Skip to main content

Adaptive Algorithms for Personalized Diabetes Treatment

  • Chapter
  • First Online:
  • 1410 Accesses

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

Dynamic systems, especially in real-life applications, are often determined by inter-/intra-variability, uncertainties and time-varying components. Physiological systems are probably the most representative example in which population variability, vital signal measurement noise and uncertain dynamics render their explicit representation and optimization a rather difficult task. Systems characterized by such challenges often require the use of adaptive algorithmic solutions able to perform an iterative structural and/or parametrical update process towards optimized behavior. Adaptive optimization presents the advantages of (i) individualization through learning of basic system characteristics, (ii) ability to follow time-varying dynamics and (iii) low computational cost. In this chapter, the use of online adaptive algorithms is investigated in two basic research areas related to diabetes management: (i) real-time glucose regulation and (ii) real-time prediction of hypo-/hyperglycemia. The applicability of these methods is illustrated through the design and development of an adaptive glucose control algorithm based on reinforcement learning and optimal control and an adaptive, personalized early-warning system for the recognition and alarm generation against hypo- and hyperglycemic events.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lof J et al (1998) An adaptive control algorithm for optimization of intensity modulated radiotherapy considering uncertainties in beam profiles, patient set-up and internal organ motion. Phys Med Biol 43:1605–1628

    Article  Google Scholar 

  2. Yu C et al (2011) A model-free adaptive control to a blood pump based on heart rate. ASAIO J 57(4):262–267

    Article  Google Scholar 

  3. Jiang X et al (2012) A patient-driven adaptive prediction technique to improve personalized risk estimation for clinical decision support. J Am Med Inform Assoc 19:e137–e144

    Article  Google Scholar 

  4. Torshabi AE (2013) An adaptive fuzzy prediction model for real time tumor tracking in radiotherapy via external surrogates. J Appl Clin Med Phys 14(1):4008

    Google Scholar 

  5. Wu X et al (2011) Segmentation and reconstruction of vascular structures for 3D real-time simulation. Med Image Anal 15(1):22–34

    Article  Google Scholar 

  6. Möller B et al (2011) Adaptive segmentation of particles and cells for fluorescent microscope imaging. Computer vision, imaging and computer graphics. Theory and applications. Springer, Heidelberg, pp 154–167

    Google Scholar 

  7. Liu L et al (2013) Adaptive segmentation of magnetic resonance images with intensity inhomogeneity using level set method. Magn Reson Imaging 31(4):567–574

    Google Scholar 

  8. Hovorka R et al (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25:905–920

    Article  Google Scholar 

  9. Magni L et al (2009) Run-to-run tuning of model predictive control for type 1 diabetes subjects. Silico Trial J Diabetes Sci Technol 3(5):1091–1098

    Article  Google Scholar 

  10. Zisser H et al (2005) Run-to-run control of meal-related insulin dosing. Diab Technol Ther 7(1):48–57

    Article  Google Scholar 

  11. Wand Y et al (2010) Automatic bolus and adaptive basal algorithm for the artificial pancreas b-cell. Diab Technol Ther 12:879–887

    Article  Google Scholar 

  12. Miller S et al (2011) Automatic learning algorithm for the MD-Logic artificial pancreas system. Diab Technol Ther 13:983–990

    Article  Google Scholar 

  13. Eren-Oruklu M et al (2010) Hypoglycemia prediction with subject-specific recursive time-series models. J Diab Sci Technol 4(1):25–33

    Article  Google Scholar 

  14. Meriyan EO et al (2012) Adaptive system identification for estimating future glucose concentrations and hypoglycemia alarms. Automatica 48:1892–1897

    Article  MATH  Google Scholar 

  15. Daskalaki E, Diem P, Mougiakakou S (2013) An Actor-Critic based controller for glucose regulation in type 1 diabetes. Comput Methods Programs Biomed 109(2):116–125

    Article  Google Scholar 

  16. Daskalaki E, Prountzou A, Diem P, Mougiakakou S (2012) Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diab Technol Ther 14(2):168–174

    Article  Google Scholar 

  17. Daskalaki E, Nørgaard K, Prountzou A, Züger T, Diem P, Mougiakakou S (2013) An early-warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models. J Diab Sci Technol 7(3):689–698

    Google Scholar 

  18. Sutton RS, Barto AG (1998) Reinforcement learning. MIT Press, Cambridge

    Google Scholar 

  19. Marbach P, Tsitsiklis JN (2001) Simulation-based optimization of Markov reward processes. IEEE Trans Autom Control 46:191–209

    Article  MATH  MathSciNet  Google Scholar 

  20. Szepesvari C (2010) Algorithms for reinforcement learning - Synthesis lectures on artificial intelligence and machine learning. Morgan & Claypool Publishers

    Google Scholar 

  21. Tsitsiklis JN, Van Roy B (1997) An analysis of temporal-difference learning with function approximation. IEEE Trans Autom Control 42(5):674–690

    Article  MATH  Google Scholar 

  22. Hlaváčková-Schindler K, Paluš M, Vejmelka M, Bhattacharya J (2007) Causality detection based on information-theoretic approaches in time series analysis. Phys Rep 441(1):1–46

    Article  Google Scholar 

  23. Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461–464

    Article  Google Scholar 

  24. Williams PL, Beer RD (2011) Generalized measures of information transfer, preprint arXiv. 1102.1507

    Google Scholar 

  25. Lee J, Nemati S, Silva I, Edwards BA, Butler JP, Malhotra A (2012) Transfer entropy estimation and directional coupling change detection in biomedical time series. Biomed Eng Online 11:19

    Article  Google Scholar 

  26. Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 5:418–429

    Google Scholar 

  27. Patek SD, Bequette BW, Breton M, Buckingham BA, Dassau E, Doyle FJ III, Lum J, Magni L, Zisser H (2009) In silico preclinical trials: methodology and engineering guide to closed-loop control in type 1 diabetes mellitus. J Diab Sci Technol 3:269–282

    Article  Google Scholar 

  28. Dalla Man C et al (2007) Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 54(10):1740–1749

    Google Scholar 

  29. Magni L, Raimondo DM, Dalla Man C, Breton M, Patek S, De Nicolao G, Cobelli C, Kovatchev BP (2008) Evaluating the efficacy of closed-loop glucose regulation via control-variability grid analysis. J Diab Sci Technol (Online) 2:630–635

    Google Scholar 

  30. Kovatchev BP, Cox DJ, Gonder-Frederick LA, Young-Hyman D, Schlundt D, Clarke W (1998) Assessment of risk for severe hypoglycemia among adults with IDDM: validation of the low blood glucose index. Diabetes Care 21(11):1870–1875

    Article  Google Scholar 

  31. Bosnic Z, Kononenko I (2010) Correction of regression predictions using the secondary learner on the sensitivity analysis outputs. Comput Inform 29:929–946

    Google Scholar 

  32. Zhang C et al (2000) Particle swarm optimization for evolving artificial neural network. IEEE Int Conf Syst Man Cybern 4:2487–2490

    Google Scholar 

  33. Haykin S (1999) Neural Networks: a comprehensive foundation, 2nd edn. Prentice-Hall Inc., New Jersey, p 07458

    Google Scholar 

  34. Werbos PJ (1990) Back propagation through time, what it does and how to do it. Proc IEEE 78:1550–1560

    Article  Google Scholar 

  35. Williams R, Zipser D (1995) Gradient based algorithms for recurrent NN and their computational complexity. In: Chauvin Y, Rumelhart DE (eds) Back-propagation: theory, architecture, and applications. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  36. Williams R, Zipser D (1989) A learning algorithm for continually running fully recurrent NN. Neural Comput 1:270–280

    Article  Google Scholar 

  37. Tikhonov AN, Arsenin VY (1977) Solutions of Ill-posed problems. Winston, Washington

    MATH  Google Scholar 

  38. Mougiakakou S, Prountzou A, Iliopoulou D, Nikita K, Vazeou A, Bartsokas C (2006) Neural network based glucose–insulin metabolism models for children with type 1 diabetes. Conf Proc IEEE Eng Med Biol Soc 1:3545–3548

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavroula Mougiakakou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daskalaki, E., Diem, P., Mougiakakou, S. (2014). Adaptive Algorithms for Personalized Diabetes Treatment. In: Marmarelis, V., Mitsis, G. (eds) Data-driven Modeling for Diabetes. Lecture Notes in Bioengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54464-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54464-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54463-7

  • Online ISBN: 978-3-642-54464-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics