Conjugate Heat Transport Systems

  • Achintya Kumar PramanickEmail author
Part of the Heat and Mass Transfer book series (HMT)


In this chapter, we further employ the law of motive force, a physical principle, to a class of more complicated situation of conductive–convective conjugate heat transfer problems. We provide a complete analytical solution for a classically unsolved problem of generalized Pohlhausen’s solution of forced convection with Hartee’s velocity profile in relation to the design of thermal insulation systems. Initially, the law of motive force is employed to a nonconjugate heat transfer problem with assumed boundary layer type variation of convective heat transfer coefficient.


Heat Transfer Heat Transfer Coefficient Flat Plate Heat Transfer Rate Motive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aleksashenko, V.A.: Analytical solution of some conjugated problems of convective heat exchange. Thesis, Minsk (1969)Google Scholar
  2. 2.
    Dorfman, A.S.: Conjugate Problems in Convective Heat Transfer. CRC, Boca Raton (2010)Google Scholar
  3. 3.
    Luikov, A.V., Aleksashenko, V.A., Aleksashenko, A.A.: Analytical methods of solution of conjugated problems in heat transfer. Int. J. Heat Mass Transf. 14, 1047–1056 (1971)CrossRefzbMATHGoogle Scholar
  4. 4.
    Luikov, A.V.: Conjugate convective heat transfer problems. Int. J. Heat Mass Transf. 17, 257–265 (1974)CrossRefGoogle Scholar
  5. 5.
    Luikov, A.V.: Heat and Mass Transfer (trans: Kortneva, T.), pp. 334–378. Mir, Moscow (1980)Google Scholar
  6. 6.
    Nakayama, A., Koyama, H.: An approximate solution procedure for laminar free and forced convection heat transfer problems. Int. J. Heat Mass Transf. 26, 1721–1726 (1983)CrossRefGoogle Scholar
  7. 7.
    Payvar, P.: Convective heat transfer to laminar flow over a flat plate of finite thickness. Int. J. Heat Mass Transf. 20, 431–433 (1977)Google Scholar
  8. 8.
    Perelman, T.L.: On conjugated problems of heat transfer. Int. J. Heat Mass Transf. 3, 293–303 (1961)CrossRefGoogle Scholar
  9. 9.
    Pop, I., Ingham, D.B.: A note on conjugate forced convection boundary-layer flow past a flat plate. Int. J. Heat Mass Transf. 15, 3873–3876 (1993)CrossRefGoogle Scholar
  10. 10.
    Pozzi, A., Lupo, M.: The coupling of conduction with forced convection over a flat plate. Int. J. Heat Mass Transf. 23, 1207–1214 (1989)CrossRefGoogle Scholar
  11. 11.
    Pohlhausen, E.: Der Wämeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. Z. Angew. Math. Mech. 1, 115–121 (1921) (in German)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lim, J.S., Bejan, A., Kim, J.H.: The optimal thickness of a wall with convection on one side. Int. J. Heat Mass Transf. 35, 1673–1679 (1992)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pramanick, A.K., Das, P.K.: Heuristics as an alternative to variational calculus for optimization of a class of thermal insulation systems. Int. J. Heat Mass Transf. 48, 1851–1857 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Pramanick, A.K., Das, P.K.: Note on constructal theory of organization in nature. Int. J. Heat Mass Transf. 48, 1974–1981 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Eckert, E.R.G.: Die Berechnung des Wärmeüberganges in der Laminaren Grenzschicht um strömter Körper. VDI Forsch. 416, 1–24 (1942) (in German)MathSciNetGoogle Scholar
  16. 16.
    Falkner, V.M., Skan, S.W.: Some approximate solutions of the boundary layer equations. Philos. Mag. 12, 865–896 (1931)Google Scholar
  17. 17.
    Hartee, D.R.: On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer. Proc. Camb. Phil. Soc. 33, 233–239 (1937)Google Scholar
  18. 18.
    Lighthill, M.J.: Contributions to the theory of heat transfer through a laminar boundary layer. Proc. R. Soc. Lond. A 202, 359–377 (1950)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Merk, J.H., Prins, J.A.: Thermal convection in laminar boundary layers-I, II, III. Appl. Sci. Res. 4, 11–24, 195–206, 207–221 (1954)Google Scholar
  20. 20.
    Pletcher, R.H.: External flow forced convection. In: Kakac, S., Shah, R.K., Aung, W. (eds.) Handbook of Single Phase Convective Heat Transfer. Wiley, New York (1987)Google Scholar
  21. 21.
    Weyl, H.: On the differential equations of the simplest boundary layer problems. Ann. Math. 43, 381–407 (1942)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Lewins, J.D.: Introducing the Lagrange multiplier to engineering mathematics. Int. J. Mech. Eng. Ed. 22, 191–207 (1994)Google Scholar
  23. 23.
    Moiseiwitsch, B.L.: Variational Principles, pp. 14–16. Dover, New York (2004)zbMATHGoogle Scholar
  24. 24.
    Chapman, D.R., Rubesin, M.W.: Temperature and velocity profiles in the compressible laminar boundary layer with arbitrary distribution of surface temperature. J. Aeronaut. Sci. 16, 547–565 (1949)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Schlichting, H.: Der Wärmeübergang an einer linearen längsangeströmten ebene: Platte mit veränderlicher Wandttemperatur. Forsch. Geb. Ing. Wes. 17, 1–7 (1951) (in German)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Eckert, E.R.G., Drake Jr., R.M.: Analysis of Heat and Mass Transfer, p. 312. McGraw-Hill, New York (1972)zbMATHGoogle Scholar
  27. 27.
    Bejan, A.: Convection Heat Transfer, pp. 49–51, 83. Wiley, New York (2004)Google Scholar
  28. 28.
    Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908) (in German). Also in NACA TM-1256 (1950)Google Scholar
  29. 29.
    Dyke, M.V.: Perturbation Methods in Fluid Mechanics, pp. 129–132. Parabolic Press, Stanford (1975)zbMATHGoogle Scholar
  30. 30.
    Goldstein, S. (ed.): Modern Developments in Fluid Dynamics-I, pp. 135–139. Dover, New York (1965)Google Scholar
  31. 31.
    Görtler, H.: A new series for the calculation of steady laminar boundary layer flows. J. Math. Mech. 6, 1–66 (1957)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Hiemenz, K.: Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetanchten geraden Kreiszylinder. Dissertation, Göttingen University (1911) (in German)Google Scholar
  33. 33.
    Howarth, L.: On the solution of the laminar boundary layer equations. Proc. R. Soc. Lond. A 164, 547–579 (1938)CrossRefzbMATHGoogle Scholar
  34. 34.
    Rosenhead, L. (ed.): Laminar Boundary Layers, pp. 223–226. Oxford University Press, Oxford (1963)zbMATHGoogle Scholar
  35. 35.
    Schlichting, H., Gersten, K.: Boundary Layer Theory, pp. 184–186. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  36. 36.
    Isachenko, V.P., Osipova, V.A., Sukomel, A.S.: Heat Transfer (trans: Semyonov, S.), pp. 33–34. Mir, Moscow (1987)Google Scholar
  37. 37.
    Bejan, A.: Convection Heat Transfer, pp. 136–141, 211–214, 225–228, 279–286, 404–406, 591–593, 613–616. Wiley, New York (2004)Google Scholar
  38. 38.
    Bejan, A.: Shape and Structure, from Engineering to Nature, pp. 29–41, 45–49, 163–174. Cambridge University Press, Cambridge (2000)Google Scholar
  39. 39.
    Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., Reis, A.H.: Porous and Complex Flow Structures in Modern Technologies, pp. 58–66, 201–212. Springer, New York (2004)Google Scholar
  40. 40.
    Bejan, A., Lorente, S.: Design with Constructal Theory, pp. 81–96, 364–369. Wiley, New York (2008)Google Scholar
  41. 41.
    Lewins, J.: Bejan’s constructal theory of equal potential distribution. Int. J. Heat Mass Transf. 46, 1541–1543 (2003)CrossRefzbMATHGoogle Scholar
  42. 42.
    Nield, D.A., Bejan, A.: Convection in Porous Media, pp. 275–282. Springer, New York (2006)zbMATHGoogle Scholar
  43. 43.
    Sadeghipour, M.S., Razi, Y.P.: Natural convection from a confined horizontal cylinder: the optimal distance between the confining walls. Int. J. Heat Mass Transf. 44, 367–374 (2001)CrossRefzbMATHGoogle Scholar
  44. 44.
    Bejan, A.: Entropy Generation Through Heat and Fluid Flow, pp. 61–62. Wiley, New York (1982)Google Scholar
  45. 45.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 101–144. Wiley, New York (2006)Google Scholar
  46. 46.
    Bejan, A.: Models of power plants that generate minimum entropy while operating at maximum power. Am. J. Phys. 64, 1054–1059 (1996)CrossRefGoogle Scholar
  47. 47.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 63–64. Wiley, New York (2007)Google Scholar
  48. 48.
    Bejan, A., Tondeur, D.: Equipartition, optimal allocation, and the constructal approach to predicting organization in nature. Rev. Gen. Therm. 37, 165–180 (1998)CrossRefGoogle Scholar
  49. 49.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 352–356, 464–466, 569–571, 709–721, 782–788, 816–820. Wiley, New York (2006)Google Scholar
  50. 50.
    Bejan, A.: Shape and Structure, from Engineering to Nature, pp. 53–56, 84–88, 99–108, 151–161, 220–223, 234–242, 287–288. Cambridge University Press, Cambridge (2000)Google Scholar
  51. 51.
    De Vos, A., Desoete, B.: Equipartition principle in finite-time thermodynamics. J. Non-Equilib. Thermodyn. 25, 1–13 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology DurgapurDurgapurIndia

Personalised recommendations