systems. In: The Nature of Motive Force. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54471-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54471-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54470-5

  • Online ISBN: 978-3-642-54471-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics