Advertisement

Fluid Flow Systems

  • Achintya Kumar PramanickEmail author
Chapter
Part of the Heat and Mass Transfer book series (HMT)

Abstract

In this chapter, we focus on the physics of the flow systems with reference to fluid elements. The law of motive force for the flow physics is explored in point-to-point and volume-to-volume flow situations. It attempts to enunciate a clear demarcation between the constructal theory, Fermat’s principle, and the law of motive force.

Keywords

Couette Flow Motive Force Constructal Theory Hydraulic Jump Fluid Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bejan, A.: Entropy Generation Minimization. CRC, Boca Raton (1996)zbMATHGoogle Scholar
  2. 2.
    Bejan, A.: Notes on the history of the method of entropy generation minimization (finite time thermodynamics). J. Non-Equilib. Thermodyn. 21, 239–242 (1996)Google Scholar
  3. 3.
    Szargut, J., Morris, D.R., Steward, F.R.: Exergy Analysis of Thermal, Chemical and Metallurgical Processes. Hemisphere, New York (1988)Google Scholar
  4. 4.
    Yantovskii, E.I.: Energy and Exergy Currents. Nova Science, New York (1994)Google Scholar
  5. 5.
    Chen, L., Sun, F. (eds.): Advances in Finite Time Thermodynamics: Analysis and Optimization. Nova Science, New York (2004)Google Scholar
  6. 6.
    Sieniutycz, S., Salamon, P. (eds.): Finite-Time Thermodynamics and Thermoeconomics. Taylor & Francis, New York (1990)Google Scholar
  7. 7.
    Chambadal, P.: Les Centrales Nucleaires, pp. 41–58. Armand Colin, Paris (1957) (in French)Google Scholar
  8. 8.
    Landsberg, P.T., Leff, H.S.: Thermodynamic cycles with nearly universal maximum-work efficiencies. J. Phys. A Math. Gen. 22, 4019–4026 (1989)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gaggioli, R. (ed.): Efficiency and Costing. ACS Symposium Series, vol. 235. ACS, Washington (1983)Google Scholar
  10. 10.
    Tribus, M., Evans, R.: The thermoeconomics of sea water conversion. UCLA Report No. 62-63, August 1962Google Scholar
  11. 11.
    Rozonoer, L.I., Tsirlin, A.M.: Optimal control of thermodynamic processes-I. Autom. Remote Control 44, 55–62 (1983)MathSciNetGoogle Scholar
  12. 12.
    Rozonoer, L.I., Tsirlin, A.M.: Optimal control of thermodynamic processes-II. Autom. Remote Control 44, 209–220 (1983)MathSciNetGoogle Scholar
  13. 13.
    Rozonoer, L.I., Tsirlin, A.M.: Optimal control of thermodynamic processes-III. Autom. Remote Control 44, 314–326 (1983)MathSciNetGoogle Scholar
  14. 14.
    Salamon, P., Nulton, J.D., Siragusa, G., Andresen, T.R., Limon, A.: Principles of control thermodynamics. Energy 26, 307–319 (2001)CrossRefGoogle Scholar
  15. 15.
    Bejan, A.: Advanced Engineering Thermodynamics, p. 807. Wiley, New York (1997)Google Scholar
  16. 16.
    Bejan, A.: Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transf. 40, 799–816 (1997)CrossRefzbMATHGoogle Scholar
  17. 17.
    Bejan, A.: Shape and Structure, from Engineering to Nature, pp. 60–62. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  18. 18.
    Bejan, A., Dan, N.: Two constructal routes to minimal heat flow resistance via greater internal complexity. J. Heat Transf. 121, 6–14 (1999)CrossRefGoogle Scholar
  19. 19.
    Bejan, A., Errera, M.R.: Deterministic tree networks for fluid flow: geometry of minimum flow resistance between a volume and one point. Fractals 5, 685–695 (1997)CrossRefzbMATHGoogle Scholar
  20. 20.
    Bejan, A., Ledezma, G.A.: Streets tree networks and urban growth: optimal geometry for quickest access between finite-size volume and one point. Physica A 255, 211–217 (1998)CrossRefGoogle Scholar
  21. 21.
    Dan, N., Bejan, A.: Constructal tree networks for the time dependent discharge of a finite-size volume to one point. J. Appl. Phys. 84, 3042–3050 (1998)CrossRefGoogle Scholar
  22. 22.
    Ledezma, G.A., Bejan, A., Errera, M.R.: Constructal tree networks for heat transfer. J. Appl. Phys. 82, 89–100 (1997)CrossRefGoogle Scholar
  23. 23.
    Crammer, F.: Chaos and Order. VCH, Weinheim (1993)Google Scholar
  24. 24.
    Prigogine, I.: From Being to Becoming. Freeman, New York (1980)Google Scholar
  25. 25.
    Thompson, D.W.: On Growth and Form. Cambridge University Press, Cambridge (1942)zbMATHGoogle Scholar
  26. 26.
    Avnir, D., Biham, O., Lidar, D., Malacai, O.: Is the geometry of nature fractal? Science 279, 39–40 (1998)CrossRefzbMATHGoogle Scholar
  27. 27.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 739–742. Wiley, New York (1997)Google Scholar
  28. 28.
    Nottale, L.: Fractal Space-Time and Microphysics. World Scientific, Philadelphia (1982)Google Scholar
  29. 29.
    Bejan, A.: Advanced Engineering Thermodynamics, p. 724. Wiley, New York (1997)Google Scholar
  30. 30.
    Bejan, A.: Advanced Engineering Thermodynamics, p. 727. Wiley, New York (1997)Google Scholar
  31. 31.
    Bejan, A.: Advanced Engineering Thermodynamics, p. 745. Wiley, New York (1997)Google Scholar
  32. 32.
    Bejan, A.: Advanced Engineering Thermodynamics, p. 749. Wiley, New York (1997)Google Scholar
  33. 33.
    Bejan, A.: Advanced Engineering Thermodynamics, p. 743. Wiley, New York (1997)Google Scholar
  34. 34.
    Bejan, A.: Shape and Structure, from Engineering to Nature. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  35. 35.
    Parkus, H., Sedov, L.I. (eds.): Irreversible Aspect of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids. Springer, Berlin (1968)Google Scholar
  36. 36.
    Sedov, L.I.: Introduction to the Mechanics of Continuous Medium. Addison-Wesley, New York (1965)zbMATHGoogle Scholar
  37. 37.
    Sedov, L.I. (ed.): Macroscopic Theories of Matter and Fields: A Thermodynamic Approach (trans: Yankovsky, E.), pp. 19–42, 43–97. Mir, Moscow (1983)Google Scholar
  38. 38.
    Van Der Waals, J.D.: On the Continuity of Gaseous and Liquid States. In: Rowlinson, J.S. (ed.). Dover, New York (2004)Google Scholar
  39. 39.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 352–356, 464–466, 569–571, 709–721, 782–788, 816–820. Wiley, New York (2006)Google Scholar
  40. 40.
    Bejan, A.: Shape and Structure, from Engineering to Nature, pp. 53–56, 84–88, 99–108, 151–161, 220–223, 234–242, 287–288. Cambridge University Press, Cambridge (2000)Google Scholar
  41. 41.
    Bejan, A., Tondeur, D.: Equipartition, optimal allocation, and the constructal approach to predicting organization in nature. Rev. Gen. Therm. 37, 165–180 (1998)CrossRefGoogle Scholar
  42. 42.
    De Vos, A., Desoete, B.: Equipartition principle in finite-time thermodynamics. J. Non-Equilib. Thermodyn. 25, 1–13 (2000)CrossRefzbMATHGoogle Scholar
  43. 43.
    Pramanick, A.K., Das, P.K.: Note on constructal theory of organization in nature. Int. J. Heat Mass Transf. 48, 1974–1981 (2005)CrossRefzbMATHGoogle Scholar
  44. 44.
    Bejan, A.: Constructal comment on a Fermat-type principle for heat flow. Int. J. Heat Mass Transf. 46, 1885–1886 (2003)CrossRefzbMATHGoogle Scholar
  45. 45.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics-I. In: Lumley, J.L. (ed.). Dover, New York (2007)Google Scholar
  46. 46.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics-II. In: Lumley, J.L. (ed.). Dover, New York (2007)Google Scholar
  47. 47.
    Yanenko, N.N., Shokin, Yu.I. (eds.): Numerical Methods in Fluid Dynamics (trans: Shokurov, V., Hainsworth, R.N. (ed.) Mir, Moscow (1984)Google Scholar
  48. 48.
    Sagdeev, R.Z.: Nonlinear Phenomena in Plasma Physics and Hydrodynamics (trans: Ilyushchenko, V.). Mir, Moscow (1986)Google Scholar
  49. 49.
    Bergman, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematical Physics, pp. 59–64. Dover, New York (2005)zbMATHGoogle Scholar
  50. 50.
    Friedman, A.: Variational Principles and Free-Boundary Problems. Dover, New York (2010)Google Scholar
  51. 51.
    Lavrent’ev, M.A.: Variational Methods for Boundary Value Problems for Systems of Elliptic Equations (trans: Radok, J.R.M.), pp. 42–71. Dover, New York (2006)Google Scholar
  52. 52.
    Hornung, H.G.: Dimensional Analysis. Dover, New York (2006)Google Scholar
  53. 53.
    Sedov, L.I.: Similarity and Dimensional Methods in Mechanics (trans: Kisin, V.I.). Mir, Moscow (1982)Google Scholar
  54. 54.
    Yarin, L.P.: The Pi-Theorem. Springer, New York (2012)CrossRefGoogle Scholar
  55. 55.
    Bejan, A.: Convection Heat Transfer, pp. 19–23. Wiley, New York (2004)Google Scholar
  56. 56.
    Bejan, A.: The method of scale analysis: natural convection in fluids. In: Kakac, S., Aung, W., Viskanta, R. (eds.) Natural Convection: Fundamentals and Applications. Hemisphere, Washington (1985)Google Scholar
  57. 57.
    Bejan, A.: The method of scale analysis: natural convection in porous media. In: Kakac, S., Aung, W., Viskanta, R. (eds.) Natural Convection: Fundamentals and Applications. Hemisphere, Washington (1985)Google Scholar
  58. 58.
    Bejan, A.: Advanced Engineering Thermodynamics, p. 811. Wiley, New York (1997)Google Scholar
  59. 59.
    Sychev, V.V.: Complex Thermodynamic Systems (trans: Yankovsky, E.), pp. 165–182. Mir, Moscow (1981)Google Scholar
  60. 60.
    Courant, R., Robbins, H.: What is Mathematics? (Stewart, I., Revised), pp. 9–20. Oxford University Press, Oxford (2007)Google Scholar
  61. 61.
    Vardy, A.: Fluid Principles, pp. 57–58. McGraw-Hill, New York (1990)Google Scholar
  62. 62.
    Courant, R., Robbins, H.: What is Mathematics? (Stewart, I., Revised), p. 478. Oxford University Press, Oxford (2007)Google Scholar
  63. 63.
    Vardy, A.: Fluid Principles, p. 73. McGraw-Hill, New York (1990)Google Scholar
  64. 64.
    Bejan, A.: Advanced Engineering Thermodynamics, p. 70. Wiley, New York (1997)Google Scholar
  65. 65.
    Lamb, H.: Hydrodynamics, pp. 384–394. Cambridge University Press, Cambridge (1974)Google Scholar
  66. 66.
    Rayleigh, L.: On the theory of long waves and bores. Proc. R. Soc. Lond. A 90, 324–328 (1914)CrossRefzbMATHGoogle Scholar
  67. 67.
    Kochin, N.E.: On the theory of Cauchy-Poisson waves. Tr. MIAN SSSR 9 (1935) (in Russian)Google Scholar
  68. 68.
    Sedov, L.I.: On the theory of small-amplitude waves on the surface of an incompressible fluid. Vestnik MGU 11, 71–77 (1948) (in Russian)Google Scholar
  69. 69.
    Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 174, 935–982 (1883)CrossRefzbMATHGoogle Scholar
  70. 70.
    Bejan, A.: On the buckling property of inviscid jets and the origin of turbulence. Lett. Heat Mass Transf. 8, 187–194 (1981)CrossRefGoogle Scholar
  71. 71.
    Bejan, A.: Entropy Generation Through Heat and Fluid Flow, p. 75. Wiley, New York (1982)Google Scholar
  72. 72.
    Crow, S.C., Champagne, F.H.: Orderly structure in jet turbulence. J. Fluid Mech. 48, 547–591 (1971)CrossRefGoogle Scholar
  73. 73.
    Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations, pp. 126–153. Wiley-Interscience, New York (1971)zbMATHGoogle Scholar
  74. 74.
    Heisenberg, W.: Uber Stabilitat und Turbulenz von Flussigkeitsstromen. Ann. Phy. Lpz. 74, 577–627 (1924) (in German). Also NACA TM-1291 (1951)Google Scholar
  75. 75.
    Lin, C.-C.: On the stability of two-dimensional parallel flows. Proc. NAS 30, 316–324 (1944)CrossRefzbMATHGoogle Scholar
  76. 76.
    Rayleigh, L.: On the stability, or instability of certain fluid motions. Proc. Lond. Math. Soc. 11, 57–70 (1880)zbMATHMathSciNetGoogle Scholar
  77. 77.
    Tollmien, W.: Ein allgemeines Kriterum der Instabilitat laminarer Gesegwindigkeitsverteilungen. Nachr. Wissfachgruppe, Göttingen Math. Phys. 1, 79–114 (1935) (in German). Also NACA TM-792 (1936)Google Scholar
  78. 78.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, pp. 272–342. Dover, New York (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology DurgapurDurgapurIndia

Personalised recommendations