Advertisement

Introduction

  • Achintya Kumar PramanickEmail author
Chapter
Part of the Heat and Mass Transfer book series (HMT)

Abstract

In this chapter, it is appropriate to begin with a brief overview of mathematical and physical principles to provide a coherent and self-contained account of the works that follow in subsequent chapters. The chief objective is to propose a concise physical theory of thermodynamics pertaining to the nature of motive force.

Keywords

Entropy Production Entropy Generation Motive Force Entropy Generation Rate Entropy Generation Minimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Born, M.: Natural Philosophy of Cause and Chance, p. 1. Dover, New York (1964)Google Scholar
  2. 2.
    Bejan, A.: Heat Transfer. Wiley, New York (1993)Google Scholar
  3. 3.
    Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2002)Google Scholar
  4. 4.
    Eckert, E.R.G., Drake Jr., R.M.: Analysis of Heat and Mass Transfer. McGraw-Hill, Tokyo (1972)zbMATHGoogle Scholar
  5. 5.
    Fishenden, M., Saunders, O.A.: An Introduction to Heat Transfer. Oxford University Press, Oxford (1950)Google Scholar
  6. 6.
    Fuchs, H.U.: The Dynamics of Heat. Springer, New York (2010)zbMATHGoogle Scholar
  7. 7.
    Ganji, D.D., Languri, E.M.: Mathematical Methods in Nonlinear Heat Transfer: A Semi-Analytical Approach. Xlibris, Indiana (2010)Google Scholar
  8. 8.
    Gröber, H., Erk, S., Grigull, U.: Fundamentals of Heat Transfer (trans: Moszyniski, J.R.). McGraw-Hill, New York (1961)Google Scholar
  9. 9.
    Isachenko, V.P., Osipova, V.A., Sukomel, A.S.: Heat Transfer (trans: Semyonov, S.). Mir, Moscow (1987)Google Scholar
  10. 10.
    Jakob, M.: Heat Transfer-I. Wiley, New York (1949)Google Scholar
  11. 11.
    Jakob, M.: Heat Transfer-II. Wiley, New York (1957)Google Scholar
  12. 12.
    Kutateladze, S.S.: Fundamentals of Heat Transfer (trans: Scripta Technica, Inc.). In: Cess, R.D. (ed.). Edward Arnold, London (1963)Google Scholar
  13. 13.
    Layton, E.T., Lienhard, J.H.: History of Heat Transfer. ASME, New York (1988)Google Scholar
  14. 14.
    Lienhard V, J.H., Lienhard IV, J.H.: A Heat Transfer Textbook. Dover, New York (2011)Google Scholar
  15. 15.
    Luikov, A.V.: Heat and Mass Transfer (trans: Kortneva, T.). Mir, Moscow (1980)Google Scholar
  16. 16.
    Lykov, A.V., Mikhailov, Y.A.: Theory of Heat and Mass Transfer (trans: Shechtman, I.). In: Hardin, R. (ed.). Israel Program for Scientific Translations, Jerusalem (1965)Google Scholar
  17. 17.
    McAdams, W.H.: Heat Transmission. McGraw-Hill, Tokyo (1958)Google Scholar
  18. 18.
    Mikhailov, M.D., Özişik, M.N.: Unified Analysis and Solutions of Heat and Mass Diffusion. Dover, New York (1984)Google Scholar
  19. 19.
    Sen, M.: Analytical Heat Transfer. University of Notre Dame, Notre Dame (2008)Google Scholar
  20. 20.
    Slattery, J.C.: Momentum, Energy, and Mass Transfer in Continua. McGraw-Hill, Tokyo (1972)Google Scholar
  21. 21.
    Weigand, B.: Analytical Methods for Heat Transfer and Fluid Flow Problems. Springer, New York (2004)zbMATHGoogle Scholar
  22. 22.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)Google Scholar
  23. 23.
    Brikhoff, G.: Hydrodynamics. Princeton University Press, New Jersey (1960)Google Scholar
  24. 24.
    Brodkey, R.S.: The Phenomena of Fluid Motions. Addison-Wesley, New York (1967)Google Scholar
  25. 25.
    Goldstein, S. (ed.): Modern Developments in Fluid Dynamics-I. Dover, New York (1965)Google Scholar
  26. 26.
    Goldstein, S. (ed.): Modern Developments in Fluid Dynamics-II. Dover, New York (1965)Google Scholar
  27. 27.
    Knudsen, J.G., Katz, L.D.: Fluid Dynamics and Heat Transfer. McGraw-Hill, New York (1958)zbMATHGoogle Scholar
  28. 28.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics (trans: Sykes, J.B., Reid, W.H.). Butterworth-Heinemann, Oxford (1987)Google Scholar
  29. 29.
    Meyer, R.E.: Introduction to Mathematical Fluid Dynamics. Dover, New York (1971)zbMATHGoogle Scholar
  30. 30.
    Milne-Thompson, L.M.: Theoretical Hydrodynamics. Dover, New York (1968)Google Scholar
  31. 31.
    Oertel, H. (ed.): Prandtl’s Essentials of Fluid Mechanics. Springer, New York (2004)zbMATHGoogle Scholar
  32. 32.
    Shames, I.H.: Mechanics of Fluids. McGraw-Hill, New York (1992)Google Scholar
  33. 33.
    Sommerfeld, A.: Mechanics of Deformable Bodies (trans: Kuerti, G.). Academic Press, New York (1964)Google Scholar
  34. 34.
    Tokaty, G.A.: A History and Philosophy of Fluid Mechanics. Dover, New York (1971)Google Scholar
  35. 35.
    Trefil, J.S.: Introduction to the Physics of Fluids and Solids. Dover, New York (1975)zbMATHGoogle Scholar
  36. 36.
    Whitaker, S.: Introduction to Fluid Mechanics. Prentice-Hall, New York (1968)Google Scholar
  37. 37.
    Yih, C.S.: Fluid Mechanics. McGraw-Hill, New York (1969)Google Scholar
  38. 38.
    Bejan, A.: Advanced Engineering Thermodynamics. Wiley, New York (2006)Google Scholar
  39. 39.
    Bridgman, P.W.: The Nature of Thermodynamics. Harvard University Press, Cambridge (1943)Google Scholar
  40. 40.
    Buchdahl, H.A.: The Concepts of Classical Thermodynamics. Cambridge University Press, Cambridge (1966)Google Scholar
  41. 41.
    Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (2005)Google Scholar
  42. 42.
    Clausius, R.: The Mechanical Theory of Heat (trans: Browne, W.R.). Macmillan, London (1879)Google Scholar
  43. 43.
    Epstein, P.S.: Textbook of Thermodynamics. Wiley, New York (1937)Google Scholar
  44. 44.
    Fermi, E.: Thermodynamics. Dover, New York (1956)Google Scholar
  45. 45.
    Giles, R.: Mathematical Foundations of Thermodynamics. Pergamon, Oxford (1964)zbMATHGoogle Scholar
  46. 46.
    Gyftopoulos, E.P., Beretta, G.P.: Thermodynamics: Foundations and Applications. Dover, New York (2005)Google Scholar
  47. 47.
    Hatsopoulos, G.N., Keenan, J.H.: Principles of Generalized Thermodynamics. Wiley, New York (1965)Google Scholar
  48. 48.
    Hoffman, E.J.: Analytic Thermodynamics. Taylor & Francis, New York (1991)zbMATHGoogle Scholar
  49. 49.
    Hsieh, J.S.: Principles of Thermodynamics. McGraw-Hill, Tokyo (1975)Google Scholar
  50. 50.
    Kestin, J.: A Course in Thermodynamics-I. Blaisdell, Waltham (1966)Google Scholar
  51. 51.
    Kestin, J.: A Course in Thermodynamics-II. McGraw-Hill, New York (1979)Google Scholar
  52. 52.
    Kirillin, V.A., Sychev, V.V., Sheindlin, A.E.: Engineering Thermodynamics (trans: Semyonov, S.). Mir, Moscow (1981)Google Scholar
  53. 53.
    Landsberg, P.T.: Thermodynamics and Statistical Mechanics. Oxford University Press, Oxford (1978)Google Scholar
  54. 54.
    Lavenda, B.H.: A New Perspective of Thermodynamics. Springer, New York (2010)Google Scholar
  55. 55.
    Müller, I.: A History of Thermodynamics. Springer, New York (2007)zbMATHGoogle Scholar
  56. 56.
    Pauli, W.: Thermodynamics and the Kinetic Theory of Gases. Dover, New York (1973)Google Scholar
  57. 57.
    Pippard, A.B.: The Elements of Classical Thermodynamics. Cambridge University Press, Cambridge (1957)Google Scholar
  58. 58.
    Planck, M.: Treatise on Thermodynamics (trans: Ogg, A.). Dover, New York (1945)Google Scholar
  59. 59.
    Sommerfeld, A.: Thermodynamics and Statistical Mechanics (trans: Kestin, J.). In: Bopp, F., Meixner, J. (eds.) Academic Press, New York (1964)Google Scholar
  60. 60.
    Sychev, V.V.: The Differential Equations of Thermodynamics (trans: Yankovsky, E.). Mir, Moscow (1983)Google Scholar
  61. 61.
    Thess, A.: The Entropy Principle. Springer, New York (2011)zbMATHGoogle Scholar
  62. 62.
    Tisza, L.: Generalized Thermodynamics. MIT Press, Cambridge (1966)Google Scholar
  63. 63.
    Truesdell, C.: Rational Thermodynamics. Springer, New York (1984)zbMATHGoogle Scholar
  64. 64.
    Truesdell, C., Bharatha, S.: The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines. Springer, New York (1977)zbMATHGoogle Scholar
  65. 65.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 101–144, 574–655. Wiley, New York (2006)Google Scholar
  66. 66.
    Bejan, A.: Entropy Generation Through Heat and Fluid Flow. Wiley, New York (1982)Google Scholar
  67. 67.
    Bejan, A.: Thermodynamic optimization of inanimate and animate flow systems. In: Bejan, A., Mamut, E. (eds.) Thermodynamic Optimization of Complex Energy Systems. Kluwer, Dordrecht (1999)Google Scholar
  68. 68.
    Thompson, B.: An enquiry concerning the source of heat which is excited by friction. Philos. Trans. R. Soc. Lond. 88, 80–102 (1798)Google Scholar
  69. 69.
    Truesdell, C.: Six Lectures on Modern Natural Philosophy, pp. 100–101. Springer, New York (1966)zbMATHGoogle Scholar
  70. 70.
    Bejan, A.: Shape and Structure, from Engineering to Nature, p. xvi. Cambridge University Press, Cambridge (2000)Google Scholar
  71. 71.
    Rankine, W.J.M.: A Manual of the Steam Engine and Other Prime Movers, p. xv. In: Miller, W.J. (ed.). Charles Griffin & Co., London (1888)Google Scholar
  72. 72.
    Munk, M.M.: My early aerodynamic research—thoughts and memories. Ann. Rev. Fluid Mech. 13, 1–7 (1981)Google Scholar
  73. 73.
    Ribenboim, P.: Fermat’s Last Theorem for Amateurs. Springer, New York (1999)zbMATHGoogle Scholar
  74. 74.
    Schlichting, H., Gersten, K.: Boundary-Layer Theory (trans: Mayes, K.), pp. 145–164. Springer, New York (2000)Google Scholar
  75. 75.
    Franklin, A.: Principle of inertia in the middle ages. Am. J. Phys. 44, 529–543 (1976)Google Scholar
  76. 76.
    Mario, B.: Mach’s critique of Newtonian mechanics. Am. J. Phys. 34, 585–596 (1966)Google Scholar
  77. 77.
    Sciama, D.W.: On the origin of inertia. Mon. Not. R. Astron. Soc. 113, 34–42 (1953)zbMATHMathSciNetGoogle Scholar
  78. 78.
    Ghosh, A.: Origin of Inertia: Extended Mach Principle and Cosmological Consequences. Aperion, Canada (2000)Google Scholar
  79. 79.
    Barbour, J., Pfister, H. (eds.): Mach’s Principle: From Newton’s Bucket to Quantum Gravity, p. 530. Brikhauser, Boston (1995)Google Scholar
  80. 80.
    Bejan, A.: Second-law analysis in heat transfer and thermal design. Adv. Heat Transf. 15, 1–58 (1982)Google Scholar
  81. 81.
    Pramanick, A.K.: Philosophy of nature. Reflection magazine, pp. 2–5. R.E. College, Durgapur (1990–1991)Google Scholar
  82. 82.
    Mendoza, E. (ed.): Reflections on the Motive Power of Fire. Dover, New York (2005)Google Scholar
  83. 83.
    Carnot, S.: Reflections on the motive power of fire, and on machines fitted to develop that power (trans: Thurston, R.H. (ed.)). In: Mendoza, E. (ed.) Reflections on the Motive Power of Fire. Dover, New York (2005)Google Scholar
  84. 84.
    Dijksterhuis, E.J.: Archimedes (trans: Dikshoorn, C.), pp. 16–17. Princeton University Press, Princeton (1987)Google Scholar
  85. 85.
    Galilei, G.: Dialogues Concerning Two New Sciences (trans: Crew, H., De Salvio, A.), pp. 62–65. Dover, New York (1914)Google Scholar
  86. 86.
    Kant, I.: Metaphysical Foundations of Natural Science. In: Friedman, M. (ed.). Cambridge University Press, Cambridge (2004)Google Scholar
  87. 87.
    Meyer, K. (ed.): Ørstad’s Works-III, pp. 151–190. Andr. Fred. Høst, Copenhagen (1920)Google Scholar
  88. 88.
    Newton, I.: Mathematical Principles of Natural Philosophy and His System of the World (trans: Motte, A., Cajori, F.), pp. 16–17. University of California Press, Berkeley (1946)Google Scholar
  89. 89.
    Sorensen, R.A.: Thought Experiments. Oxford University Press, Oxford (1992)Google Scholar
  90. 90.
    Fermi, E.: Thermodynamics, pp. 94–97. Dover, New York (1956)Google Scholar
  91. 91.
    Glasstone, S.: Thermodynamics for Chemists, pp. 273–316, 462–500. Van Nostrand, New York (1947)Google Scholar
  92. 92.
    Avnir, D., Biham, O., Lidar, D., Malcai, O.: Is the geometry of nature fractal? Science 279, 39–40 (1998)zbMATHGoogle Scholar
  93. 93.
    Cook, T.A.: The Curves of Life. Dover, New York (1979)Google Scholar
  94. 94.
    Cohn, D.L.: Optimal systems-I: vascularized system. Bull. Math. Biophys. 16, 59–74 (1954)Google Scholar
  95. 95.
    French, M.: Invention and Evolution: Design in Nature and Engineering. Cambridge University Press, Cambridge (1994)Google Scholar
  96. 96.
    Haldane, J.B.S.: On Being the Right Size. Oxford University Press, Oxford (1928)Google Scholar
  97. 97.
    Kepler, J.: The Six-Cornered Snowflake (trans: Hardie, C. (ed.)). Oxford University Press, Oxford (1976)Google Scholar
  98. 98.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Dover, New York (2009)Google Scholar
  99. 99.
    Lawton, J.H.: More time means more variations. Nature 334, 563 (1988)Google Scholar
  100. 100.
    Leopold, L.B.: Rivers. Am. Sci. 50, 511–537 (1962)Google Scholar
  101. 101.
    MacDonald, N.: Trees and Networks in Biological Models. Wiley, Chichester (1983)Google Scholar
  102. 102.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1983)Google Scholar
  103. 103.
    McMahon, T.A.: Size and shape in biology. Science 179, 1201–1204 (1973)Google Scholar
  104. 104.
    Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)Google Scholar
  105. 105.
    Morisawa, M.: Rivers: Form and Process. Longman, London (1985)Google Scholar
  106. 106.
    Müller-Krumbhaar, H.: Formation, competition and selection of growth patterns. In: Puri, S., Dasgupta, S. (eds.) Nonlinearities in Complex Systems, pp. 121–135. Narosa, New Delhi (1997)Google Scholar
  107. 107.
    Ottino, J.M.: The mixing of fluids. Sci. Am. 260, 40–49 (1989)Google Scholar
  108. 108.
    Pauling, L.: Apparent icosahedral symmetry is due to directed multiple twining of cube crystals. Nature 317, 512–514 (1985)Google Scholar
  109. 109.
    Peitgen, H.-O., Richter, P.H.: The Beauty of Fractals. Springer, New York (1986)zbMATHGoogle Scholar
  110. 110.
    Penrose, R.: The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10, 266–271 (1974)Google Scholar
  111. 111.
    Prigogine, I.: From Being to Becoming. Freeman, New York (1980)Google Scholar
  112. 112.
    Rouse, H., Ince, S.: History of Hydraulics. Dover, New York (1963)Google Scholar
  113. 113.
    Salem, J., Wolfram, S.: Thermodynamics and hydrodynamics of cellular automata. In: Wolfram, S. (ed.) Theory and Applications of Cellular Automata, pp. 362–366. World Scientific, Philadelphia (1986)Google Scholar
  114. 114.
    Schattschneider, D.: Visions of Symmetry. Freeman, New York (1991)Google Scholar
  115. 115.
    Schmidt-Nielsen, K.: Scaling: Why is Animal Size so Important? Cambridge University Press, Cambridge (1984)Google Scholar
  116. 116.
    Schuster, H.G.: Deterministic Chaos. Physik-Verlag, Weinheim (1986)Google Scholar
  117. 117.
    Scroeder, M.: Fractals, Chaos, Power Laws. Dover, New York (2009)Google Scholar
  118. 118.
    Shannon, C.E.: Prediction and entropy of printed english. Bell Syst. Tech. J. 30, 50–64 (1951)zbMATHGoogle Scholar
  119. 119.
    Stewart, I., Golubitsky, M.: Fearful Symmetry. Dover, New York (2011)Google Scholar
  120. 120.
    Thompson, D.W.: On Growth and Form. Cambridge University Press, Cambridge (1942)zbMATHGoogle Scholar
  121. 121.
    Uman, M.A.: Lightning. Dover, New York (1984)Google Scholar
  122. 122.
    Vogel, S.: Life’s Devices. Princeton University Press, Princeton (1988)Google Scholar
  123. 123.
    West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997)Google Scholar
  124. 124.
    Weyl, H.: Symmetry. Princeton University Press, Princeton (1989)zbMATHGoogle Scholar
  125. 125.
    Wilson, T.A.: Design of the bronchial tree. Nature 213, 668–669 (1967)Google Scholar
  126. 126.
    Zimmerman, M.H.: Hydraulic architecture of some diffuse-porous trees. Can. J. Bot. 56, 2286–2295 (1978)Google Scholar
  127. 127.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 63–64. Wiley, New York (2006)Google Scholar
  128. 128.
    Jammer, M.: Concepts of Mass in Classical and Modern Physics. Dover, New York (1997)Google Scholar
  129. 129.
    Jammer, M.: Concepts of Space. Dover, New York (2012)Google Scholar
  130. 130.
    Reichenbach, H.: The Direction of Time. In: Reichenbach, M. (ed.). Dover, New York (1999)Google Scholar
  131. 131.
    Weyl, H.: Space Time Matter (trans: Brose, H.L.). Dover, New York (1952)Google Scholar
  132. 132.
    Alekseev, G.N.: Energy and Entropy (trans: Taube, U.M.). Mir, Moscow (1986)Google Scholar
  133. 133.
    Mach, E.: History and Root of the Principle of Conservation of Energy (trans: Jourdain, P.E.B.). Open Court, Chicago (1911)Google Scholar
  134. 134.
    Müller, I., Weiss, W.: Entropy and Energy. Springer, New York (2005)zbMATHGoogle Scholar
  135. 135.
    Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, New York (1971)zbMATHGoogle Scholar
  136. 136.
    Bunge, M.: Casuality: The Place of Causal Principle in Modern Science. World Publishing, New York (1963)Google Scholar
  137. 137.
    Bridgman, P.W.: The Nature of Thermodynamics, pp. 3–115. Harvard University Press, Cambridge (1943)Google Scholar
  138. 138.
    Bridgman, P.W.: The Nature of Thermodynamics, pp. 116–179. Harvard University Press, Cambridge (1943)Google Scholar
  139. 139.
    Abraham, R.H., Shaw, C.D.: Dynamics—The Geometry of Behaviour. Addison-Wesley, Cambridge (1992)Google Scholar
  140. 140.
    Appell, P.: Traité de Mécanique Rationnelle-I. Gauthier-Villars, Paris (1941) (in French)Google Scholar
  141. 141.
    Appell, P.: Traité de Mécanique Rationnelle-II. Gauthier-Villars, Paris (1953) (in French)Google Scholar
  142. 142.
    Appell, P.: Traité de Mécanique Rationnelle-III. Gauthier-Villars, Paris (1952) (in French)Google Scholar
  143. 143.
    Appell, P.: Traité de Mécanique Rationnelle-IV. Gauthier-Villars, Paris (1932) (in French)Google Scholar
  144. 144.
    Appell, P.: Traité de Mécanique Rationnelle-V. Gauthier-Villars, Paris (1926) (in French)Google Scholar
  145. 145.
    Arnol’d, V.I.: Mathematical Methods of Classical Mechanics (trans: Vogtmann, K., Weinstein, A.). Springer, New York (1995)Google Scholar
  146. 146.
    Bernoulli I, J., Bernoulli II, N.: Die Werke von Johann I und Nicolaus II Bernoulli. Band 6. Mechanik-I. Birkhäuser, Boston (2008) (in German)Google Scholar
  147. 147.
    Chandrasekhar, S.: Newton’s Principia for the Common Reader. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  148. 148.
    Chetaev, N.G.: Theoretical Mechanics (trans: Aleksanova, I., Starzhinsky, V.M. (ed.) In: Rumyantsev, V.V., Yakimova, K.E. (eds.). Mir, Moscow (1989)Google Scholar
  149. 149.
    D’ Le Alembert, J.R.: Traité de Dynamanique. David, Paris (1743) (in French)Google Scholar
  150. 150.
    Dugas, R.A.: History of Mechanics (trans: Maddox, J.R.). Dover, New York (2011)Google Scholar
  151. 151.
    Fung, Y.C.: First Course in Continuum Mechanics. Prentice Hall, New Jersey (1993)Google Scholar
  152. 152.
    Galilei, G.: On Mechanics (trans: Drake, S.). University of Wiscosin, Madison (1960)Google Scholar
  153. 153.
    Goldstein, H.: Classical Mechanics. Addison-Wesley, Cambridge (1980)zbMATHGoogle Scholar
  154. 154.
    Hertz, H.: Principles of Mechanics Presented in a New Form. Dover, New York (2003)Google Scholar
  155. 155.
    Lagrange, J.L.: Analytical Mechanics (trans: Boissonnade, A., Vagliente, V.N. (ed.) Kulwer, Massachusetts (2010)Google Scholar
  156. 156.
    Landau, L.D., Lifshitz, E.M.: Mechanics (trans: Sykes, J.B., Bell, J.S.). Butterworth-Heinemann, Oxford (2010)Google Scholar
  157. 157.
    Mach, E.: The Science of Mechanics (trans: McCormack, T.J.). Open Court, Chicago (1942)Google Scholar
  158. 158.
    Newton, I.: Philosophiae Naturalis Principia Mathematica (trans: Motte, A., Cajori, F., Revised). University of California, Berkeley (1934)Google Scholar
  159. 159.
    Osgood, W.F.: Mechanics. Macmillan, New York (1937)zbMATHGoogle Scholar
  160. 160.
    Parkaus, H.: Mechanik der Festen Körper. Springer, Viena (1959) (in German)Google Scholar
  161. 161.
    Planck, M.: General Mechanics (trans: Brose, H.L.). Macmillan, London (1933)Google Scholar
  162. 162.
    Poisson, S.D.: A Treatise of Mechanics (trans: Harte, H.H.). Longman, London (1842)Google Scholar
  163. 163.
    Sommerfeld, A.: Mechanics (trans: Stern, M.O.). Academic Press, New York (1964)Google Scholar
  164. 164.
    Spencer, A.J.M.: Continuum Mechanics. Dover, New York (2004)zbMATHGoogle Scholar
  165. 165.
    Synge, J.L., Griffith, B.A.: Principles of Mechanics. McGraw-Hill, New York (1959)Google Scholar
  166. 166.
    Truesdell, C.: The Elements of Continuum Mechanics. Springer, New York (1984)Google Scholar
  167. 167.
    Bigelow, J., Ellis, B., Pargetter, R.: Forces. Philos. Sci. 55, 614–630 (1988)MathSciNetGoogle Scholar
  168. 168.
    Cohen, I.B.: Newton’s second law and the concept of force in the Principia. In: Palter, R. (ed.) The Annus Mirabilis of Sir Isaac Newton 1666–1966, pp. 143–185. MIT Press, Cambridge (1970)Google Scholar
  169. 169.
    Ellis, B.D.: The existence of force. Stud. Hist. Philos. Sci. 7, 171–185 (1976)zbMATHGoogle Scholar
  170. 170.
    Erlichson, H.: Motive force and centripetal force in Newton’s mechanics. Am. J. Phys. 59, 842–849 (1991)MathSciNetGoogle Scholar
  171. 171.
    Jammer, M.: Concepts of Force. Dover, New York (1999)Google Scholar
  172. 172.
    Pourcaiu, B.: Newton’s interpretation of Newton’s second law. Arch. Hist. Exact Sci. 60, 157–207 (2006)MathSciNetGoogle Scholar
  173. 173.
    Pourciau, B.: Is Newton’s second law really Newton’s? Am. J. Phys. 79, 1015–1022 (2011)Google Scholar
  174. 174.
    Steinner, A.: The story of force: from Aristotle to Einstein. Phys. Educ. 29, 77–85 (1996)Google Scholar
  175. 175.
    Westfall, R.S.: Force in Newton’s Physics. Macdonald, London (1971)zbMATHGoogle Scholar
  176. 176.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics-I, pp. 107–109. Narosa, New Delhi (2003)Google Scholar
  177. 177.
    Lanczos, C.: The Variational Principles of Mechanics, pp. 88–110. Dover, New York (1986)zbMATHGoogle Scholar
  178. 178.
    Sommerfeld, A.: Mechanics (trans: Stern, M.O.), pp. 48–58. Academic Press, New York (1964)Google Scholar
  179. 179.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, pp. 171–172. Dover, New York (2011)Google Scholar
  180. 180.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics-II, pp. 32–39. Wiley-VCH, Berlin (2008)Google Scholar
  181. 181.
    Sokolnikoff, I.S.: Mathematical Theory of Elasticity, pp. 387–389. McGraw-Hill, New York (1956)zbMATHGoogle Scholar
  182. 182.
    Langhaar, H.L.: Energy Methods in Applied Mechanics, pp. 126–130. Wiley, New York (1962)Google Scholar
  183. 183.
    Sommerfeld, A.: Mechanics (trans: Stern, M.O.), pp. 181–185. Academic Press, New York (1964)Google Scholar
  184. 184.
    Landau, L.D., Lifshitz, E.M.: Mechanics (trans: Sykes, J.B., Bell, J.S.), pp. 1–12. Butterworth-Heinemann, Oxford (2010)Google Scholar
  185. 185.
    Sachs, M.: Ideas of the Theory of Relativity, pp. 101–103. Israel University Press, Jerusalem (1947)Google Scholar
  186. 186.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields (trans: Hamermesh, M.). Butterworth-Heinemann, Oxford (1980)Google Scholar
  187. 187.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics-I, pp. 1–118, 200–222, 275–347, 1759–1901. McGraw-Hill, New York (1953)Google Scholar
  188. 188.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism-I. Dover, New York (1954)Google Scholar
  189. 189.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism-II. Dover, New York (1954)Google Scholar
  190. 190.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics-I, pp. 21–31. McGraw-Hill, New York (1953)Google Scholar
  191. 191.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics-II, pp. 685–688. Narosa, New Delhi (2001)Google Scholar
  192. 192.
    Shames, I.H.: Mechanics of Fluids, pp. 49–51. McGraw-Hill, New York (1992)Google Scholar
  193. 193.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics-II, pp. 702–703. Narosa, New Delhi (2001)Google Scholar
  194. 194.
    Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1980)Google Scholar
  195. 195.
    Glasstone, S., Laidler, K.J., Eyring, H.: The Theory of Rate Processes. McGraw-Hill, New York (1941)Google Scholar
  196. 196.
    Jacobs, M.H.: Diffusion Processes. Springer, New York (1967)Google Scholar
  197. 197.
    Fourier, J.B.J.: Mémoire d’analyse sur le mouvement de la chaleur dans les fluides. In: Mémoires de l’Académie Royale des Sciences de l’Institut de France, pp. 507–530. Didot, Paris (1833) (Presented 4 Sept 1820) (in French)Google Scholar
  198. 198.
    Fourier, J.B.J.: Oeuvres de Fourier-II, pp. 595–614. In: Darboux, G. (ed.). Gauthier-Villars, Paris (1890) (in French)Google Scholar
  199. 199.
    Poisson, S.D.: Théorie Mathématique de la Chaleur, p. 86. Bachelier, Imprimeur-Libraire, Paris (1835) (in French)Google Scholar
  200. 200.
    Bubnov, V.A.: On generalized hydrodynamic equations used in heat transfer theory. Int. J. Heat Mass Transf. 16, 109–119 (1973)Google Scholar
  201. 201.
    Kasterin, N.P.: Generalization of Aerodynamic and Electrodynamic Fundamental Equations. Indz. Akad. Nauk, Moscow (1937) (in Russian)Google Scholar
  202. 202.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow, pp. 15–17. Taylor & Francis, New York (2011)Google Scholar
  203. 203.
    Akhiezer, N.I.: The Calculus of Variations. Blaisdell, New York (1962)Google Scholar
  204. 204.
    Aleksandrov, A.D., Kolmogorov, A.N., Lavrent’ev, M.A. (eds.) Mathematics-III (trans: Gould, S.H. (ed.)), pp. 119–138. Dover, New York (1999)Google Scholar
  205. 205.
    Becker, M.: The Principles and Applications of Variational Methods. MIT Press, Cambridge (1964)zbMATHGoogle Scholar
  206. 206.
    Biot, M.A.: Variational Principles in Heat Transfer. Oxford University Press, Oxford (1970)zbMATHGoogle Scholar
  207. 207.
    Bliss, G.A.: Calculus of Variations. Open Court, Chicago (1925)zbMATHGoogle Scholar
  208. 208.
    Bolza, O.: Lectures on the Calculus of Variations. Chelsea, New York (1973)Google Scholar
  209. 209.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics-I, pp. 164–274. Wiley-VCH, New York (2004)Google Scholar
  210. 210.
    Donnelly, R.J., Herman, R., Prigogine, I. (eds.): Non-Equilibrium Thermodynamics, Variational Techniques and Stability. University of Chicago Press, Chicago (1966)Google Scholar
  211. 211.
    Dreyfus, S.E.: Dynamic Programming and the Calculus of Variations. Academic Press, New York (1965)zbMATHGoogle Scholar
  212. 212.
    Elsǵolc, L.D.: Calculus of Variations. Dover, New York (2007)Google Scholar
  213. 213.
    Forsythe, A.R.: Calculus of Variations. Cambridge University Press, Cambridge (1927)Google Scholar
  214. 214.
    Gelfand, I.M., Fomin, S.V.: Calculus of Variations (trans: Silverman, R.A.). Dover, New York (2000)Google Scholar
  215. 215.
    Goldstein, H.H.: A History of the Calculus of Variations from the 17th Through the 19th Century. Springer, New York (1980)Google Scholar
  216. 216.
    Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)zbMATHGoogle Scholar
  217. 217.
    Hildebrand, F.B.: Methods of Applied Mathematics, pp. 119–221. Dover, New York (1992)zbMATHGoogle Scholar
  218. 218.
    Kumar, I.J.: Recent mathematical methods in heat transfer. Adv. Heat Transf. 8, 22–33 (1972)Google Scholar
  219. 219.
    Leitmann, G.: Calculus of Variations and Optimal Control. Plenum, New York (1981)zbMATHGoogle Scholar
  220. 220.
    Lemons, D.S.: Perfect Form. Princeton University Press, Princeton (1997)Google Scholar
  221. 221.
    Mikhlin, S.G.: Variational Methods in Mathematical Physics (trans: Boddington, T., Chambers, L.I.G. (ed.) Macmillan, New York (1964)Google Scholar
  222. 222.
    Moiseiwitsch, B.L.: Variational Principles. Dover, New York (2004)zbMATHGoogle Scholar
  223. 223.
    Morse, P.M., Fesbach, H.: Methods of Theoretical Physics-II, pp. 1106–1172. McGraw-Hill, New York (1953)Google Scholar
  224. 224.
    Nesbet, R.K.: Variational Principle and Methods in Theoretical Physics and Chemistry. Cambridge University Press, Cambridge (2005)Google Scholar
  225. 225.
    Petrov, I.P.: Variational Methods in Optimal Control Theory. Academic Press, New York (1968)Google Scholar
  226. 226.
    Pinch, E.R.: Optimal Control and the Calculus of Variations. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
  227. 227.
    Rektorys, K. (ed.): Survey of Applicable Mathematics (trans: Výborný, R., et al.), pp. 1020–1044. Iliffe Books, London (1969)Google Scholar
  228. 228.
    Schechter, R.S.: The Variational Method in Engineering. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  229. 229.
    Sieniutycz, S.: Conservation Laws in Variational Thermo-Hydrodynamics. Springer, New York (1994)zbMATHGoogle Scholar
  230. 230.
    Weinstock, R.: Calculus of Variations. Dover, New York (1974)zbMATHGoogle Scholar
  231. 231.
    Yong, L.C.: Lectures on the Calculus of Variations and Optimal Control Theory. Chelsea, New York (1980)Google Scholar
  232. 232.
    Yourgrau, W., Mandelstam, S.: Variational Principles in Dynamics and Quantum Theory. Dover, New York (2007)Google Scholar
  233. 233.
    Bliss, G.A.: Lectures on the Calculus of Variations, pp. 10–12. Chicago University Press, Chicago (1959)Google Scholar
  234. 234.
    Hildebrand, F.B.: Methods of Applied Mathematics, pp. 139–145. Dover, New York (1992)zbMATHGoogle Scholar
  235. 235.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes (trans: Trirogoff, K.N.). In: Neustadt, L.W. (ed.). Wiley-Interscience, New York (1965)Google Scholar
  236. 236.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics-I, pp. 315–323. Narosa, New Delhi (2003)Google Scholar
  237. 237.
    Sommerfeld, A.: Optics (trans: Laporte, O., Moldauer, P.A.), pp. 355–356. Academic Press, New York (1964)Google Scholar
  238. 238.
    Weinstock, R.: Calculus of Variations, pp. 67–71. Dover, New York (1974)zbMATHGoogle Scholar
  239. 239.
    Sommerfeld, A.: Optics (trans: Laporte, O., Moldauer, P.A.), pp. 150–152. Academic Press, New York (1964)Google Scholar
  240. 240.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 705–841. Wiley, New York (2006)Google Scholar
  241. 241.
    Bejan, A.: Constructal tree network for fluid flow between a finite-size volume and one source or sink. Int. J. Therm. Sci. 36, 592–604 (1997)Google Scholar
  242. 242.
    Bejan, A.: Shape and Structure, from Engineering to Nature. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  243. 243.
    Bejan, A.: Street network theory of organization in nature. J. Adv. Transp. 30, 85–107 (1996)Google Scholar
  244. 244.
    Bejan, A.: Theory of organization in nature. Int. J. Heat Mass Transf. 40, 2097–2104 (1997)zbMATHGoogle Scholar
  245. 245.
    Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., Reis, A.H.: Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)Google Scholar
  246. 246.
    Bejan, A., Lorente, S.: Design with Constructal Theory. Wiley, New York (2008)Google Scholar
  247. 247.
    Bejan, A., Lorente, S.: La loi constructale (trans: Kremer-Marietti, A.). L’Harmattan, Paris (2005)Google Scholar
  248. 248.
    Bejan, A., Lorente, S., Miguel, A.F., Reis, A.H. (eds.): Along with Constructal Theory. Faculty of the Geosciences and the Environment, University of Lausanne Press, Lausanne (2006)Google Scholar
  249. 249.
    Bejan, A., Zane, J.P.: Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organization. Anchor Books, New York (2013)Google Scholar
  250. 250.
    Poirier, H.: Une Théorie Explique L’intelligence de la Nature. Sci. Vie. 1034, 44–63 (2003) (in French)Google Scholar
  251. 251.
    Reis, A.H.: Constructal theory: from engineering to physics, and how flow systems develop shape and structure. Appl. Mech. Rev. 59, 269–282 (2006)Google Scholar
  252. 252.
    Rocha, L.A.O., Lorente, S., Bejan, A. (eds.): Constructal Law and the Unifying Principle of Design. Springer, New York (2013)Google Scholar
  253. 253.
    Rosa, R.N., Reis, A.H., Miguel, A.F. (eds.): Bejan’s Constructal Theory of Shape and Structure. Évora Geophysics Center, University of Évora, Portugal (2004)Google Scholar
  254. 254.
    Bejan, A.: Advanced Engineering Thermodynamics, p. 807. Wiley, New York (1997)Google Scholar
  255. 255.
    Bejan, A.: Constructal-theory network for conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transf. 40, 799–816 (1997)zbMATHGoogle Scholar
  256. 256.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 705–707. Wiley, New York (1997)Google Scholar
  257. 257.
    Bern, M.W., Graham, R.L.: The shortest network problem. Sci. Am. 260, 84–89 (1989)Google Scholar
  258. 258.
    Courant, R., Robbins, H.: What is Mathematics? (Stewart, I., Revised), pp. 354–361. Oxford University Press, Oxford (2007)Google Scholar
  259. 259.
    Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)zbMATHMathSciNetGoogle Scholar
  260. 260.
    Gray, A.: Tubes. Addision-Wesley, New York (1990)zbMATHGoogle Scholar
  261. 261.
    Hwang, F.K., Richards, D., Winter, P.: The Steiner’s Tree Problem. Elsevier, New York (1992)Google Scholar
  262. 262.
    Ivanov, A.O., Tuzhilin, A.A.: Branching Solution to One-Dimensional Variational Problems. World Scientific, Philadelphia (2001)Google Scholar
  263. 263.
    Ivanov, A.O., Tuzhilin, A.A.: Minimal Networks: The Steiner Problem and its Generalizations. CRC Press, New York (1994)zbMATHGoogle Scholar
  264. 264.
    Lyusternik, L.A.: Shortest Paths Variational Problems (trans: Brown, R.B., Collins, P.). Macmillan, New York (1964)zbMATHGoogle Scholar
  265. 265.
    Newman, M., Barabási, A.L., Watts, D.J. (eds.): The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  266. 266.
    Rubinstein, J.H., Thomas, D.A.: A variational approach to the Steiner network problem. Ann. Oper. Res. 33, 481–499 (1991)zbMATHMathSciNetGoogle Scholar
  267. 267.
    Stewart, I.: Trees, telephones, and tiles. New Sci. 1795, 26–29 (1991)Google Scholar
  268. 268.
    Winter, P.: Steiner problems in networks: a survey. Networks 17, 129–187 (1987)zbMATHMathSciNetGoogle Scholar
  269. 269.
    Bejan, A.: Advanced Engineering Thermodynamics, p. 808. Wiley, New York (1997)Google Scholar
  270. 270.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 741–742. Wiley, New York (1997)Google Scholar
  271. 271.
    Bloom, A.L.: Geomorphology, p. 204. Prentice-Hall, New Jersey (1978)Google Scholar
  272. 272.
    Davis, S.H.: Theory of Solidification. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  273. 273.
    Xu, J.J.: Dynamical Theory of Dendritic Growth in Convection Flow. Kulwer, Boston (2010)Google Scholar
  274. 274.
    Ahern, J.E.: The Exergy Method of Energy Systems Analysis. Wiley, New York (1980)Google Scholar
  275. 275.
    Alefeld, G.: Die Exergie und der II. Hauptsatz der Thermodynamik. Brennstoff-Wärme-Kraft 40, 458–464 (1988) (in German)Google Scholar
  276. 276.
    Andresen, B.: Finite-Time Thermodynamics. Physics Laboratory II, University of Copenhagen, Copenhagen (1983)Google Scholar
  277. 277.
    Andresen, B., Salamon, P., Berry, R.S.: Thermodynamics in Finite-Time. Phys. Today 37, 62–70 (1984)Google Scholar
  278. 278.
    Bejan, A.: A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 101, 718–725 (1979)Google Scholar
  279. 279.
    Bejan, A.: Engineering advances on finite-time thermodynamics. Am. J. Phys. 62, 11–12 (1994)Google Scholar
  280. 280.
    Bejan, A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79, 1191–1218 (1996)Google Scholar
  281. 281.
    Bejan, A.: Notes on the history of the method of entropy generation minimization (finite time thermodynamics). J. Non-Equilib. Thermodyn. 21, 239–242 (1996)Google Scholar
  282. 282.
    Bejan, A., Tsatsaronis, G., Moran, M.: Thermal Design and Optimization. Wiley, New York (1996)zbMATHGoogle Scholar
  283. 283.
    Berry, R.S., Kazakov, V., Sieniutycz, S., Szwast, Z., Tsirlin, A.M.: Thermodynamic Optimization of Finite-Time Processes. Wiley, Chichester (1999)Google Scholar
  284. 284.
    Bošnjaković, F.: Thechnische Thermodynamik-I. Steinkopf, Dresden (1953) (in German)Google Scholar
  285. 285.
    Brodyanskii, V.M.: Exergy Method of Thermodynamic Analysis. Energia, Moscow (1973) (in Russian)Google Scholar
  286. 286.
    Bruges, E.A.: Available Energy and the Second Law Analysis. Butterworth, London (1959)Google Scholar
  287. 287.
    Chambadal, P.: Evolution et Applications du Concept d’Entropie, Sec. 30. Dunod, Paris (1963) (in French)Google Scholar
  288. 288.
    Chen, L., Sun, F. (eds.): Advances in Finite Time Thermodynamics: Analysis and Optimization. Nova Science, New York (2004)Google Scholar
  289. 289.
    De Vos, A.: Endoreversible Thermodynamics of Solar Energy Conversion. Oxford University Press, Oxford (1992)Google Scholar
  290. 290.
    Gouy, G.: Sur l’energie utilizable. J. Phys. 8, 501–518 (1889) (in French)Google Scholar
  291. 291.
    Kestin, J.: Availability: the concept and associated terminology. Energy 5, 679–692 (1980)Google Scholar
  292. 292.
    Kolenda, Z.S., Donizak, J., Hubert, J.: On the minimum entropy production in steady state heat conduction process. In: Proceedings of Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS’02), Berlin, 3–5 July 2002Google Scholar
  293. 293.
    Mironova, V.A., Tsirlin, A.M., Kazakov, V.A., Berry, R.S.: Finite-time thermodynamics: exergy and optimization of time-constrained processes. J. Appl. Phys. 76, 629–636 (1994)Google Scholar
  294. 294.
    Moran, M.J.: Availability Analysis: A Guide to Efficient Energy Usage. ASME, New York (1989)Google Scholar
  295. 295.
    Moran, M.J., Sciubba, E. (eds.): Second Law Analysis of Thermal Systems. ASME, New York (1987)Google Scholar
  296. 296.
    Nerescu, I., Radcenco, V.: Exergy Analysis of Thermal Processes. Editura Technica, Bucharest (1970) (in Romanian)Google Scholar
  297. 297.
    Novikov, I.I.: Thermodynamics. Mashinostroenie, Moscow (1984) (in Russian)Google Scholar
  298. 298.
    Sieniutycz, S., Salamon, P. (eds.): Finite-Time Thermodynamics and Thermoeconomics. Taylor & Francis, New York (1990)Google Scholar
  299. 299.
    Stodola, A.: Steam and Gas Turbines. McGraw-Hill, New York (1910)Google Scholar
  300. 300.
    Szargut, J.: International progress in second law analysis. Energy Int. J. 5, 709–718 (1980)Google Scholar
  301. 301.
    Tolman, R.C., Fine, P.C.: On the irreversible production of entropy. Rev. Mod. Phys. 20, 51–77 (1948)Google Scholar
  302. 302.
    Lewins, J.D.: Introducing the Lagrange multiplier to engineering mathematics. Int. J. Mech. Eng. Educ. 22, 191–207 (1994)Google Scholar
  303. 303.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics-II, pp. 956–974. Narosa, New Delhi (2001)Google Scholar
  304. 304.
    Bejan, A.: Shape and Structure, from Engineering to Nature, pp. 29–41, 45–49, 163–174. Cambridge University Press, Cambridge (2000)Google Scholar
  305. 305.
    Bejan, A.: Convection Heat Transfer, pp. 136–141, 211–214, 225–228, 279–286, 404–406, 591–593, 613–616. Wiley, New York (2004)Google Scholar
  306. 306.
    Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., Reis, A.H.: Porous and Complex Flow Structures in Modern Technologies, pp. 58–66, 201–212. Springer, New York (2004)Google Scholar
  307. 307.
    Bejan, A., Lorente, S.: Design with Constructal Theory, pp. 81–96, 364–349. Wiley, New York (2008)Google Scholar
  308. 308.
    Lewins, J.: Bejan’s constructal theory of equal potential distribution. Int. J. Heat Mass Transf. 46, 1541–1543 (2003)zbMATHGoogle Scholar
  309. 309.
    Nield, D.A., Bejan, A.: Convection in Porous Media, pp. 275–282. Springer, New York (2006)zbMATHGoogle Scholar
  310. 310.
    Sadeghipour, M.S., Razi, Y.P.: Natural convection from a confined horizontal cylinder: the optimal distance between the confining walls. Int. J. Heat Mass Transf. 44, 367–374 (2001)zbMATHGoogle Scholar
  311. 311.
    Nummedal, L., Kjelstrup, S.: Equipartition of forces as a lower bound on the entropy production in heat exchange. Int. J. Heat Mass Transf. 44, 2827–2833 (2001)zbMATHGoogle Scholar
  312. 312.
    Sauar, E.: Energy efficient process design by equipartition of forces. Doctoral thesis, Norwegian University of Science and Technology, Trondheim (1998)Google Scholar
  313. 313.
    Johannessen, E., Nummedal, L., Kjelstrup, S.: Minimizing the entropy production in heat exchange. Int. J. Heat Mass Transf. 45, 2649–2654 (2002)zbMATHGoogle Scholar
  314. 314.
    Nummedal, L.: Entropy production minimization of chemical reactors and heat exchangers. Doctoral thesis, Norwegian University of Science and Technology, Trondheim (1998)Google Scholar
  315. 315.
    Tondeur, D., Kvaalen, E.: Equipartition of entropy production: an optimality criterion for transfer and separation processes. Ind. Eng. Chem. Res. 26, 50–56 (1987)Google Scholar
  316. 316.
    Bedeaux, D., Standaert, F., Hemmes, K., Kjelstrup, S.: Optimization of processes by equipartition. J. Non-Equilib. Thermodyn. 24, 242–259 (1999)zbMATHGoogle Scholar
  317. 317.
    Balkan, F.: Comparison of entropy minimization principles in heat exchange and a short-cut principle: EoTD. Int. J. Energy Res. 27, 1003–1014 (2003)Google Scholar
  318. 318.
    Fredheim, A.: Thermal design of coil-wound LNG heat exchangers. Shell-side heat transfer and pressure drop. Doctoral thesis, Norwegian Institute of Technology, Trondheim (1994)Google Scholar
  319. 319.
    Salamon, P., Nulton, J.D., Siragusa, G., Limon, A., Bedeaux, D., Kjelstrup, S.: A simple example of control to minimize entropy production. J. Non-Equilib. Thermodyn. 27, 45–55 (2002)zbMATHGoogle Scholar
  320. 320.
    Nulton, J., Salamon, P., Andresen, B., Anmin, Q.: Quasistatic processes as step equilibrations. J. Chem. Phys. 83, 334–338 (1985)Google Scholar
  321. 321.
    Wielhold, F.: Geometric representation of equilibrium thermodynamics. Acc. Chem. Res. 9, 236–240 (1976)Google Scholar
  322. 322.
    Wienhold, F.: Thermodynamics and geometry. Phys. Today 29, 23–30 (1976)Google Scholar
  323. 323.
    Salamon, P., Nulton, J.D.: The geometry of separation process: the horse-carrot theorem for steady flow systems. Europhys. Lett. 42, 571–576 (1998)Google Scholar
  324. 324.
    Salamon, P., Nulton, J.D., Siragusa, G., Andresen, T.R., Limon, A.: Principles of control thermodynamics. Energy 26, 307–319 (2001)Google Scholar
  325. 325.
    Standaert, F.: Analytical fuel cell modelling and exergy analysis of fuel cells. Doctoral thesis, Technical University of Delft, Delft (1998)Google Scholar
  326. 326.
    Bejan, A.: Advanced Engineering Thermodynamics, pp. 352–356, 464–466, 569–571, 709–721, 782–788, 816–820. Wiley, New York (2006)Google Scholar
  327. 327.
    Bejan, A.: Shape and Structure, from Engineering to Nature, pp. 53–56, 84–88, 99–108, 151–161, 220–223, 234–242, 287–288. Cambridge University Press, Cambridge (2000)Google Scholar
  328. 328.
    Bejan, A., Tondeur, D.: Equipartition, optimal allocation, and the constructal approach to predicting organization in nature. Rev. Gen. Therm. 37, 165–180 (1998)Google Scholar
  329. 329.
    De Vos, A., Desoete, B.: Equipartition principle in finite-time thermodynamics. J. Non-Equilib. Thermodyn. 25, 1–13 (2000)zbMATHGoogle Scholar
  330. 330.
    Pramanick, A.K., Das, P.K.: Note on constructal theory of organization in nature. Int. J. Heat Mass Transf. 48, 1974–1981 (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology DurgapurDurgapurIndia

Personalised recommendations