Skip to main content

Hydrothermal Treatment of Municipal Solid Waste for Producing Solid Fuel

  • Chapter
  • First Online:
Application of Hydrothermal Reactions to Biomass Conversion

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The usage of municipal solid waste (MSW) is usually hindered by its nonuniformity, high moisture, low energy density, and the occurrence of chlorine in the plastic-impregnated waste. A hydrothermal treatment is developed to convert the MSW into solid fuel by employing a commercial scale system of about 1 ton capacity, applying saturated steam at about 2 MPa for about 60 min holding time. It was shown that the product has better uniformity, higher density, and better drying performance compared to MSW without reducing its heating value. The combustion characteristic of the final product was similar to that of sub-bituminous coal, and capable of reducing the SO2 and NO emissions during co-combustion with coal. Additionally, the product showed that about 80 % of the organic chlorine was converted into inorganic, water-soluble chlorine, and the total chlorine content in the water-washed product was down to 16 %. It was calculated that the required energy for the hydrothermal treatment was 0.8 MJ/kg MSW, lower than conventional RDF production process which needs 1.35 MJ/kg MSW. It can be concluded that the hydrothermal treatment can be employed to convert MSW into a chlorine-free solid fuel suitable for co-combustion with coal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ministry of Environment Japan (2010) State of discharge and treatment of municipal solid waste in FY 2008. http://www.env.go.jp/en/headline/headline.php?serial=1333

  2. The Asahi Shimbun (2008 )Coal prices surging due to global demand. Australia Flooding. Accessed 4 March 2008

    Google Scholar 

  3. British Petroleum (BP) (2010) BP statistical review of World energy. http://www.bp.com/statisticalreview/

  4. UNEP (2005) Solid waste management, vol. I, chapter X: types of waste-to-energy systems. http://www.unep.or.jp/ietc/publications/spc/solid_waste_management/index.asp

  5. Plastic Waste Management Institute Japan (2010) Breakdown of total plastic waste. In: Plastic products, plastic waste and resource recovery [2008], PWMI Newsletter No. 39, (2010). http://www2.pwmi.or.jp/siryo/ei/ei_pdf/ei39.pdf (accessed December 2010)

  6. IPCC’s Task Force on National Greenhouse Gas Inventories (2010) MSW composition data by percent-regional defaults. In: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol 5: Waste, Chapter 2. Waste generation, composition and management data. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html. Accessed Dec 2010

  7. IPCC Guidelines for National Greenhouse Gas Inventories (2006) Vol. 5: Waste, Chapter 2. Waste generation, composition and management data. IPCC’s task force on national greenhouse gas inventories, 2010. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html

  8. European Commission—Directorate General Environment (2003) Refuse derived fuel, current practice and perspective: final report. http://ec.europa.eu/environment/waste/studies/pdf/rdf.pdf. Accessed Dec 2010

  9. Zevenhoven R, Axelsen EP, Hupa M (2002) Pyrolysis of waste-derived fuel containing PVC. Fuel 81:507–510

    Article  Google Scholar 

  10. Ma S, Lu J, Gao J (2002) Study of the low temperature pyrolysis of PVC. Energy Fuels 16:338–342

    Article  Google Scholar 

  11. Miranda R, Yang J, Roy C, Vasile C (1999) Vacuum pyrolysis of PVC. Polym Degrad Stab 64:127–144

    Article  Google Scholar 

  12. Xiao X, Zeng Z, Xiao S (2008) Behavior and products of mechano-chemical dechlorination of polyvinylchloride and poly (vinylidene chloride). J Hazard Mater 151:118–124

    Article  Google Scholar 

  13. Kamo T, Kondo Y, Kodera Y, Sato Y, Kushiyama S (2003) Effects of solvent on degradation of poly(vinyl chloride). Polym Degrad Stab 81:187–196

    Article  Google Scholar 

  14. Sato K, Jian Z, Soon JH, Namioka T, Yoshikawa K, Morohashi Y et al (2004) Studies on fuel conversion of high moisture content biomass using middle pressure steam. In: Proceeding of the thermal engineering conference, pp 259–260

    Google Scholar 

  15. Yoshikawa K (2005) Fuelization and gasification of wet biomass with middle-pressure steam. Eco Ind 10:29–37 (in Japanese)

    MathSciNet  Google Scholar 

  16. Muthuraman M, Namioka T, Yoshikawa K (2010) Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: a thermogravimetric analysis. Appl Energy 87:141–148

    Article  Google Scholar 

  17. Prawisudha P, Namioka T, Yoshikawa K (2012) Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment. Appl Energy 90:298–304

    Google Scholar 

  18. Roditi International Co. Ltd. (2010) Hydrothermal crystal growth—Quartz. http://www.roditi.com/SingleCrystal/Quartz/Hydrothermal_Growth.html. Accessed Dec 2010

  19. Savage PE, Levine RB, Huelsman CM (2010) Hydrothermal processing of biomass. In: Thermochemical conversion of biomass to liquid fuels and chemicals, Ch. 8. RSC Publishing, Cambridge

    Google Scholar 

  20. Cole EL, Hess HV, Guptill FE (2010) Preparation of solid fuel-water slurries. United States Patent No. 4,104,035, http://www.google.com/patents?hl=id&lr=&vid=USPAT4104035&id=c9EuAAAAEBAJ&oi=fnd&dq=hydrothermal+fuel&printsec=abstract#v=onepage&q=hydrothermal%20fuel&f=false. Accessed Dec 2010

  21. Cole EL, Hess HV, Wong J (2010) Upgrading of solid fuels. United States Patent No. 4,047,898, http://www.google.com/patents?hl=id&lr=&vid=USPAT4047898&id=VJU3AAAAEBAJ&oi=fnd&dq=hydrothermal+fuel&printsec=abstract#v=onepage&q=hydrothermal%20fuel&f=false. Accessed Dec 2010

  22. Bobleter O, Niesner R, Röhr M (1976) The hydrothermal degradation of cellulosic matter to sugars and their fermentative conversion to protein. J Appl Polym Sci 20:2083–2093

    Article  Google Scholar 

  23. Goto M, Obuchi R, Hirose T, Sakaki T, Shibata M (2004) Hydrothermal conversion of municipal organic waste into resources. Bioresour Technol 93:279–284

    Article  Google Scholar 

  24. Goudriaan F, Naber JE (2008) HTU diesel from wet waste streams. In: Symposium new biofuels, Berlin 2008. http://www.fnr-server.de/cms35/fileadmin/allgemein/pdf/veranstaltungen/NeueBiokraftstoffe/5_HTU.pdf. Accessed Dec 2010

  25. Brightstar Environmental (2010) Solid Waste & Energy Recycling Facility (SWERF) Technology. http://www.sovereignty.org.uk/features/eco/swerf.html. Accessed Dec 2010

  26. Ompeco (2010) Converter MO Series. http://www.ompeco.com/converter/en_serie_mo.html. Accessed Dec 2010

  27. Endo K, Emori N (2001) Dechlorination of poly(vinyl chloride) without anomalous units under high pressure and at high temperature in water. Polym Degrad Stab 74:113–117

    Article  Google Scholar 

  28. Takeshita Y, Kato K, Takahashi K, Sato Y, Nishi S (2004) Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions. J Supercrit Fluids 31:185–193

    Article  Google Scholar 

  29. Shanableh A (2000) Production of useful organic matter from sludge using hydrothermal treatment. Water Resour 34:945–951

    Google Scholar 

  30. Wenzhi H, Guangming L, Lingzhao K, Hua W, Juwen H, Jingcheng X (2008) Application of hydrothermal reaction in resource recovery of organic wastes. Resour Convers Recycl 52:691–699

    Article  Google Scholar 

  31. Ishida Y, Kumabe K, Hata K, Tanifuji K, Hasegawa T, Kitagawa K et al (2009) Selective hydrogen generation from real biomass through hydrothermal reaction at relatively low temperatures. Biomass Bioener 33:8–13

    Article  Google Scholar 

  32. Jomaa S, Shanableh A, Khalil W, Trebilco B (2003) Hydrothermal decomposition and oxidation of the organic component of municipal and industrial waste products. Adv Environ Resour 7:647–653

    Article  Google Scholar 

  33. Sato K, Jian Z, Soon JH, Namioka T, Yoshikawa K, Morohashi Y et al (2004) Studies on fuel conversion of high moisture content biomass using middle pressure steam. In: Proceeding of thermal engineering conference, G132

    Google Scholar 

  34. Yoshikawa K (2005) Fuelization and gasification of wet biomass with middle-pressure steam. Eco Ind 10:29–37 (in Japanese)

    MathSciNet  Google Scholar 

  35. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: A summery and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Bioref 4:160–177

    Google Scholar 

  36. Krammer P, Vogel H (2000) Hydrolysis of esters in subcritical and supercritical water. J Supercrit Fluids 16(3):189–206

    Article  Google Scholar 

  37. Bobleter O (2005) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    Article  Google Scholar 

  38. Sakaguchi M, Laursen K, Nakagawa H, Miura K (2008) Hydrothermal upgrading of Loy Yang Brown coal-Effect of upgrading conditions on the characteristics of the products. Fuel Prog Technol 89:391–396

    Article  Google Scholar 

  39. Yuliansyah T, Jirajima Y, Kumagai S, Sasaki K (2010) Production of solid biofuel from agriculture wastes of the palm oil industry by hydrothermal treatment. Waste Biomass Valor 1:395–405

    Article  Google Scholar 

  40. Hammerschimidt N, Boukis E, Hauer U, Galla E, Dinjus B, Hitzmann T, Larsen S, Nygaard D (2011) Catalytic conversion of waste biomass by hydrothermal treatment. Fuel 90:555–562

    Google Scholar 

  41. Nonaka M, Hirajima T, Sasaki K (2011) Upgrading of low rank coal and woody biomass mixture by hydrothermal treatment. Fuel 90:2578–2584

    Article  Google Scholar 

  42. Luo SY, Xiao B, Ho ZQ (2009) An experimental study on a novel shredder for municipal solid waste (MSW). Int J Hydrogen Energy 34(3):1270–2272

    Article  Google Scholar 

  43. Luo S, Xiao B, Xiao L (2010) A novel shredder for municipal solid waste (MSW): influence of feed moisture on breakage performance. Bioresour Technol 101:6256–6258

    Article  Google Scholar 

  44. ASTM Standard D388-99 (1999) Standard classification of coals by rank

    Google Scholar 

  45. European Commission—Directorate General Environment (2003) Refuse derived fuel, current practice and perspective: final report. http://ec.europa.eu/environment/waste/studies/pdf/rdf.pdf. Accessed Dec 2010

  46. Ryu C, Yang YB, Khor A, Yates NE, Sharifi VN, Swithenbank J (2006) Effect of fuel properties on biomass combustion: Part I. Experiments—fuel type, equivalence ratio and particle size. Fuel 85(7–8):1039–1046

    Google Scholar 

  47. Muthuraman M, Namioka T, Yoshikawa K (2009) A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste. Bioresour Technol. doi:10.1016/j.biortech.2009.11.060

  48. Muthuraman M, Namioka T, Yoshikawa K (2010) Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: a thermogravimetric analysis. Appl Energy 87:141–148

    Article  Google Scholar 

  49. Chen Y, Mori S (1995) Estimating the combustibility of various coals by TG-DTA. Energy Fuels 9:71–74

    Article  Google Scholar 

  50. Khan AA, de Jong W, Spliethoff H (2005) Biomass combustion in fluidized bed boiler. Bioenergy for Wood Industry, Jyväskylä, Finland, pp 365–370

    Google Scholar 

  51. Werther J, Saenger M, Hartge E-U, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27

    Article  Google Scholar 

  52. Löffler Gerhard, Wargadalam Verina J, Winter Franz (2002) Catalytic effect of biomass ash on CO, CH4 and HCN oxidation under fluidised bed combustor conditions. Fuel 81(6):711–717

    Article  Google Scholar 

  53. Lu Y, Hippinen I, Jahkola A (1995) Control of NOx and N2O in pressurized fluidized-bed combustion. Fuel Energy Abstracts 36(3):216

    Google Scholar 

  54. Khan AA, de Jong W, Jansens PJ, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 90(1):21–50

    Article  Google Scholar 

  55. Amand LE, Leckner B (1991) Influence of fuel on the emission of nitrogen-oxides (NO and N2O) from an 8-MWth fluidized-bed boiler. Combust Flame 84(1–2):181–196

    Article  Google Scholar 

  56. Hwang IH, Matsuto T, Tanaka N (2006) Water-soluble characteristics of chlorine in char derived from municipal solid wastes. Waste Manag 26:571–579

    Article  Google Scholar 

  57. Caputo AC, Pelagagge PM (2002) RDF production plants I: Design and costs. Appl Therm Eng 22:423–437

    Article  Google Scholar 

  58. Sikka P Energy from MSW: RDF pelletization—A pilot Indian plant

    Google Scholar 

  59. Moyers CG, Baldwin GW (1999) Psychrometry, evaporative cooling, and solids drying. In: Perry’s chemical engineer’s handbook, 7th edn, Section 12. McGraw-Hill, New York

    Google Scholar 

  60. Glasser L (2004) Water, ordinary water substance. J Chem Educ 81:414–418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunio Yoshikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshikawa, K., Prawisudha, P. (2014). Hydrothermal Treatment of Municipal Solid Waste for Producing Solid Fuel. In: Jin, F. (eds) Application of Hydrothermal Reactions to Biomass Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54458-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54458-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54457-6

  • Online ISBN: 978-3-642-54458-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics