Skip to main content

Amino acids

  • Chapter
  • First Online:
Natural Products in the Chemical Industry
  • 2909 Accesses

Abstract

The history of amino acids begins four billion years ago. The Earth’s atmosphere then consisted of water vapour, carbon dioxide, nitrogen, carbon monoxide, hydrogen, methane and ammonia. It was hot, and for millions of years lightning flashes discharged across the sky. Under these conditions initially aldehydes and hydrogen cyanide originated, and therefrom amino acids were produced (Strecker reaction).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Miller, J. Am. Chem. Soc. 77 (1955) 2351.

    Google Scholar 

  2. H. J. Bogen, Knaurs Buch der modernen Biologie, Droemer Knaur, MĂ¼nchen/ZĂ¼rich 1967, 291.

    Google Scholar 

  3. K. Severin, Angew. Chem. Internat. Edn. 39 (2000) 3589.

    Google Scholar 

  4. C. Huber, G. Wächtershäuser, Science 281 (1998) 670.

    Google Scholar 

  5. T. Hennings, F. Salama, Science 282 (1998) 2204; C. Giri, F. Goesmann, C. Meinert, A. C. Evans, U. J. Meierhenrich, Top. Curr. Chem. 333 (2013) 41 and 333 (2013) 307.

    Google Scholar 

  6. F. Salama, Origins of Life and Evolution of the Biosphere 28 (1998) 349.

    Google Scholar 

  7. M. Winnewisser, Chemie in unserer Zeit 18 (1984) 1; M. Winnewisser, Chemie in unserer Zeit 18 (1984) 55; N. Kerisit, L. Toupet, Y. Trolez, J.-C. Guillemin, Chem. Eur. J. 19 (2013) 17683.

    Google Scholar 

  8. R. I. Kaiser, A. M. Mebel, Chem. Soc. Rev. 41 (2012) 5490.

    Google Scholar 

  9. Y.-J. Kuan, S. B. Charnley, H.-C. Huang, W. L. Tseng, Z. Kisiel, Astrophys. J. 593 (2003) 848; the results were doubted in L. E. Snyder, F. J. Lovas, J. M. Hollis, D. N. Friedel, P. R. Jewell, A. Remijan, V. V. Ilyushin, E. A. Alekseev, S. F. Dyubko, Astrophys. J. 619 (2005) 914.

    Google Scholar 

  10. J. Herrmann, Welcher Stern ist das?, Franckh-Kosmos Verlag, Stuttgart, 26th Edn., 1998, 150.

    Google Scholar 

  11. H. v. Ditfurth, Wir sind nicht nur von dieser Welt, 10th Edn., dtv, MĂ¼nchen, 1994, 64; S. Pizzarello, Chemistry & Biodiversity 4 (2007) 680; A. S. Burton, J. C. Stern, J. E. Elsila, D. P. Glavin, J. P. Dworkin, Chem. Soc. Rev. 41 (2012) 5459; E. I. Klabunovskii, Russ. J. Org. Chem. 48 (2012) 881.

    Google Scholar 

  12. J. R. Cronin, S. Pizzarello, Science 275 (1997) 951.

    Google Scholar 

  13. J. Podlech, Angew. Chem. Internat. Edn. 38 (1999) 477.

    Google Scholar 

  14. M. H. Engel, A. Macko, Nature 389 (1997) 265.

    Google Scholar 

  15. H. Buschmann, R. Thede, D. Heller, Angew. Chem. Internat. Edn. 39 (2000) 4033.

    Google Scholar 

  16. B. L. Feringa, R. A. van Delden, Angew. Chem. Internat. Edn. 38 (1999) 3418.

    Google Scholar 

  17. M. Avalos, R. Babiano, P. Cintas, J. L. Jiménez, J. C. Palacios, Chem. Commun. (2000) 887.

    Google Scholar 

  18. M. Avalos, R. Babiano, P. Cintas, J. L. Jiménez, J. C. Palacios, Tetrahedron: Asymmetry 11 (2000) 2874.

    Google Scholar 

  19. D. K. Kondepudi, Int. J. Quant. Chem. 98 (2004) 222.

    Google Scholar 

  20. P. Cintas, Angew. Chem. Internat. Edn. 41 (2002) 1139.

    Google Scholar 

  21. M. Eigen, Das Spiel, Piper, 3rd Edn., MĂ¼nchen/ZĂ¼rich, 1979, 144; W. A. Bonner, Top. Stereochem. 18 (1988) 1.

    Google Scholar 

  22. A. Brack, Chemistry & Biodiversity 4 (2007) 665.

    Google Scholar 

  23. M. H. Todd, Chem. Soc. Rev. 31 (2002) 211.

    Google Scholar 

  24. K. Soai, I. Sato, T. Shibata, ACS Symp. Ser. 880 (2004) 85.

    Google Scholar 

  25. M. Reggelin, Nachr. Chem. Tech. Lab. 45 (1997) 622; T. Gehring, M. Busch, M. Schlageter, D. Weingand, Chirality 22 (2010) E173.

    Google Scholar 

  26. J. Erfkamp, A. MĂ¼ller, Chemie in unserer Zeit 24 (1990) 267.

    Google Scholar 

  27. M. Dörr, J. KĂ¤ĂŸbohrer, R. Grunert, G. Kreisel, W. A. Brand, R. A. Werner, H. Geilmann, C. Apfel, C. Robl, W. Weigand, Angew. Chem. Internat. Edn. 42 (2003) 1540.

    Google Scholar 

  28. J. Kim, D. C. Rees, Nature 360 (1992) 553.

    Google Scholar 

  29. J. Kim. D. Woo, D. C. Rees, Biochemistry 32 (1993) 7104.

    Google Scholar 

  30. J. B. Howard, D. C. Rees, Chem. Rev. 96 (1996) 2965.

    Google Scholar 

  31. J. W. Peters, M. H. Stowell, S. M. Soltis, M. G. Finnegan, M. K. Johnson, D. C. Rees, Biochemistry 36 (1997) 1181.

    Google Scholar 

  32. A. MĂ¼ller, E. Krahn, Angew. Chem. Internat. Edn. 34 (1995) 1071.

    Google Scholar 

  33. P. C. Do Santos, D. R. Dean, Y. Hu, M. W. Ribbe, Chem. Rev. 104 (2004) 1159.

    Google Scholar 

  34. O. Einsle, F. A. Tezcan, S. L. A. Andrade, B. Schmid, M. Yoshida, J. B. Howard, D. C. Rees, Science 297 (2002) 1696; B. Hinnemann, J. K. Norskov, J. Am. Chem. Soc. 125 (2003) 1466; I. Dance, Chem. Commun. 2003 , 324.

    Google Scholar 

  35. K. M. Lancaster, M. Roemelt, P. Ettenhuber, Y. Hu, M. W. Ribbe, F. Neese, U. Bergmann, S. DeBeer, Science 334 (2011) 974.

    Google Scholar 

  36. T. Spatzal, M. Aksoyoglu, L.-P. Zhang, S. L. A. Andrade, E. Schleicher, S. Weber, D. C. Rees, O. Einsle, Science 334 (2011) 940.

    Google Scholar 

  37. B. K. Burgess, D. J. Lowe, Chem. Rev. 96 (1996) 2983; F. Osterloh, Y. Sanakis, R. J. Staples, E. MĂ¼nck, R. H. Holm, Angew. Chem. Internat. Edn. 38 (1999) 2066 (artificial complexes).

    Google Scholar 

  38. B. M. Hoffman, D. R. Dean, L. C. Seefeldt, Acc. Chem. Res. 42 (2009) 609.

    Google Scholar 

  39. F. A. Cotton, G. Wilkinson, Anorganische Chemie, 4th Edn., Wiley-Interscience, New York, 1980, 1341.

    Google Scholar 

  40. G. N. Schrauzer, G. W. Kiefer, P. A. Doemeny, H. Kisch, J. Am. Chem. Soc. 95 (1973) 5582.

    Google Scholar 

  41. W. S. Silver, J. R. Postgate, J. theor. Biol. 40 (1973) 1.

    Google Scholar 

  42. J. v. Liebig, Agriculturchemie, 1840.

    Google Scholar 

  43. Bibliographisches Institut & F. A. Brockhaus AG, 2001.

    Google Scholar 

  44. L. Forni, Chim. Ind. 108 (2009) 108; S. E. Nielsen, ACS Symposium Series, (2009) 15; A. F. Holleman, N. Wiberg, Lehrbuch der Anorganischen Chemie, Walter de Gruyter, Berlin, New York (1985) 507, 1133.

    Google Scholar 

  45. G. Marnellos, M. Stoukides, Science 282 (1998) 98.

    Google Scholar 

  46. T. Murakami, T. Nishikiori, T. Nohira, Y. Ito, J. Am. Chem. Soc. 125 (2003) 334.

    Google Scholar 

  47. V. Smil, Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production, MIT Press, Cambridge, MA, 2001; R. Hoffmann, P. Laszlo, Angew. Chem. Int. Edn. 40 (2001) 4599.

    Google Scholar 

  48. M. P. Shaver, M. D. Fryzuk, Adv. Synth. Chem. 345 (2003) 1061; N. Hazari, Chem. Soc. Rev. 39 (2010) 4044.

    Google Scholar 

  49. A. D. Allen, C. V. Senoff, J. Chem. Soc. Chem. Commun. 1965 , 621; C. V. Senoff, J. Chem. Educ. 67 (1990) 368.

    Google Scholar 

  50. J. Chatt, A. J. Pearman, R. L. Richards, Nature 253 (1975) 39; J. Chatt, J. R. Dilworth, R. L. Richards, Chem. Rev. 78 (1978) 589; C. J. Pickett, J. Talermin, Nature 317 (1985) 652; C. J. Pickett, J. Biol. Inorg. Chem. 1 (1996) 601; F. Tuczek, Angew. Chem. Internat. Edn. 37 (1998) 2636; A. Dreher, G. Stephan, F. Tuczek, Adv. Inorg. Chem. 61 (2009) 367.

    Google Scholar 

  51. M. Hidai, Science 279 (1998) 540; M. Hidai, Coord. Chem. Rev. 185–186 (1999) 99.

    Google Scholar 

  52. D. V. Yandulov, R. R. Schrock, Science 301 (2003) 76; R. R. Schrock, Chem. Commun. 2003 , 2389.

    Google Scholar 

  53. J. Sgrignani, D. Franco, A. Magistrato, Molecules 16 (2011) 442.

    Google Scholar 

  54. B. Hao, W. Gong, T. K. Ferguson, C. M. James, J. A. Krzycki, M. K. Chan, Science 296 (2002) 1462.

    Google Scholar 

  55. K. Roth, Chemie in unserer Zeit 41 (2007) 448.

    Google Scholar 

  56. K. M. Draths, J. W. Frost, J. Am. Chem. Soc. 113 (1991) 9361.

    Google Scholar 

  57. K. Weissermel, H.-J. Arpe, Industrielle Organische Chemie, VCH, Weinheim, 4th Edn. 1994, 284, 312.

    Google Scholar 

  58. M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. KeĂŸeler, R. StĂ¼rmer, T. Zelinski, Angew. Chem. Internat. Edn. 43 (2004) 788; E. Nakamura, Chem. Asian J. 6 (2011) 1659; D. K. Rassin, J. A. Sturman, G. E. Gaull, Early Human Dev. 2 (1978) 1.

    Google Scholar 

  59. R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Chemische Technik, Vol. 8, Wiley-VCH, Weinheim, 2005, 717.

    Google Scholar 

  60. K.-H. König, Chemie in unserer Zeit 24 (1990) 217; C. Lamberth, Tetrahedron 66 (2010) 7239.

    Google Scholar 

  61. B. Hoppe, J. Martens, Chemie in unserer Zeit 18 (1984) 73.

    Google Scholar 

  62. K. Drauz, S. Eils, M. Schwarm, Chimica Oggi , Jan./Feb. 2002, 15.

    Google Scholar 

  63. M. Kircher, W. Leuchtenberger, Biologie in unserer Zeit 28 (1998) 281.

    Google Scholar 

  64. H. Gröger, K. Drauz in H. U. Blaser, E. Schmidt, Asymmetric Catalysis on the Industrial Scale: Challenges, Approaches and Solutions, Wiley-VCH, Weinheim, 2004, 131.

    Google Scholar 

  65. J. Dalmolen, T. D. Tiemersma-Wegman, J.-W. Nieuwenhuijzen, M. van der Sluis, E. van Echten, T. R. Vries, B. Kaptein, Q. B. Broxterman, R. M. Kellogg, Chem. Eur. J. 11 (2005) 5619.

    Google Scholar 

  66. A. Collet, Angew. Chem . Internat. Edn. 37 (1998) 3239.

    Google Scholar 

  67. Q. B. Broxterman, Chimica Oggi 16 (1998) 9, 34.

    Google Scholar 

  68. B. Kaptein, T. R. Vries, J. W. Nieuwenhuijzen, R. M. Kellogg, R. F. P. Grimbergen, Q. B. Broxterman, Pharma Chem. 2 (2003) 17.

    Google Scholar 

  69. R. M. Kellogg, J. W. Nieuwenhuijzen, K. Puower, T. R. Vries, Q. B. Broxterman, R. F. P. Grimbergen, R. M. La Crois, E. de Wever, K. Zwaagstra, A. C. van der Laan, Synthesis (2003) 1626.

    Google Scholar 

  70. M. Ikeda, R. Katsumata, App. Environ. Microbiol. 58 (1992) 781.

    Google Scholar 

  71. R. Katsumata, M. Ikeda, Biotechnol. 11 (1993) 921.

    Google Scholar 

  72. S. MartĂ­nez-RodrĂ­guez, A. I. MartĂ­nez-GĂ³mez, F. RodrĂ­guez-Vico, J. M. Clemente-JimĂ©nez, F. J. Las Heras-VĂ¡zquez, Chem. Biodiv. 7 (2010) 1531.

    Google Scholar 

  73. M. Beller, M. Eckert, Angew. Chem. Internat. Edn. 39 (2000) 1010.

    Google Scholar 

  74. W. S. Knowles, M. J. Sabacky, J. Chem. Soc., Chem. Commun. 1968, 1445.

    Google Scholar 

  75. L. Horner, H. Siegel, H. Buthe, Angew. Chem. Internat. Edn. 7 (1968) 942.

    Google Scholar 

  76. B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman, D. J. Weinkauff, J. Am. Chem. Soc. 99 (1977) 5946.

    Google Scholar 

  77. J. Halpern, Science 217 (1982) 401.

    Google Scholar 

  78. K. E. Koenig, M. J. Sabacky, G. L. Bachman, W. C. Christopfel, H. D. Barnstorff, R. B. Friedman, W. S. Knowles, B. R. Stults, B. D. Vineyard, D. J. Weinkauff, Ann. N. Y. Acad. Sci. 333 (1980) 16.

    Google Scholar 

  79. W. S. Knowles, Acc. Chem. Res . 16 (1983) 106.

    Google Scholar 

  80. K. E. Koenig, Catalysis of Organic Reactions, Marcel Dekker, New York, 1984, 63.

    Google Scholar 

  81. K. E. Koenig, in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, Orlando 5 (1985) 71.

    Google Scholar 

  82. C. R. Landis, J. Halpern, J. Am. Chem. Soc. 109 (1987) 1746.

    Google Scholar 

  83. C. R. Landis, S. Feldgus, Angew. Chem. Internat. Edn. 39 (2000) 2863.

    Google Scholar 

  84. D. J. Ager, L. Lefort, J. G. de Vries, ACS Symposium Series 1009 (2009) 239.

    Google Scholar 

  85. M. van den Berg, A. J. Minnaard, E. P. Schudde, J. van Esch, A. H. M. de Vries, J. G. de Vries, B. L. Feringa, J. Am. Chem. Soc. 122 (2000) 11539.

    Google Scholar 

  86. F. Giacomina, A. Meetsma, L. Panella, L. Lefort, A. H. M. de Vries, J. G. de Vries, Angew. Chem. Internat. Edn. 46 (2007) 1497.

    Google Scholar 

  87. R. Selke in H. U. Blaser, E. Schmidt, Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley-VCH, Weinheim, 2004, 39.

    Google Scholar 

  88. M. Diéguez, O. Pàmies, C. Claver, Chem. Rev. 104 (2004) 3189.

    Google Scholar 

  89. H. Gröger, Chem. Rev. 103 (2003) 2795; M. Shibasaki, M. Kanai, T. Mita, Org. React. 70 (2008) 1.

    Google Scholar 

  90. K. Harada, Nature 200 (1963) 1201; M. S. Iyer, K. M. Gigstad, N. D. Namdev, M. Lipton, J. Am. Chem. Soc. 118 (1996) 4910.

    Google Scholar 

  91. E. J. Corey, Org. Lett. 1 (1999) 157.

    Google Scholar 

  92. M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 120 (1998) 5315.

    Google Scholar 

  93. M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 120 (1998) 4901.

    Google Scholar 

  94. P. Vachal, E. N. Jacobsen, Org. Lett. 2 (2000) 867; P. Vachal, E. N. Jacobsen, J. Am. Chem. Soc. 124 (2002) 10012.

    Google Scholar 

  95. S. J. Zuend, M. P. Coughlin, M. P. Lalonde, E. N. Jacobson, Nature 461 (2009) 968.

    Google Scholar 

  96. P. Karlson, Kurzes Lehrbuch der Biochemie, Georg Thieme Verlag, Stuttgart, 1970, 68; M. S. Sigman, P. Vachal, E. N. Jacobsen, Angew. Chem. Internat. Edn. 39 (2000) 1279.

    Google Scholar 

  97. H. Yan, J. Suk Oh, J. W. Lee, C. Eui Song, Nature Commun. 3 (2012) 1212.

    Google Scholar 

  98. E. LĂ¼ck, Chemie in unserer Zeit 19 (1985) 156.

    Google Scholar 

  99. F. Ledl, E. Schleicher, Angew. Chem. Internat. Edn. 29 (1990) 565.

    Google Scholar 

  100. J. A. Gerrard, Aust. J. Chem. 55 (2002) 299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Schaefer, B. (2014). Amino acids. In: Natural Products in the Chemical Industry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54461-3_4

Download citation

Publish with us

Policies and ethics