Skip to main content

Data-Driven Modeling of Diabetes Progression

  • Chapter
  • First Online:
Data-driven Modeling for Diabetes

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

A realistic representation of the long-term physiologic adaptation to developing insulin resistance would facilitate the effective design of clinical trials evaluating diabetes prevention or disease modification therapies. In the present work, a realistic, robust description of the evolution of the compensation of the glucose-insulin system in healthy and diabetic individuals, with particular attention to the physiological compensation to worsening insulin resistance is formulated, its physiological assumptions are presented, and its performance over the span of a lifetime is simulated. Model-based simulations of the long-term evolution of the disease and of its response to therapeutic interventions are consistent with the transient benefits observed with conventional therapies, and with promising effects of radical improvement of insulin sensitivity (as by metabolic surgery) or of β-cell protection. The mechanistic Diabetes Progression Model provides a credible tool by which long-term implications of anti-diabetic interventions can be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolie VW (1961) Coefficients of normal blood glucose regulation. J Appl Physiol 16:783–788

    Google Scholar 

  2. Ackerman E, Gatewood LC, Rosevear JW, Molnar GD (1965) Model studies of blood-glucose regulation. Bull Math Biophys 27:Suppl:21–Suppl:37

    Google Scholar 

  3. Defronzo RA (1988) The triumvirate: beta cell, muscle, liver. a collusion responsible for NIDDM. Diabetes 37:667–687

    Google Scholar 

  4. Bonner-Weir S, Deery D, Leahy JL, Weir GC (1989) Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes 38:49–53

    Article  Google Scholar 

  5. Swenne I (1982) The role of glucose in the in vitro regulation of cell cycle kinetics and proliferation of fetal pancreatic B-cells. Diabetes 31:754–760

    Article  Google Scholar 

  6. Hugl SR, White MF, Rhodes CJ (1998) Insulin-Like Growth Factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem 273:17771–17779

    Article  Google Scholar 

  7. Efanova IB, Zaitsev SV, Zhivotovsky B, Kohler M, Efendic S, Orrenius S, Berggren PO (1998) Glucose and Tolbutamide induce apoptosis in pancreatic beta-cells. a process dependent on intracellular Ca2+ concentration. J Biol Chem 273:33501–33507

    Article  Google Scholar 

  8. Hoorens A, Van de Casteele M, Kloppel G, Pipeleers D (1996) Glucose promotes survival of rat pancreatic beta cells by activating synthesis of proteins which suppress a constitutive apoptotic program. J Clin Invest 98:1568–1574

    Google Scholar 

  9. Yki-Jarvinen H (1992) Glucose toxicity. Endo Rev 13:415–431

    Google Scholar 

  10. Bonner-Weir S (2000) Islet growth and development in the adult. J Mol Endocrinol 24:297–302

    Article  Google Scholar 

  11. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  Google Scholar 

  12. Maedler K, Spinas GA, Lehmann R, Sergeev P, Weber M, Fontana A, Kaiser N, Donath MY (2001) Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes 50:1683–1690

    Article  Google Scholar 

  13. Mason CC, Hanson RL, Knowler WC (2007) Progression to type 2 diabetes characterized by moderate then rapid glucose increases. Diabetes 56:2054–2061

    Article  Google Scholar 

  14. Eisenbarth GS (1986) Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314:1360–1368

    Article  Google Scholar 

  15. Tobin BW, Lewis JT, Tobin BL, Rajotte RV, Finegood DT (1992) Markedly reduced beta-cell function does not result in insulin resistance in islet autografted dogs. Diabetes 41:1172–1181

    Article  Google Scholar 

  16. Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Am J Physiol 236:E667–E677

    Google Scholar 

  17. Makroglou A, Li J, Kuaang Y (2006) Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl Numer Math 56(3):559–573

    Google Scholar 

  18. Boutayeb A, Chetouani A (2006) A critical review of mathematical models and data used in diabetology. Biomed Eng Online 5:43

    Article  Google Scholar 

  19. Panunzi S, Palumbo P, De Gaetano A (2007) A discrete single delay model for the intra-venous glucose tolerance test. Theor Biol Med Model 4:35

    Article  Google Scholar 

  20. Palumbo P, Panunzi S, De Gaetano A (2007) Qualitative behavior of a family of delay-differential models of the glucose-insulin system. Discret Continuous Dyn Syst Series B 7:399–424

    MATH  Google Scholar 

  21. Li J, Kuang Y, Mason CC (2006) Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J Theor Biol 242:722–735

    Article  MathSciNet  Google Scholar 

  22. Walton C, Godsland IF, Proudler AJ, Felton C, Wynn V (1992) Evaluation of four mathematical models of glucose and insulin dynamics with analysis of effects of age and obesity. Am J Physiol Endocrinol Metab 262:E755–E762

    Google Scholar 

  23. Topp BG, Promislow K, de Vries G, Miura RM, Finegood DT (2000) A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 206:605–619

    Google Scholar 

  24. De Gaetano A, Hardy T, Beck B, Abu-Raddad E, Palumbo P, Bue-Valleskey J, Porksen N (2008) Mathematical models of diabetes progression. Am J Physiol Endocrinol Metab 295:E1462–E1479

    Article  Google Scholar 

  25. de Winter W, DeJongh J, Post T, Ploeger B, Urquhart R, Moules I, Eckland D, Danhof M (2006) A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J Pharmacokinet Pharmacodyn 33:313–343

    Article  Google Scholar 

  26. Eddy DM, Schlessinger L (2003) Validation of the Archimedes diabetes model. Diab Care 26:3102–3110

    Article  Google Scholar 

  27. Schlessinger L, Eddy DM (2002) Archimedes: a new model for simulating health care systems—the mathematical formulation. J Biomed Inform 35:37–50

    Article  Google Scholar 

  28. Zhou H, Isaman DJ, Messinger S, Brown MB, Klein R, Brandle M, Herman WH (2005) A computer simulation model of diabetes progression, quality of life, and cost. Diab Care 28:2856–2863

    Article  Google Scholar 

  29. Hardy T, Abu-Raddad E, Porksen N, De Gaetano A (2012) Evaluation of a mathematical model of diabetes progression against observations in the diabetes prevention program. Am J Physiol Endocrinol Metab 303:E200–E212

    Article  Google Scholar 

  30. Iozzo P, Beck-Nielsen H, Laakso M, Smith U, Yki-Jarvinen H, Ferrannini E (1999) Independent influence of age on basal insulin secretion in nondiabetic humans. European group for the study of insulin resistance. J Clin Endocrinol Metab 84:863–868

    Article  Google Scholar 

  31. Haffner SM, D’Agostino R Jr, Festa A, Bergman RN, Mykkanen L, Karter A, Saad MF, Wagenknecht LE (2003) Low insulin sensitivity (S(i) = 0) in diabetic and nondiabetic subjects in the insulin resistance atherosclerosis study: is it associated with components of the metabolic syndrome and nontraditional risk factors? Diab Care 26:2796–2803

    Article  Google Scholar 

  32. CNR IASI BioMatLab (2007) BIBIF Model Fitting Webservice. http://www.biomatematica.it/bibif/bibif.html. Ref type: internet communication

  33. Robertson RP (2007) Estimation of beta-cell mass by metabolic tests: necessary, but how sufficient? Diabetes 56:2420–2424

    Article  Google Scholar 

  34. Leahy JL, Cooper HE, Deal DA, Weir GC (1986) Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. a study in normal rats using chronic in vivo glucose infusions. J Clin Invest 77:908–915

    Article  Google Scholar 

  35. Hager SR, Jochen AL, Kalkhoff RK (1991) Insulin resistance in normal rats infused with glucose for 72 H. Am J Physiol Endocrinol Metab 260:E353–E362

    Google Scholar 

  36. Laybutt DR, Cordery DV, Kraegen E (1997) Specific adaptations in muscle and adipose tissue in response to chronic systemic glucose oversupply in rats. Am J Physiol Endocrinol Metab 273:E1–E9

    Google Scholar 

  37. de Winter W, Post T, DeJongh J, Moules I, Urquhart J, Eckland D, Danhof M (2004) A mechanistic disease progression model for type 2 diabetes mellitus and pioglitazone treatment effects. PAGE 2004 meeting, Poster, 17

    Google Scholar 

  38. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

    Article  Google Scholar 

  39. Knowler WC, Hamman RF, Edelstein SL, Barrett-Connor E, Ehrmann DA, Walker EA, Fowler SE, Nathan DM, Kahn SE (2005) Prevention of type 2 diabetes with troglitazone in the diabetes prevention program. Diabetes 54:1150–1156

    Article  Google Scholar 

  40. Retnakaran R, Qi Y, Harris SB, Hanley AJ, Zinman B (2011) Changes over time in glycemic control, insulin sensitivity, and beta-cell function in response to low-dose metformin and thiazolidinedione combination therapy in patients with impaired glucose tolerance. Diab Care 34:1601–1604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Panunzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

DeGaetano, A., Panunzi, S., Palumbo, P., Gaz, C., Hardy, T. (2014). Data-Driven Modeling of Diabetes Progression. In: Marmarelis, V., Mitsis, G. (eds) Data-driven Modeling for Diabetes. Lecture Notes in Bioengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54464-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54464-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54463-7

  • Online ISBN: 978-3-642-54464-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics