Hydrothermal Conversion of Cellulose into Organic Acids with a CuO Oxidant

  • Yuanqing Wang
  • Guodong Yao
  • Fangming JinEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


In this chapter, we review some recent progress on the acid/base-catalyzed hydrothermal conversion and oxidation of cellulose into organic acids mainly in our research group. A novel one-pot production of organic acids and metal copper from cellulose and CuO under alkaline hydrothermal conditions is introduced based on our former research. The mechanism of formation of organic acids and metal copper is discussed. A principal reaction pathway from cellulose to organic acids and their reactions are also discussed. The results show that from cellulose to organic acids, the production processes are mainly composed of four stages of reactions. The reaction conditions were also optimized for production of organic acids and copper. These results show that a selective production of organic acids including lactic acid, glycolic acid, acetic acid, and formic acid can be achieved by varying reaction temperature and time and ratio of CuO and NaOH addition.


Lactic Acid Organic Acid Total Organic Carbon Batch Reactor Hydrothermal Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502CrossRefGoogle Scholar
  2. 2.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558CrossRefGoogle Scholar
  3. 3.
    Tanksale A, Beltramini JN, Lu GM (2010) A review of catalytic hydrogen production processes from biomass. Renew Sustain Energy Rev 14(1):166–182CrossRefGoogle Scholar
  4. 4.
    Gallo JMR, Alonso DM, Mellmer MA, Dumesic JA (2013) Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chem 15(1):85–90CrossRefGoogle Scholar
  5. 5.
    Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5(5):6796–6822CrossRefGoogle Scholar
  6. 6.
    Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102(8):2725–2750CrossRefGoogle Scholar
  7. 7.
    Watanabe M, Sato T, Inomata H, Smith RL, Arai K, Kruse A, Dinjus E (2004) Chemical reactions of C-1 compounds in near-critical and supercritical water. Chem Rev 104(12):5803–5821CrossRefGoogle Scholar
  8. 8.
    Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ Sci 1(1):32–65CrossRefGoogle Scholar
  9. 9.
    Kruse A (2009) Hydrothermal biomass gasification. J Supercrit Fluids 47(3):391–399MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jin FM, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ Sci 4(2):382–397CrossRefGoogle Scholar
  11. 11.
    Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513CrossRefGoogle Scholar
  12. 12.
    Jin FM, Zhou ZY, Moriya T, Kishida H, Higashijima H, Enomoto H (2005) Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ Sci Technol 39(6):1893–1902CrossRefGoogle Scholar
  13. 13.
    Amarasekara AS, Williams LD, Ebede CC (2008) Mechanism of the dehydration of d-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 degrees C: an NMR study. Carbohydr Res 343(18):3021–3024CrossRefGoogle Scholar
  14. 14.
    Guan J, Cao Q, Guo X, Mu X (2011) The mechanism of glucose conversion to 5-hydroxymethylfurfural catalyzed by metal chlorides in ionic liquid: A theoretical study. Comput Theor Chem 963(2–3):453–462CrossRefGoogle Scholar
  15. 15.
    Takeuchi Y, Jin FM, Tohji K, Enomoto H (2008) Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances. J Mater Sci 43(7):2472–2475CrossRefGoogle Scholar
  16. 16.
    Pagan-Torres YJ, Wang TF, Gallo JMR, Shanks BH, Dumesic JA (2012) Production of 5-Hydroxymethylfurfural from glucose using a combination of Lewis and Bronsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent. ACS Catal 2(6):930–934CrossRefGoogle Scholar
  17. 17.
    Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5(6):7559–7574CrossRefGoogle Scholar
  18. 18.
    Wettstein SG, Alonso DM, Chong YX, Dumesic JA (2012) Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy Environ Sci 5(8):8199–8203CrossRefGoogle Scholar
  19. 19.
    Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated Catalytic Conversion of gamma-Valerolactone to Liquid Alkenes for Transportation Fuels. Science 327(5969):1110–1114CrossRefGoogle Scholar
  20. 20.
    Shen J, Wyman CE (2012) Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields. AIChE J 58(1):236–246CrossRefGoogle Scholar
  21. 21.
    Cinlar B, Wang TF, Shanks BH (2013) Kinetics of monosaccharide conversion in the presence of homogeneous Bronsted acids. Appl Catal A 450:237–242CrossRefGoogle Scholar
  22. 22.
    Weingarten R, Cho J, Xing R, Conner WC, Huber GW (2012) Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions. ChemSusChem 5(7):1280–1290CrossRefGoogle Scholar
  23. 23.
    Yang Y, Hu CW, Abu-Omar MM (2012) Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3 ⋅ 6H2O catalyst in a biphasic solvent system. Green Chem 14(2):509–513CrossRefGoogle Scholar
  24. 24.
    Wang TF, Pagan-Torres YJ, Combs EJ, Dumesic JA, Shanks BH (2012) Water-compatible Lewis acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural in a biphasic solvent system. Top Catal 55(7–10):657–662CrossRefGoogle Scholar
  25. 25.
    Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782):1933–1937CrossRefGoogle Scholar
  26. 26.
    Asghari FS, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Ind Eng Chem Res 45(7):2163–2173CrossRefGoogle Scholar
  27. 27.
    Jin FM, Zhou ZY, Enomoto H, Moriya T, Higashijima H (2004) Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water. Chem Lett 33(2):126–127CrossRefGoogle Scholar
  28. 28.
    Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1999) Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38(8):2888–2895CrossRefGoogle Scholar
  29. 29.
    Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13(1–3):261–268CrossRefGoogle Scholar
  30. 30.
    Kabyemela BM, Adschiri T, Malaluan R, Arai K (1997) Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical water. Ind Eng Chem Res 36(6):2025–2030CrossRefGoogle Scholar
  31. 31.
    Kishida H, Jin FM, Yan XY, Moriya T, Enomoto H (2006) Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction. Carbohydr Res 341(15):2619–2623CrossRefGoogle Scholar
  32. 32.
    Yan X, Jin F, Tohji K, Kishita A, Enomoto H (2010) Hydrothermal conversion of carbohydrate biomass to lactic acid. AIChE J 56(10):2727–2733CrossRefGoogle Scholar
  33. 33.
    Yan XY, Jin FM, Tohji K, Moriya T, Enomoto H (2007) Production of lactic acid from glucose by alkaline hydrothermal reaction. J Mater Sci 42(24):9995–9999CrossRefGoogle Scholar
  34. 34.
    Sánchez C, Egüés I, García A, Llano-Ponte R, Labidi J (2012) Lactic acid production by alkaline hydrothermal treatment of corn cobs. Chem Eng J 181–182:655–660CrossRefGoogle Scholar
  35. 35.
    Jin FM, Yun J, Li GM, Kishita A, Tohji K, Enomoto H (2008) Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem 10(6):612–615CrossRefGoogle Scholar
  36. 36.
    Noyori R, Aoki M, Sato K (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun 16:1977–1986CrossRefGoogle Scholar
  37. 37.
    Quitain AT, Faisal M, Kang K, Daimon H, Fujie K (2002) Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes. J Hazard Mater 93(2):209–220CrossRefGoogle Scholar
  38. 38.
    Goto M, Obuchi R, Hiroshi T, Sakaki T, Shibata M (2004) Hydrothermal conversion of municipal organic waste into resources. Bioresour Technol 93(3):279–284CrossRefGoogle Scholar
  39. 39.
    Shen Z, Zhou J, Zhou X, Zhang Y (2011) The production of acetic acid from microalgae under hydrothermal conditions. Appl Energy 88(10):3444–3447CrossRefGoogle Scholar
  40. 40.
    Yoneda N, Kusano S, Yasui M, Pujado P, Wilcher S (2001) Recent advances in processes and catalysts for the production of acetic acid. Appl Catal A 221(1–2):253–265CrossRefGoogle Scholar
  41. 41.
    Croiset E, Rice SF, Hanush RG (1997) Hydrogen peroxide decomposition in supercritical water. AIChE J 43(9):2343–2352CrossRefGoogle Scholar
  42. 42.
    Akiya N, Savage PE (2000) Effect of water density on hydrogen peroxide dissociation in supercritical water. 1. Reaction equilibrium. J Phys Chem A 104(19):4433–4440CrossRefGoogle Scholar
  43. 43.
    Akiya N, Savage PE (2000) Effect of water density on hydrogen peroxide dissociation in supercritical water. 2. Reaction kinetics. J Phys Chem A 104(19):4441–4448CrossRefGoogle Scholar
  44. 44.
    Fang Y, Zeng X, Yan P, Jing Z, Jin F (2012) An acidic two-step hydrothermal process to enhance acetic acid production from carbohydrate biomass. Ind Eng Chem Res 51(12):4759–4763CrossRefGoogle Scholar
  45. 45.
    Grasemann M, Laurenczy G (2012) Formic acid as a hydrogen source—recent developments and future trends. Energy Environ Sci 5(8):8171–8181CrossRefGoogle Scholar
  46. 46.
    Yao GD, Huo ZB, Jin FM (2011) Direct reduction of copper oxide into copper under hydrothermal conditions. Res Chem Intermed 37(2):351–358CrossRefGoogle Scholar
  47. 47.
    Li Q, Yao G, Zeng X, Jing Z, Huo Z, Jin F (2012) Facile and green production of Cu from CuO using cellulose under hydrothermal conditions. Ind Eng Chem Res 51(7):3129–3136CrossRefGoogle Scholar
  48. 48.
    Yao GD, Zeng X, Li QJ, Wang YQ, Jing ZZ, Jin FM (2012) Direct and highly efficient reduction of NiO into Ni with cellulose under hydrothermal conditions. Ind Eng Chem Res 51(23):7853–7858CrossRefGoogle Scholar
  49. 49.
    Wang Y, Jin F, Sasaki M, Wang F, Wahyudiono, Jing Z, Goto M (2013) Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions. AIChE J 59(6):2096–2104CrossRefGoogle Scholar
  50. 50.
    Zhang S, Jin F, Hu J, Huo Z (2011) Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions. Bioresour Technol 102(2):1998–2003CrossRefGoogle Scholar
  51. 51.
    Onwudili JA, Williams PT (2009) Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass. Int J Hydrogen Energy 34(14):5645–5656CrossRefGoogle Scholar
  52. 52.
    Akiya N, Savage PE (1998) Role of water in formic acid decomposition. AIChE J 44(2):405–415CrossRefGoogle Scholar
  53. 53.
    Fievet F, Fievet-Vincent F, Lagier J-P, Dumont B, Figlarz M (1993) Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process. J Mater Chem 3(6):627–632CrossRefGoogle Scholar
  54. 54.
    Luo R (1987) Overall equilibrium diagrams for hydrometallurgical systems: copper-ammonia—water system. Hydrometallurgy 17(2):177–199CrossRefGoogle Scholar
  55. 55.
    Oishi T, Yaguchi M, Koyama K, Tanaka M, Lee JC (2008) Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis. Electrochim Acta 53(5):2585–2592CrossRefGoogle Scholar
  56. 56.
    Moskalyk RR, Alfantazi AM (2003) Review of copper pyrometallurgical practice: today and tomorrow. Miner Eng 16(10):893–919CrossRefGoogle Scholar
  57. 57.
    Yu JL, Savage PE (1998) Decomposition of formic acid under hydrothermal conditions. Ind Eng Chem Res 37(1):2–10CrossRefGoogle Scholar
  58. 58.
    Cheary RW, Coelho A (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25:109–121CrossRefGoogle Scholar
  59. 59.
    Larcher D, Patrice R (2000) Preparation of metallic powders and alloys in polyol media: a thermodynamic approach. J Solid State Chem 154(2):405–411CrossRefGoogle Scholar
  60. 60.
    Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841CrossRefGoogle Scholar
  61. 61.
    Deng T, Sun J, Liu H (2010) Cellulose conversion to polyols on supported Ru catalysts in aqueous basic solution. Sci China-Chem 53(7):1476–1480CrossRefGoogle Scholar
  62. 62.
    Yan X, Jini F, Kishita A, Enomoto H, Tohji K (2008) Formation of lactic acid from cellulosic biomass by alkaline hydrothermal reaction. In: Tohji K, Tsuchiya N, Jeyadevan B, Water Dyn 987:50–53Google Scholar
  63. 63.
    van der Weijden RD, Mahabir J, Abbadi A, Reuter MA (2002) Copper recovery from copper(II) sulfate solutions by reduction with carbohydrates. Hydrometallurgy 64(2):131–146CrossRefGoogle Scholar
  64. 64.
    Jeyadevan B, Joseyphus RJ, Kodama D, Matsumoto T, Sato Y, Tohji K (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310(2):2393–2395Google Scholar
  65. 65.
    Sakanishi K, Ikeyama N, Sakaki T, Shibata M, Miki T (1999) Comparison of the hydrothermal decomposition reactivities of chitin and cellulose. Ind Eng Chem Res 38(6):2177–2181CrossRefGoogle Scholar
  66. 66.
    Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39(8):2883–2890CrossRefGoogle Scholar
  67. 67.
    Dolan R, Yin S, Tan Z (2010) Effects of headspace fraction and aqueous alkalinity on subcritical hydrothermal gasification of cellulose. Int J Hydrogen Energy 35(13):6600–6610CrossRefGoogle Scholar
  68. 68.
    Muangrat R, Onwudili JA, Williams PT (2010) Alkali-promoted hydrothermal gasification of biomass food processing waste: a parametric study. Int J Hydrogen Energy 35(14):7405–7415CrossRefGoogle Scholar
  69. 69.
    Yanik J, Ebale S, Kruse A, Saglam M, Yueksel M (2007) Biomass gasification in supercritical water (Part I): effect of the nature of biomass. Fuel 86(15):2410–2415CrossRefGoogle Scholar
  70. 70.
    Fang Z, Minowa T, Fang C, Smith RL Jr, Inomata H, Kozinski JA (2008) Catalytic hydrothermal gasification of cellulose and glucose. Int J Hydrogen Energy 33(3):981–990CrossRefGoogle Scholar
  71. 71.
    Takahashi H, Kori T, Onoki T, Tohji K, Yamasaki N (2008) Hydrothermal processing of metal based compounds and carbon dioxide for the synthesis of organic compounds. J Mater Sci 43(7):2487–2491CrossRefGoogle Scholar
  72. 72.
    Li Y, Xu GH, Liu CJ, Eliasson B, Xue BZ (2001) Co-generation of syngas and higher hydrocarbons from CO2 and CH4 using dielectric-barrier discharge: effect of electrode materials. Energy Fuels 15(2):299–302CrossRefGoogle Scholar
  73. 73.
    Yuksel A, Sasaki M, Goto M (2011) Electrolysis reaction pathway for lactic acid in subcritical water. Ind Eng Chem Res 50(2):728–734CrossRefGoogle Scholar
  74. 74.
    Jin FM, Zhang GY, Jin YJ, Watanabe Y, Kishita A, Enomoto H (2010) A new process for producing calcium acetate from vegetable wastes for use as an environmentally friendly deicer. Bioresour Technol 101(19):7299–7306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.RIKEN Research Cluster for Innovation Nakamura LaboratorySaitamaJapan
  2. 2.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations