Catalytic Conversion of Lignocellulosic Biomass to Value-Added Organic Acids in Aqueous Media

  • Hongfei LinEmail author
  • Ji Su
  • Ying Liu
  • Lisha Yang
Part of the Green Chemistry and Sustainable Technology book series (GCST)


The transition from today’s fossil-based economy to a sustainable economy based on renewable biomass is driven by the concern of climate change and anticipation of dwindling fossil resources. Although biofuels are the central theme of the transition, biomass resources cannot completely replace petroleum. It is projected that biofuels can only supply up to 30 % of today’s transportation fuel market even if all available domestic biomass resources are used for the production of liquid fuels. Therefore, transformation of biomass into high-value-added chemicals is advantageous to secure optimal use of the abundant, but limited, biomass resources from the economical and ecological perspective. Industry is increasingly considering bio-based chemical production as an attractive area for investment. The potential for chemical and polymer production from biomass is substantial. The US Department of Energy recently issued a report which listed 12 chemical building blocks considered as potential building blocks for the future. Organic acids (e.g., succinic, lactic, levulinic acid, etc.) are among the widely spread “platform-molecules,” which may be further converted into possibly derivable high-value-added chemicals. The transition from a fossil chemical industry to a renewable chemical industry will likewise depend on our ability to focus research and development efforts on the most promising alternatives. In this chapter, we review the emerging technologies on catalytic conversion of biomass to value-added organic acids in aqueous media.


Lactic Acid Gluconic Acid Glycolic Acid Metal Organic Framework Levulinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abbadi A, Van Bekkum H (1995) Highly selective oxidation of aldonic acids to 2-keto-aldonic acids over Pt—Bi and Pt—Pb catalysts. Appl Catal A 124:409–417Google Scholar
  2. 2.
    Abbadi A, Van Bekkum H (1995) Effect of pH in the Pt-catalyzed oxidation of d-glucose to d-gluconic acid. J Mol Catal A Chem 97:111–118. doi: 10.1016/1381-1169(94)00078-6 Google Scholar
  3. 3.
    Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725–2750Google Scholar
  4. 4.
    Akolekar DB, Bhargava SK, Shirgoankar I, Prasad J (2002) Catalytic wet oxidation: an environmental solution for organic pollutant removal from paper and pulp industrial waste liquor. Appl Catal A 236:255–262Google Scholar
  5. 5.
    Alonso DM, Wettstein SG, Mellmer MA et al (2013) Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ Sci 6:76–80. doi:  10.1039/c2ee23617f Google Scholar
  6. 6.
    An D, Ye A, Deng W et al (2012) Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany) 18:2938–2947. doi:  10.1002/chem.201103262
  7. 7.
    Asghari FS, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from D -fructose in subcritical water. Ind Eng Chem Res 45:2163–2173Google Scholar
  8. 8.
    Assary RS, Redfern PC, Hammond JR et al (2010) Computational studies of the thermochemistry for conversion of glucose to levulinic acid. J Phys Chem B 114:9002–9009. doi: 10.1021/jp101418f Google Scholar
  9. 9.
    Avellar BK, Glasser WG (1998) Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenergy 14:205–218Google Scholar
  10. 10.
    Baatz C, Thielecke N, Prüße U (2007) Influence of the preparation conditions on the properties of gold catalysts for the oxidation of glucose. Appl Catal B 70:653–660. doi: 10.1016/j.apcatb.2006.01.020 Google Scholar
  11. 11.
    Becker J, Toft LL, Aarup DF et al (2010) A high temperature, high pressure facility for controlled studies of catalytic activity under hydrothermal conditions. Energy Fuels 24:2737–2746. doi: 10.1021/ef901584t Google Scholar
  12. 12.
    Ben-Bassat A, Walls AM, Plummer MA et al (2008) Optimization of biocatalyst specific activity for glycolic acid production. Adv Synth Catal 350:1761–1769. doi: 10.1002/adsc.200800228 Google Scholar
  13. 13.
    Bicker M, Endres S, Ott L, Vogel H (2005) Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production. J Mol Catal A Chem 239:151–157. doi: 10.1016/j.molcata.2005.06.017 Google Scholar
  14. 14.
    Bicker M, Hirth J, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone. Green Chem 5:280–284. doi: 10.1039/b211468b Google Scholar
  15. 15.
    Biella S, Prati L, Rossi M (2002) Selective oxidation of D-glucose on gold catalyst. J Catal 206:242–247. doi: 10.1006/jcat.2001.3497 Google Scholar
  16. 16.
    Bond JQ, Alonso DM, Wang D et al (2010) Integrated catalytic conversion of γ-Valerolactone to liquid alkenes for transportation fuels. Science (New York, NY) 327:1110–1114Google Scholar
  17. 17.
    Bozell JJ (2010) Connecting biomass and petroleum processing with a chemical bridge. Science 329:522–523. doi: 10.1126/science.1191662 Google Scholar
  18. 18.
    Bozell JJ, Hames BR (1995) Cobalt-Schiff base complex catalyzed oxidation of para-substituted phenolics. In: Preparation of benzoquinones. National Renewable Energy Laboratory, Colorado, pp 2398–2404Google Scholar
  19. 19.
    Bozell JJ, Moens L, Elliott DC et al (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28:227–239Google Scholar
  20. 20.
    Braden DJ, Henao CA, Heltzel J et al (2011) Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid. Green Chemistry 13:1755–1765. doi:  10.1039/c1gc15047b Google Scholar
  21. 21.
    Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583. doi: 10.1039/c2gc36364j Google Scholar
  22. 22.
    Brunner G (2009) Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J Supercrit Fluids 47:373–381. doi: 10.1016/j.supflu.2008.09.002 Google Scholar
  23. 23.
    Cabiac A, Guillon E, Chambon F et al (2011) Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Appl Catal A 402:1–10. doi: 10.1016/j.apcata.2011.05.029 Google Scholar
  24. 24.
    Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. ChemSusChem 3:1227–1235. doi:  10.1002/cssc.201000157 Google Scholar
  25. 25.
    Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190. doi: 10.1016/j.biortech.2005.11.022 Google Scholar
  26. 26.
    Canevali C, Orlandi M, Pardi L et al (2002) Oxidative degradation of monomeric and dimeric phenylpropanoids: reactivity and mechanistic investigation. J Chem Soc, Dalton Trans 3007–3014. doi:  10.1039/b203386k
  27. 27.
    Carrettin S, McMorn P, Johnston P et al (2003) Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys Chem Chem Phys 5:1329–1336. doi: 10.1039/b212047j Google Scholar
  28. 28.
    Case PA, Van Heiningen ARP, Wheeler MC (2012) Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures. Green Chem 14:85–89. doi:  10.1039/c1gc15914c Google Scholar
  29. 29.
    Cha J, Hanna M (2002) Levulinic acid production based on extrusion and pressurized batch reaction. Ind Crops Prod 16:109–118. doi: 10.1016/S0926-6690(02)00033-X Google Scholar
  30. 30.
    Chambon F, Rataboul F, Pinel C et al (2011) Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid. Appl Catal B 105:171–181. doi: 10.1016/j.apcatb.2011.04.009 Google Scholar
  31. 31.
    Chang C, Cen P, Ma X (2007) Levulinic acid production from wheat straw. Bioresour Technol 98:1448–1453. doi: 10.1016/j.biortech.2006.03.031 Google Scholar
  32. 32.
    Chen H, Yu B, Jin S (2011) Production of levulinic acid from steam exploded rice straw via solid superacid, S2O8(2-)/ZrO2-SiO2-Sm2O3. Bioresour Technol 102:3568–3570. doi: 10.1016/j.biortech.2010.10.018 Google Scholar
  33. 33.
    Collinson SR, Thielemans W (2010) The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Coord Chem Rev 254:1854–1870. doi: 10.1016/j.ccr.2010.04.007 Google Scholar
  34. 34.
    Comotti M, Dellapina C, Falletta E, Rossi M (2006) Is the biochemical route always advantageous? The case of glucose oxidation. J Catal 244:122–125. doi: 10.1016/j.jcat.2006.07.036 Google Scholar
  35. 35.
    Comotti M, Della PC, Rossi M (2006) Mono- and bimetallic catalysts for glucose oxidation. J Mol Catal A: Chem 251:89–92. doi:  10.1016/j.molcata.2006.02.014 Google Scholar
  36. 36.
    Crestini C, Caponi MC, Argyropoulos DS, Saladino R (2006) Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds. Bioorg Med Chem 14:5292–5302. doi: 10.1016/j.bmc.2006.03.046 Google Scholar
  37. 37.
    Deng H, Lin ÆL, Sun ÆY et al (2008) Perovskite-type Oxide LaMnO 3: An efficient and recyclable heterogeneous catalyst for the wet aerobic oxidation of lignin to aromatic aldehydes. Catal Lett 126:106–111. doi:  10.1007/s10562-008-9588-0 Google Scholar
  38. 38.
    Deng H, Lin L, Liu S (2010) Catalysis of Cu-doped Co-based Perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes. Energy Fuels 24:4797–4802. doi:  10.1021/ef100768e Google Scholar
  39. 39.
    Deng W, Wang Y, Zhang Q, Wang Y (2012) Development of bifunctional catalysts for the conversions of cellulose or cellobiose into polyols and organic acids in water. Catal Surv Asia 16:91–105. doi: 10.1007/s10563-012-9136-1 Google Scholar
  40. 40.
    Dodds DR, Gross RA (2007) Chemicals from biomass. Science 318:1250–1251Google Scholar
  41. 41.
    Dorrestijn E, Laarhoven LJJ, Arends IWCE, Mulder P (2000) The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J Anal Appl Pyrol 54:153–192. doi: 10.1016/S0165-2370(99)00082-0 Google Scholar
  42. 42.
    Ellis AV, Wilson MA (2002) Carbon exchange in hot alkaline degradation of glucose. J Org Chem 67:8469–8474Google Scholar
  43. 43.
    Fabbri C, Aurisicchio C, Lanzalunga O (2008) Iron porphyrins-catalysed oxidation of α-alkyl substituted mono and dimethoxylated benzyl alcohols. Cent Eur J Chem 6:145–153. doi: 10.2478/s11532-008-0005-8 Google Scholar
  44. 44.
    Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catal Rev 51:293–324. doi: 10.1080/01614940903048513 zbMATHGoogle Scholar
  45. 45.
    Farrell AE, Plevin RJ, Turner BT et al (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508. doi: 10.1126/science.1121416 Google Scholar
  46. 46.
    Fitzpatrick SW (1997a) Production of levulinic acid from carbohydrate-containing materials. US Patent 5,608,105Google Scholar
  47. 47.
    Fitzpatrick SW (1997b) Production of levulinic acid from carbohydrate-containing materials. US Patent 5608105Google Scholar
  48. 48.
    Geboers JA, Van de Vyver S, Ooms R et al (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1:714. doi:  10.1039/c1cy00093d
  49. 49.
    Girisuta B (2007) Levulinic acid from lignocellulosic biomass. University of Goningen, NetherlandsGoogle Scholar
  50. 50.
    Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46:1696–1708. doi: 10.1021/ie061186z Google Scholar
  51. 51.
    Hammerschmidt A, Boukis N, Hauer E et al (2011) Catalytic conversion of waste biomass by hydrothermal treatment. Fuel 90:555–562. doi: 10.1016/j.fuel.2010.10.007 Google Scholar
  52. 52.
    Hayashi H, Sugiyama S, Katayama Y et al (1994) An alloy phase of Pd3Pb and the activity of Pb/Pd/C catalysts in the liquid-phase oxidation of sodium lactate to pyruvate. J Mol Catal 91:129–137. doi: 10.1016/0304-5102(94)00026-3 Google Scholar
  53. 53.
    Hegner J, Pereira KC, DeBoef B, Lucht BL (2010) Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis. Tetrahedron Lett 51:2356–2358. doi: 10.1016/j.tetlet.2010.02.148 Google Scholar
  54. 54.
    Heitz M, Chornet E (1994) Improved alkaline oxidation process for the production of aldehydes (Vanillin and Syringaldehyde) from Steam-Explosion Hardwood Lignin. Ind Eng Chem Res 33:718–723Google Scholar
  55. 55.
    Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605. doi: 10.1126/science.1183990 Google Scholar
  56. 56.
    Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26:2111–2114Google Scholar
  57. 57.
    Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450. doi:  10.1126/science.1111166 Google Scholar
  58. 58.
    Ishida T, Kinoshita N, Okatsu H et al (2008) Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew Chem Int Ed Engl 47:9265–9268. doi: 10.1002/anie.200802845 Google Scholar
  59. 59.
    Ishida T, Watanabe H, Bebeko T et al (2010) Aerobic oxidation of glucose over gold nanoparticles deposited on cellulose. Appl Catal A 377:42–46. doi: 10.1016/j.apcata.2010.01.017 Google Scholar
  60. 60.
    Jin F, Cao J, Kishida H et al (2007) Impact of phenolic compounds on hydrothermal oxidation of cellulose. Carbohydr Res 342:1129–1132. doi: 10.1016/j.carres.2007.02.013 Google Scholar
  61. 61.
    Jin F, Yun J, Li G et al (2008) Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem 10:612. doi: 10.1039/b802076k Google Scholar
  62. 62.
    Jing G, Luan M, Chen T (2012) Progress of catalytic wet air oxidation technology. Arab J Chem. doi: 10.1016/j.arabjc.2012.01.001 Google Scholar
  63. 63.
    John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534. doi: 10.1007/s00253-006-0779-6 Google Scholar
  64. 64.
    Jomaa S, Shanableh A, Khalil W, Trebilco B (2003) Hydrothermal decomposition and oxidation of the organic component of municipal and industrial waste products. Adv Environ Res 7:647–653. doi:  10.1016/S1093-0191(02)00042-4
  65. 65.
    Jow J, Rorrer GL, Hawley MC, Lamport DTA (1987) Dehydration of d-fructose to levulinic acid over LZY zeolite catalyst. Biomass 14:185–194. doi:  10.1016/0144-4565(87)90046-1 Google Scholar
  66. 66.
    Karski S, Paryjczak T, Witonska I (2003) Selective oxidation of glucose to gluconic acid over bimetallic Pd–Me Catalysts (Me = Bi, Tl, Sn, Co). Kinet Catal 44:678–682Google Scholar
  67. 67.
    Kimura H, Tsuto K, Wakisaka T et al (1993) Selective oxidation of glycerol on a platinum-bismuth catalyst. Appl Catal A 96:217–228. doi: 10.1016/0926-860X(90)80011-3 Google Scholar
  68. 68.
    Kobayashi N, Okada N, Hirakawa A et al (2009) Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass. Ind Eng Chem Res 48:373–379. doi: 10.1021/ie800870k Google Scholar
  69. 69.
    Kong L, Li G, Wang H et al (2008) Hydrothermal catalytic conversion of biomass for lactic acid production. J Chem Technol Biotechnol 83:383–388. doi: 10.1002/jctb Google Scholar
  70. 70.
    Kruse A, Krupka A, Schwarzkopf V et al (2005) Influence of proteins on the hydrothermal gasification and liquefaction of biomass 1. comparison of different feedstocks. Ind Eng Chem Res 44:3013–3020. doi: 10.1021/ie049129y Google Scholar
  71. 71.
    Kumar S, Gupta RB (2009) Biocrude production from switchgrass using subcritical water. Energy Fuels 23:5151–5159. doi: 10.1021/ef900379p Google Scholar
  72. 72.
    Kusema BT, Campo BC, Mäki-Arvela P et al (2010) Selective catalytic oxidation of arabinose—A comparison of gold and palladium catalysts. Appl Catal A 386:101–108. doi: 10.1016/j.apcata.2010.07.037 Google Scholar
  73. 73.
    Kusema BT, Mikkola J-P, Murzin DY (2012) Kinetics of l-arabinose oxidation over supported gold catalysts with in situ catalyst electrical potential measurements. Catal Sci Technol 2:423–431. doi: 10.1039/c1cy00365h Google Scholar
  74. 74.
    Kusema BT, Murzin DY (2013) Catalytic oxidation of rare sugars over gold catalysts. Catal Sci Technol 3:297–307. doi: 10.1039/c2cy20379k Google Scholar
  75. 75.
    Ladisch MR, Lin KW, Voloch M, Tsao GT (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microb Technol 5:82–102. doi: 10.1016/0141-0229(83)90042-X Google Scholar
  76. 76.
    Lai D, Deng L, Guo Q, Fu Y (2011) Hydrolysis of biomass by magnetic solid acid. Energy Environ Sci 4:3552–3557. doi: 10.1039/c1ee01526e Google Scholar
  77. 77.
    Lange J-P, Price R, Ayoub PM et al (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed Engl 49:4479–4483. doi: 10.1002/anie.201000655 Google Scholar
  78. 78.
    Lansalot-Matras C, Moreau C (2003) Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal Commun 4:517–520. doi: 10.1016/S1566-7367(03)00133-X Google Scholar
  79. 79.
    Leonard RH (1956) Levulinic Acid as a Basic Chemical Raw Material. Ind Eng Chem 48:1330–1341Google Scholar
  80. 80.
    Li J, Ding D-J, Deng L et al (2012) Catalytic Air Oxidation of biomass-derived carbohydrates to formic acid. ChemSusChem 5:1313–1318Google Scholar
  81. 81.
    Li J, Gellerstedt G, Toven K (2009) Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol 100:2556–2561. doi: 10.1016/j.biortech.2008.12.004 Google Scholar
  82. 82.
    Li Q, Yao G, Zeng X et al (2012) Facile and green production of Cu from CuO using cellulose under hydrothermal conditions. Ind Eng Chem Res 51:3129–3136. doi: 10.1021/ie202151s Google Scholar
  83. 83.
    Liang J, Wang L (2010) Production of levulinic acid from cellulose catalyzed by environmental-friendly catalyst. Adv Mater Res 96:183–187Google Scholar
  84. 84.
    Liang X, Liu C, Kuai P (2008) Selective oxidation of glucose to gluconic acid over argon plasma reduced Pd/Al2O3. Green Chem 10:1318–1322. doi: 10.1039/b804904a Google Scholar
  85. 85.
    Lin H, Strull J, Liu Y et al (2012) High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media. Energy Environ Sci 5:9773–9777. doi: 10.1039/c2ee23225a Google Scholar
  86. 86.
    Liu Z, Li W, Pan C et al (2011) Conversion of biomass-derived carbohydrates to methyl lactate using solid base catalysts. Catal Commun 15:82–87. doi: 10.1016/j.catcom.2011.08.019 Google Scholar
  87. 87.
    Lourvanij K, Rorrer GL (1993) Reactions of Aqueous Glucose Solutions over Solid-Acid Y-Zeolite Catalyst at 110-160 C. Ind Eng Chem Res 32:11–19Google Scholar
  88. 88.
    Lourvanij K, Rorrer GL (1994) Dehydration of glucose to organic acids in microporous pillared clay catalysts. Appl Catal A 109:147–165Google Scholar
  89. 89.
    Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152. doi: 10.1016/S0141-3910(97)00148-1 Google Scholar
  90. 90.
    Ma C, Jin F, Cao J, Wu B (2010) Hydrothermal conversion of carbohydrates into lactic acid with alkaline catalysts. In: 2010 4th International Conference on Bioinformatics and Biomedical Engineering, pp 1–4. doi:  10.1109/ICBBE.2010.5516468
  91. 91.
    Maas RHW, Bakker RR, Eggink G, Weusthuis RA (2006) Lactic acid production from xylose by the fungus Rhizopus oryzae. Applied microbiology and biotechnology 72:861–868. doi:  10.1007/s00253-006-0379-5
  92. 92.
    Masingale MP, Alves EF, Korbieh TN et al (2009) An oxidant to replace nitrobenzene in lignin analysis. BioResources 4:1139–1146Google Scholar
  93. 93.
    Mirescu A, Berndt H, Martin A, Prüße U (2007) Long-term stability of a 0.45 % Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions. Appl Catal A 317:204–209. doi: 10.1016/j.apcata.2006.10.016 Google Scholar
  94. 94.
    Mirescu A, Prüße U (2007) A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts. Appl Catal B 70:644–652. doi: 10.1016/j.apcatb.2006.01.017 Google Scholar
  95. 95.
    Möller M, Nilges P, Harnisch F, Schröde U (2011) Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem 4:566–579Google Scholar
  96. 96.
    Mosier NS, Ladisch CM, Ladisch MR (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng 79:610–618. doi: 10.1002/bit.10316 Google Scholar
  97. 97.
    Muangrat R, Onwudili JA, Williams PT (2010a) Reaction products from the subcritical water gasification of food wastes and glucose with NaOH and H2O2. Bioresour Technol 101:6812–6821. doi:  10.1016/j.biortech.2010.03.114 Google Scholar
  98. 98.
    Muangrat R, Onwudili JA, Williams PT (2010b) Alkali-promoted hydrothermal gasification of biomass food processing waste: A parametric study. Int J Hydrogen Energy 35:7405–7415. doi:  10.1016/j.ijhydene.2010.04.179 Google Scholar
  99. 99.
    Nikov I, Paev K (1995) Palladium on alumina catalyst for glucose oxidation: reaction kinetics and catalyst deactivation. Catal Today 24:41–47. doi: 10.1016/0920-5861(95)00011-4 Google Scholar
  100. 100.
    Önal Y, Schimpf S, Claus P (2004) Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts. J Catal 223:122–133. doi: 10.1016/j.jcat.2004.01.010 Google Scholar
  101. 101.
    Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) Lactic acid production from glucose over activated hydrotalcites as solid base catalysts in water. Catal Commun 9:1050–1053. doi: 10.1016/j.catcom.2007.10.005 Google Scholar
  102. 102.
    Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid. Appl Catal A 343:49–54. doi: 10.1016/j.apcata.2008.03.017 Google Scholar
  103. 103.
    Onda A, Ochi T, Yanagisawa K (2011) New direct production of gluconic acid from polysaccharides using a bifunctional catalyst in hot water. Catal Commun 12:421–425. doi: 10.1016/j.catcom.2010.10.023 Google Scholar
  104. 104.
    Onwudili JA, Williams PT (2007) Hydrothermal catalytic gasification of municipal solid waste. Energy Fuels 21:3676–3683. doi:  10.1021/ef700348n Google Scholar
  105. 105.
    Palkovits R (2010) Pentenoic acid pathways for cellulosic biofuels. Angew Chem Int Ed Engl 49:4336–4338. doi: 10.1002/anie.201002061 Google Scholar
  106. 106.
    Partenheimer W (2009) The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv Synth Catal 351:456–466. doi: 10.1002/adsc.200800614 Google Scholar
  107. 107.
    Peng L, Lin L, Li H, Yang Q (2011) Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Appl Energy 88:4590–4596. doi: 10.1016/j.apenergy.2011.05.049 Google Scholar
  108. 108.
    Peng L, Lin L, Zhang J et al (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules (Basel, Switzerland) 15:5258–5272. doi:  10.3390/molecules15085258 Google Scholar
  109. 109.
    Peterson AA, Vogel F, Lachance RP et al (2008) Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65. doi:  10.1039/b810100k Google Scholar
  110. 110.
    Potvin J, Sorlien E, Hegner J et al (2011) Effect of NaCl on the conversion of cellulose to glucose and levulinic acid via solid supported acid catalysis. Tetrahedron Lett 52:5891–5893. doi: 10.1016/j.tetlet.2011.09.013 Google Scholar
  111. 111.
    Qi X, Watanabe M, Aida TM, Smith RL Jr (2008) Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal Commun 9:2244–2249. doi: 10.1016/j.catcom.2008.04.025 Google Scholar
  112. 112.
    Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels, Bioprod Biorefin 5:198–214Google Scholar
  113. 113.
    Rasrendra CB, Makertihartha IGBN, Adisasmito S, Heeres HJ (2010) Green chemicals from d-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions. Top Catal 53:1241–1247. doi: 10.1007/s11244-010-9570-0 Google Scholar
  114. 114.
    Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed Engl 47:8047–8050. doi: 10.1002/anie.200802879 Google Scholar
  115. 115.
    Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2:1096–1107. doi: 10.1002/cssc.200900188 Google Scholar
  116. 116.
    Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312:1933–1937. doi:  10.1126/science.1126337 Google Scholar
  117. 117.
    Saeman JF (1945) Industrial and engineering chemistry. Ind Eng Chem 37:43–52Google Scholar
  118. 118.
    Sales FG, Abreu CAM, Pereira JAFR (2004) Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production. Braz J Chem Eng 21:211–218Google Scholar
  119. 119.
    Sales FG, Maranhão LCA, Lima NM, Abreu CAM (2007) Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Science 62:5386–5391. doi: 10.1016/j.ces.2007.02.018 Google Scholar
  120. 120.
    Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids 47:407–414. doi: 10.1016/j.supflu.2008.09.007 Google Scholar
  121. 121.
    Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289. doi: 10.1146/annurev-arplant-042809-112315 Google Scholar
  122. 122.
    Seri K, Inoue Y, Ishida H (2000) Highly efficient catalytic activity of lanthanide(III) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents. Chem Lett 29:22–23. doi:  10.1246/cl.2000.22 Google Scholar
  123. 123.
    Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40:5266–5281. doi: 10.1039/c1cs15131b Google Scholar
  124. 124.
    Shanableh A (2005) Generalized first-order kinetic model for biosolids decomposition and oxidation during hydrothermal treatment. Environ Sci Technol 39:355–362Google Scholar
  125. 125.
    Simakova OA, Kusema BT, Campo BC et al (2011) Structure sensitivity in L-arabinose oxidation over Au/Al2O3 catalysts. J Phys Chem C 115:1036–1043Google Scholar
  126. 126.
    Smolentseva E, Kusema BT, Beloshapkin S et al (2011) Selective oxidation of arabinose to arabinonic acid over Pd–Au catalysts supported on alumina and ceria. Appl Catal A 392:69–79. doi: 10.1016/j.apcata.2010.10.021 Google Scholar
  127. 127.
    Takeuchi Y, Jin F, Tohji K, Enomoto H (2007) Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances. J Mater Sci 43:2472–2475. doi: 10.1007/s10853-007-2021-z Google Scholar
  128. 128.
    Tan X, Deng W, Liu M et al (2009) Carbon nanotube-supported gold nanoparticles as efficient catalysts for selective oxidation of cellobiose into gluconic acid in aqueous medium. Chem Commun 46:7179–7181. doi:  10.1039/b917224f Google Scholar
  129. 129.
    Tarabanko VE, Chernyak MY, Aralova SV, Kuznetsov BN (2002) Kinetics of levulinic acid formation from carbohydrates at moderate temperatures. React Kinet Catal Lett 75:117–126Google Scholar
  130. 130.
    Taylor P, Besson M, Descorme C et al (2010) Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges. Environ Technol. 31:37–41. doi:  10.1080/09593331003628065 Google Scholar
  131. 131.
    Tembe SM, Patrick G, Scurrell MS (2009) Acetic acid production by selective oxidation of ethanol using Au catalysts supported on various metal oxide. Gold Bulletin 42:321–327. doi: 10.1007/BF03214954 Google Scholar
  132. 132.
    Thielecke N, Aytemir M, Prüsse U (2007) Selective oxidation of carbohydrates with gold catalysts: Continuous-flow reactor system for glucose oxidation. Catal Today 121:115–120. doi: 10.1016/j.cattod.2006.11.015 Google Scholar
  133. 133.
    Thielecke N, Vorlop K-D, Prüße U (2007) Long-term stability of an Au/Al2O3 catalyst prepared by incipient wetness in continuous-flow glucose oxidation. Catal Today 122:266–269. doi: 10.1016/j.cattod.2007.02.008 Google Scholar
  134. 134.
    Tominaga K, Mori A, Fukushima Y et al (2011) Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose. Green Chem 13:810–812. doi: 10.1039/c0gc00715c Google Scholar
  135. 135.
    Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342. doi: 10.1016/ Google Scholar
  136. 136.
    Verendel J, Church T, Andersson P (2011) Catalytic one-pot production of small organics from polysaccharides. Synthesis 2011:1649–1677. doi: 10.1055/s-0030-1260008 Google Scholar
  137. 137.
    Villa A, Veith GM, Prati L (2010) Selective oxidation of glycerol under acidic conditions using gold catalysts. Angew Chem Int Ed Engl 49:4499–4502. doi: 10.1002/anie.201000762 Google Scholar
  138. 138.
    Villar JC, Caperos A (2001) Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol 35(3):245–255Google Scholar
  139. 139.
    Van de Vyver S, Thomas J, Geboers J et al (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy Environ Sci 4:3601–3610. doi: 10.1039/c1ee01418h Google Scholar
  140. 140.
    Watanabe M, Aizawa Y, Iida T et al (2005) Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydr Res 340:1925–1930. doi: 10.1016/j.carres.2005.06.017 Google Scholar
  141. 141.
    Wei Y, Liu J, Zhao Z et al (2011) Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. Angew Chem Int Ed Engl 50:2326–2329. doi: 10.1002/anie.201006014 Google Scholar
  142. 142.
    Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5:7559–7574. doi: 10.1039/c2ee21593d Google Scholar
  143. 143.
    Wenkin M, Touillaux R, Ruiz P et al (1996) Influence of metallic precursors on the properties of carbon-supported bismuth-promoted palladium catalysts for the selective oxidation of glucose to gluconic acid. Appl Catal A 148:181–199. doi: 10.1016/S0926-860X(96)00231-1 Google Scholar
  144. 144.
    Wu S, Fogiel AJ, Petrillo KL et al (2008) Protein engineering of nitrilase for chemoenzymatic production of glycolic acid. Biotechnol Bioeng 99:717–720. doi: 10.1002/bit.21643 Google Scholar
  145. 145.
    Xu B, Madix RJ, Friend CM (2010) Achieving optimum selectivity in oxygen assisted alcohol cross-coupling on gold. J Am Chem Soc 132:16571–16580. doi: 10.1021/ja106706v Google Scholar
  146. 146.
    Yan L, Yang N, Pang H, Liao B (2008) Production of levulinic acid from bagasse and paddy straw by liquefaction in the presence of hydrochloride acid. CLEAN–soil. Air, Water 36:158–163. doi: 10.1002/clen.200700100 Google Scholar
  147. 147.
    Yan X, Jin F, Tohji K et al (2010) Hydrothermal conversion of carbohydrate biomass to lactic acid. AIChE J 56:2727–2733. doi: 10.1002/aic Google Scholar
  148. 148.
    Yin H, Zhou C, Xu C et al (2008) Aerobic oxidation of D-glucose on support-free nanoporous gold. J Phys Chem C 112:9673–9678Google Scholar
  149. 149.
    Yin S, Dolan R, Harris M, Tan Z (2010) Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil. Bioresour Technol 101:3657–3664. doi: 10.1016/j.biortech.2009.12.058 Google Scholar
  150. 150.
    Yokoyama T, Chang H-M, Reiner RS et al (2004) Polyoxometalate oxidation of non-phenolic lignin subunits in water: Effect of substrate structure on reaction kinetics. Holzforschung 58:116–121. doi: 10.1515/HF.2004.016 Google Scholar
  151. 151.
    Yu Y, Wu H (2010) Understanding the primary liquid products of cellulose hydrolysis in hot-compressed water at various reaction temperatures. Energy Fuels 24:1963–1971. doi: 10.1021/ef9013746 Google Scholar
  152. 152.
    Yu Y, Wu H (2010) Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res 49:3902–3909. doi: 10.1021/ie901925g MathSciNetGoogle Scholar
  153. 153.
    Yu Y, Wu H (2011) Kinetics and mechanism of glucose decomposition in hot-compressed water: effect of initial glucose concentration. Ind Eng Chem Res 50:10500–10508. doi: 10.1021/ie2011388 Google Scholar
  154. 154.
    Zakzeski J, Agnieszka D, Bruijnincx PCA, Weckhuysen BM (2011) Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst. Appl Catal A 394:79–85. doi: 10.1016/j.apcata.2010.12.026 Google Scholar
  155. 155.
    Zeng W, Cheng D, Chen F, Zhan X (2009) Catalytic conversion of glucose on Al–Zr mixed oxides in hot compressed water. Catal Lett 133:221–226. doi: 10.1007/s10562-009-0160-3 Google Scholar
  156. 156.
    Zhang H, Toshima N (2013) Glucose oxidation using Au-containing bimetallic and trimetallic nanoparticles. Catal Sci Technol 3:268–278. doi: 10.1039/c2cy20345f Google Scholar
  157. 157.
    Zhang J, Deng H, Lin L (2009) Wet aerobic oxidation of lignin into aromatic aldehydes catalysed by a perovskite-type oxide: LaFe1-xCuxO3. Molecules 394:2747–2757. doi:  10.3390/molecules14082747 Google Scholar
  158. 158.
    Zhang J, Liu X, Hedhili MN et al (2011) Highly selective and complete conversion of cellobiose to gluconic acid over Au-Cs2HPW12O40 nanocomposite catalyst. ChemCatChem 3:1294–1298Google Scholar
  159. 159.
    Zhang J, Liu X, Sun M et al (2012) Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal 2:1698–1702. doi: 10.1021/cs300342k Google Scholar
  160. 160.
    Zhang J, Weitz E (2012) An insitu NMR study of the mechanism for the catalytic conversion of fructose to 5-hydroxymethylfurfural and then to levulinic acid using 13C labeled D-fructose. ACS Catal 2:1211–1218Google Scholar
  161. 161.
    Zhang Q, Chuang KT (1998) Kinetics, catalysis, and reaction engineering alumina-supported noble metal catalysts for destructive oxidation of organic pollutants in effluent from a softwood kraft pulp mill. Ind Eng Chem Res 5885:3343–3349Google Scholar
  162. 162.
    Zhang S, Jin F, Hu J, Huo Z (2011) Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions. Bioresour Technol 102:1998–2003. doi: 10.1016/j.biortech.2010.09.049 Google Scholar
  163. 163.
    Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600. doi: 10.1126/science.1141199 Google Scholar
  164. 164.
    Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Reactivity of the gold/water interface during selective oxidation catalysis. Science 330:74–78. doi: 10.1126/science.1195055 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of NevadaRenoUSA

Personalised recommendations