Hydrothermal Carbonization of Lignocellulosic Biomass

  • Charles J. CoronellaEmail author
  • Joan G. Lynam
  • M. Toufiq Reza
  • M. Helal Uddin
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Hydrothermal carbonization (HTC) of lignocellulosic biomass is a pretreatment process to homogenize and densify diverse biomass feedstocks. The solid product is hydrophobic and friable with ultimate analysis similar to that of lignite, and is easily made into durable, dense pellets. Byproducts include aqueous sugars, acids, carbon dioxide, and water. The process consists of treatment in hot (180–280 °C) compressed water for short contact times, and has been demonstrated on woody biomass, agricultural residues, and grasses. HTC reactions include hydrolysis, dehydration, decarboxylation, condensation, polymerization, and aromatization. Nearly all hemicellulose is removed and converted to simple sugars and furfural. Cellulose begins to react at 200 °C, and produces oligosaccharides, glucose, 5-HMF, and organic acids. Lignin is relatively inert. HTC reactions are relatively fast, with reaction times measured in minutes. Both hemicellulose and cellulose degrade by apparent first-order reaction kinetics, where hemicellulose exhibits an activation energy of 30 kJ mol−1, and that of cellulose is 73 kJ mol−1. There has been a flurry of research on HTC published recently, but little commercial activity. Innovative design is required for commercialization, and costs may be high, due to high pressure operation. However, as demand for biomass increases, HTC will surely play a role in enhancing supply chain logistics.


Switch Grass Corn Stover Lignocellulosic Biomass Equilibrium Moisture Content Inductively Couple Plasma Atomic Emission Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energy Rev 15(5):2262–2289. doi: 10.1016/j.rser.2011.02.015 Google Scholar
  2. 2.
    Telmo C, Lousada J (2011) Heating values of wood pellets from different species. Biomass Bioenergy 35(7):2634–2639. doi: 10.1016/j.biombioe.2011.02.043 Google Scholar
  3. 3.
    Acharjee TC, Coronella CJ, Vasquez VR (2011) Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour Technol 102(7):4849–4854. doi: 10.1016/j.biortech.2011.01.018 Google Scholar
  4. 4.
    Lynam JG, Coronella CJ, Yan W, Reza MT, Vasquez VR (2011) Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 102(10):6192–6199. doi: 10.1016/j.biortech.2011.02.035 Google Scholar
  5. 5.
    Lynam JG, Reza MT, Vasquez VR, Coronella CJ (2012) Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass. Fuel 99:271–273. doi: 10.1016/j.fuel.2012.04.035 Google Scholar
  6. 6.
    Reza MT, Lynam JG, Vasquez VR, Coronella CJ (2012) Pelletization of biochar from hydrothermally carbonized wood. Environ Prog Sustain Energy 31(2):225–234. doi: 10.1002/ep.11615 Google Scholar
  7. 7.
    Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vasquez VR (2010) Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 24:4738–4742. doi: 10.1021/ef901273n Google Scholar
  8. 8.
    Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28(3):435–440. doi: 10.1002/ep.10385 Google Scholar
  9. 9.
    Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4(2):160–177. doi: 10.1002/bbb.198 Google Scholar
  10. 10.
    Bergius F (1913) Die Anwendung hoher Drücke bei chemischen Vorgängenund eine Nachbil dung des Entstehungsprozesses der Steinkohle. In: Wilhelm Knapp, pp 41–58Google Scholar
  11. 11.
    Bergius F, Erasmus P (1928) Naturwissenschaften 16:1Google Scholar
  12. 12.
    Berl E, Schmidt A (1932) Liebigs Ann 493:97Google Scholar
  13. 13.
    Bobleter O, Niesner R, Rohr M (1976) Hydrothermal degradation of cellulosic matter to sugars and their fermentative conversion to protein. J Appl Polym Sci 20(8):2083–2093. doi: 10.1002/app.1976.070200805 Google Scholar
  14. 14.
    Fischer F (1921) Schrader H BrennstChemie 2:37Google Scholar
  15. 15.
    Schuhmacher JP (1960) Chemical structure and properties of coal XXVI-studies on artificial coalification. Fuel 39(3):223–234Google Scholar
  16. 16.
    Smith RC, Howard HC (1937) J Amer Chem Soc 59:234Google Scholar
  17. 17.
    Tropsch H, Von Philippovich A (1925) Abb Kennt Kohle 7:84–105Google Scholar
  18. 18.
    Guiotoku M, Rambo CR, Hansel FA, Magalhaes WLE, Hotza D (2009) Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater Lett 63(30):2707–2709. doi: 10.1016/j.matlet.2009.09.049 Google Scholar
  19. 19.
    Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25(4):1802–1810. doi: 10.1021/ef101745n Google Scholar
  20. 20.
    van Krevelen DW (1950) Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29:269–284Google Scholar
  21. 21.
    Niesner R, Bruller W, Bobleter O (1978) Carbohydrate analysis in hydrothermally degraded plant material by high-pressure liquid-chromatography (hplc). Chromatographia 11(7):400–402. doi: 10.1007/bf02312653 Google Scholar
  22. 22.
    Davis HG (1983) Direct liquefaction of biomass final report and summary of effort 1977–1983. LBL- 16243, Lawrence Berkeley Laboratory, University of California, BerkeleyGoogle Scholar
  23. 23.
    Ergun S (1981) Review of biomass liquefaction efforts. LBL-13957, Lawrence Berkeley Laboratory, University of California, BerkeleyGoogle Scholar
  24. 24.
    Ruyter HP (1982) Coalification model. Fuel 61(12):1182–1187. doi: 10.1016/0016-2361(82)90017-5 Google Scholar
  25. 25.
    Bonn G, Concin R, Bobleter O (1983) Hydrothermolysis—a new process for the utilization of biomass. Wood Sci Technol 17(3):195–202Google Scholar
  26. 26.
    Schwald W, Concin R, Bonn G, Bobleter O (1985) Analysis of oligomeric and monomeric carbohydrates from hydrothermal degradation of cotton-waste materials using hplc and gpc. Chromatographia 20(1):35–40. doi: 10.1007/bf02260484 Google Scholar
  27. 27.
    Schwald W, Bobleter O (1989) Hydrothermolysis of cellulose under static and dynamic conditions at high-temperatures. J Carbohydr Chem 8(4):565–578. doi: 10.1080/07328308908048017 Google Scholar
  28. 28.
    Adschiri T, Hirose S, Malaluan R, Arai K (1993) Noncatalytic conversion of cellulose in supercritical and subcritical water. J Chem Eng Jpn 26(6):676–680. doi: 10.1252/jcej.26.676 Google Scholar
  29. 29.
    Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841. doi: 10.1016/0079-6700(94)90033-7 Google Scholar
  30. 30.
    Yu Y, Wu HW (2010) Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res 49(8):3902–3909. doi: 10.1021/ie901925g MathSciNetGoogle Scholar
  31. 31.
    Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098. doi: 10.1021/cr068360d Google Scholar
  32. 32.
    Nimz H (1973) Chemistry of potential chromophoric groups in beech lignin. Tappi 56(5):124–126Google Scholar
  33. 33.
    Paakkari T, Serimaa R, Fink HP (1989) Structure of amorphous cellulose. Acta Polym 40(12):731–734. doi: 10.1002/actp.1989.010401205 Google Scholar
  34. 34.
    Fink H-P, Philipp B, Paul D, Serimaa R, Paakkari T (1987) The structure of amorphous cellulose as revealed by wide-angle xray scattering. Polymer 28(8):1265–1270Google Scholar
  35. 35.
    Yu Y, Wu HW (2010) Evolution of primary liquid products and evidence of in situ structural changes in cellulose with conversion during hydrolysis in hot-compressed water. Ind Eng Chem Res 49(8):3919–3925. doi: 10.1021/ie902020t MathSciNetGoogle Scholar
  36. 36.
    Matsumura Y, Yanachi S, Yoshida T (2006) Glucose decomposition kinetics in water at 25 MPa in the temperature range of 448–673 K. Ind Eng Chem Res 45(6):1875–1879. doi: 10.1021/ie050830r Google Scholar
  37. 37.
    Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1999) Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38(8):2888–2895. doi: 10.1021/ie9806390 Google Scholar
  38. 38.
    Yu Y, Lou X, Wu HW (2008) Some recent advances in hydrolysis of biomass in hot-compressed, water and its comparisons with other hydrolysis methods. Energy Fuels 22(1):46–60. doi: 10.1021/ef700292p Google Scholar
  39. 39.
    Sevilla M, Fuertes A (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47(9):2281–2289Google Scholar
  40. 40.
    Guiotoku M, Hansel FA, Novotny EH, Maia C (2012) Molecular and morphological characterization of hydrochar produced by microwave-assisted hydrothermal carbonization of cellulose. Pesqui Agropecu Bras 47(5):687–692Google Scholar
  41. 41.
    Yu Y, Wu HW (2011) Effect of ball milling on the hydrolysis of microcrystalline cellulose in hot-compressed water. AIChE J 57(3):793–800. doi: 10.1002/aic.12288 Google Scholar
  42. 42.
    Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291. doi: 10.1007/s10295-003-0049-x Google Scholar
  43. 43.
    Lynam JG (2012) Pretreatment of lignocellulosic biomass with acetic acid, salts, and ionic liquids in Reno, Nevada. Master’s Thesis, University of Nevada, RenoGoogle Scholar
  44. 44.
    Hu F, Ragauskas A (2012) Pretreatment and Lignocellulosic Chemistry. BioEnergy Res 5(4):1043–1066. doi: 10.1007/s12155-012-9208-0 Google Scholar
  45. 45.
    Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Als Roh-und Werkst 57(3):191–202. doi: 10.1007/s001070050039 Google Scholar
  46. 46.
    Pinkowska H, Wolak P, Zlocinska A (2011) Hydrothermal decomposition of xylan as a model substance for plant biomass waste—hydrothermolysis in subcritical water. Biomass Bioenergy 35(9):3902–3912. doi: 10.1016/j.biombioe.2011.06.015 Google Scholar
  47. 47.
    Bobleter O, Binder H (1980) Dynamic hydrothermal degradation of wood. Holzforschung 34(2):48–51. doi: 10.1515/hfsg.1980.34.2.48 Google Scholar
  48. 48.
    Jacobsen SE, Wyman CE (2002) Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. Ind Eng Chem Res 41(6):1454–1461. doi: 10.1021/ie001025+ Google Scholar
  49. 49.
    Kabel MA, Carvalheiro F, Garrote G, Avgerinos E, Koukios E, Parajo JC, Girio FM, Schols HA, Voragen AGJ (2002) Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydr Polym 50(1):47–56. doi: 10.1016/s0144-8617(02)00045-0 Google Scholar
  50. 50.
    Zhang XL, Yang WH, Blasiak W (2011) Modeling study of woody biomass: interactions of cellulose, hemicellulose, and lignin. Energy Fuels 25(10):4786–4795. doi: 10.1021/ef201097d Google Scholar
  51. 51.
    Kang SM, Li XH, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind Eng Chem Res 51(26):9023–9031. doi: 10.1021/ie300565d Google Scholar
  52. 52.
    Binder JB, Gray MJ, White JF, Zhang ZC, Holladay JE (2009) Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy 33(9):1122–1130. doi: 10.1016/j.biombioe.2009.03.006 Google Scholar
  53. 53.
    Hemmingson JA, Leary G (1980) The self-condensation reactions of the lignin model compounds, vanillyl and veratryl alcohol. Aust J Chem 33(4):917–925Google Scholar
  54. 54.
    Lynam JG, Reza MT, Vasquez VR, Coronella CJ (2012) Pretreatment of rice hulls by ionic liquid dissolution. Bioresour Technol 114:629–636. doi: 10.1016/j.biortech.2012.03.004 Google Scholar
  55. 55.
    Pinkowska H, Wolak P, Zlocinska A (2012) Hydrothermal decomposition of alkali lignin in sub- and supercritical water. Chem Eng J 187:410–414. doi: 10.1016/j.cej.2012.01.092 Google Scholar
  56. 56.
    Reza MT (2013) Upgrading biomass by hydrothermal and chemical conditioning. Ph.D Dissertation, University of Nevada, RenoGoogle Scholar
  57. 57.
    Fuertes AB, Arbestain MC, Sevilla M, Macia-Agullo JA, Fiol S, Lopez R, Smernik RJ, Aitkenhead WP, Arce F, Macias F (2010) Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust J Soil Res 48(6–7):618–626. doi: 10.1071/sr10010 Google Scholar
  58. 58.
    Petersen MO, Larsen J, Thomsen MH (2009) Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy 33(5):834–840. doi: 10.1016/j.biombioe.2009.01.004 Google Scholar
  59. 59.
    Chen SF, Mowery RA, Scarlata CJ, Chambliss CK (2007) Compositional analysis of water-soluble materials in corn stover. J Agric Food Chem 55(15):5912–5918. doi: 10.1021/jf0700327 Google Scholar
  60. 60.
    Reza MT, Lynam JG, Uddin MH, Yan W, Vasquez VR, Hoekman K, Coronella CJ (2013) Reaction kinetics and particle size effect on hydrothermal carbonization of loblolly pine. Bioresour Tech 139:161–169. doi: 10.1016/j.biortech.2013.04.028 Google Scholar
  61. 61.
    Uddin MH (2013) Master’s Thesis, University of Nevada Reno, USAGoogle Scholar
  62. 62.
    Khajavi SH, Kimura Y, Oomori T, Matsuno R, Adachi S (2005) Kinetics on sucrose decomposition in subcritical water. LWT-Food Sci Technol 38(3):297–302. doi: 10.1016/j.lwt.2004.06.005 Google Scholar
  63. 63.
    Khajavi SH, Kimura Y, Oomori R, Matsuno R, Adachi S (2005) Degradation kinetics of monosaccharides in subcritical water. J Food Eng 68(3):309–313. doi: 10.1016/j.jfoodeng.2004.06.004 Google Scholar
  64. 64.
    Oomori T, Khajavi SH, Kimura Y, Adachi S, Matsuno R (2004) Hydrolysis of disaccharides containing glucose residue in subcritical water. Biochem Eng J 18(2):143–147. doi: 10.1016/j.bej.2003.08.002 Google Scholar
  65. 65.
    Sevilla M, Macia-Agullo JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenergy 35(7):3152–3159. doi: 10.1016/j.biombioe.2011.04.032 Google Scholar
  66. 66.
    Dinjus E, Kruse A, Troger N (2011) Hydrothermal carbonization-1. influence of lignin in lignocelluloses. Chem Eng Technol 34(12):2037–2043. doi: 10.1002/ceat.201100487 Google Scholar
  67. 67.
    Heilmann SM, Jader LR, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2011) Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy 35(7):2526–2533. doi: 10.1016/j.biombioe.2011.02.022 Google Scholar
  68. 68.
    Stemann J, Ziegler F (2012). Hydrothermal carbonization (HTC): recycling of process water. 19th European biomass conference and exhibition, Berlin, pp 1894–1899Google Scholar
  69. 69.
    Inoue S, Hanaoka T, Minowa T (2002) Hot compressed water treatment for production of charcoal from wood. J Chem Eng Jpn 35(10):1020–1023. doi: 10.1252/jcej.35.1020 Google Scholar
  70. 70.
    Saeman JF (1945) Ind Eng Chem 37:42–52Google Scholar
  71. 71.
    Kobayashi T, Sakai Y (1956) Bull Agr Chem Soc Jpn 20:1–7Google Scholar
  72. 72.
    Grant GA, Han YW, Anderson AW, Frey KL (1977) Kinetics of straw hydrolysis. Dev Ind Microbiol 18:599–611Google Scholar
  73. 73.
    Tellez-Luis SJ, Ramırez JA, Vazquez M (2002) Mathematical modeling of hemicellulosic sugar production from sorghum straw. J Food Eng 52:285–291Google Scholar
  74. 74.
    Sarkar N, Aikat K (2013) Kinetic study of acid hydrolysis of rice straw. ISRN Biotechnol, vol 2013:5. Article ID 170615. doi: 10.5402/2013/170615
  75. 75.
    Guerra-Rodriguez E, Portilla-Rivera OM, Jarquin-Enriquez L, Ramirez JA, Vazquez M (2012) Acid hydrolysis of wheat straw: a kinetic study. Biomass Bioenergy 36:346–355. doi: 10.1016/j.biombioe.2011.11.005 Google Scholar
  76. 76.
    Conner AH, Wood BF, Hill CG, Harris JF (1986) In: Young RA, Rowell RM (eds) Cellulose: structure, modification and hydrolysis. Wiley, New York, pp 281–296Google Scholar
  77. 77.
    Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31(4):1157–1161. doi: 10.1021/ie00004a026 Google Scholar
  78. 78.
    Bobleter O, Concin R (1979) Cellul Chem Technol 13:583–593Google Scholar
  79. 79.
    Kim SB, Lee YY (1987) Biotechnol Bioeng Symp 17:71–84Google Scholar
  80. 80.
    Kubikova J, Zemann A, Krkoska P, Bobleter O (1996) Hydrothermal pretreatment of wheat straw for the production of pulp and paper. Tappi J 79(7):163–169Google Scholar
  81. 81.
    Zhang B, Huang HJ, Ramaswamy S (2008) Reaction kinetics of the hydrothermal treatment of lignin. Appl Biochem Biotechnol 147(1–3):119–131. doi: 10.1007/s12010-007-8070-6 Google Scholar
  82. 82.
    Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1(1):32–65. doi: 10.1039/b810100k Google Scholar
  83. 83.
    Grenman H, Ramirez F, Eranen K, Warna J, Salmi T, Murzin DY (2008) Dissolution of mineral fiber in a formic acid solution: kinetics, modeling, and gelation of the resulting sol. Ind Eng Chem Res 47(24):9834–9841. doi: 10.1021/ie800267a Google Scholar
  84. 84.
    Prins MJ, Ptasinski KJ, Janssen F (2006) Torrefaction of wood—Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77(1):28–34. doi: 10.1016/j.jaap.2006.01.002 Google Scholar
  85. 85.
    Yan W, Islam S, Coronella CJ, Vasquez VR (2012) Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass. Environ Prog Sustain Energy 31(2):200–204. doi: 10.1002/ep.11601 Google Scholar
  86. 86.
    Sjöström E (1993) Wood chemistry, fundamentals and applications, 2nd edn. Academic Press, New YorkGoogle Scholar
  87. 87.
    Xu CL, Leppanen AS, Eklund P, Holmlund P, Sjoholm R, Sundberg K, Willfor S (2010) Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydr Res 345(6):810–816. doi: 10.1016/j.carres.2010.01.007 Google Scholar
  88. 88.
    Stoklosa RJ, Hodge DB (2012) Extraction, recovery, and characterization of hardwood and grass hemicelluloses for integration into biorefining processes. Ind Eng Chem Res 51(34):11045–11053. doi: 10.1021/ie301260w Google Scholar
  89. 89.
    Ando H, Sakaki T, Kokusho T, Shibata M, Uemura Y, Hatate Y (2000) Decomposition behavior of plant biomass in hot-compressed water. Ind Eng Chem Res 39(10):3688–3693. doi: 10.1021/ie0000257 Google Scholar
  90. 90.
    Nonaka M, Hirajima T, Sasaki K (2011) Upgrading of low rank coal and woody biomass mixture by hydrothermal treatment. Fuel 90(8):2578–2584. doi: 10.1016/j.fuel.2011.03.028 Google Scholar
  91. 91.
    Phaiboonsilpa N, Yamauchi K, Lu X, Saka S (2010) Two-step hydrolysis of Japanese cedar as treated by semi-flow hot-compressed water. J Wood Sci 56(4):331–338. doi: 10.1007/s10086-009-1099-0 Google Scholar
  92. 92.
    Lynam JG, Reza MT, Yan W, Vasquez VR, Coronella CJ (2014) Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conversion and Biorefinery (Submitted March 15, 2014)Google Scholar
  93. 93.
    Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35. doi: 10.1016/j.biombioe.2012.04.020 Google Scholar
  94. 94.
    Rogalinski T, Liu K, Albrecht T, Brunner G (2008) Hydrolysis kinetics of biopolymers in subcritical water. J Supercrit Fluids 46(3):335–341. doi: 10.1016/j.supflu.2007.09.037 Google Scholar
  95. 95.
    Sun Y, Cheng JJ (2005) Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol 96(14):1599–1606. doi: 10.1016/j.biortech.2004.12.022 Google Scholar
  96. 96.
    Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96(18):1986–1993. doi: 10.1016/j.biortech.2005.01.013 Google Scholar
  97. 97.
    Chen WH, Ye SC, Sheen HK (2012) Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour Technol 118:195–203. doi: 10.1016/j.biortech.2012.04.101 Google Scholar
  98. 98.
    Sasaki M, Adschiri T, Arai K (2003) Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour Technol 86(3):301–304. doi: 10.1016/s0960-8524(02)00173-6 Google Scholar
  99. 99.
    Liu ZG, Quek A, Hoekman SK, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949. doi: 10.1016/j.fuel.2012.07.069 Google Scholar
  100. 100.
    Roman S, Nabais JMV, Laginhas C, Ledesma B, Gonzalez JF (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103:78–83. doi: 10.1016/j.fuproc.2011.11.009 Google Scholar
  101. 101.
    Saddawi A, Jones JM, Williams A, Le Coeur C (2012) Commodity Fuels from biomass through pretreatment and torrefaction: effects of mineral content on torrefied fuel characteristics and quality. Energy Fuels 26(11):6466–6474. doi: 10.1021/ef2016649 Google Scholar
  102. 102.
    Cuiping L, Chuanzhi W, Yanyonjie Haitao H (2004) Chemical elemental characteristics of biomass in China. Biomass Bioenergy 27:119–130Google Scholar
  103. 103.
    Masia AAT, Buhre BJP, Gupta RP, Wall TF (2007) Characterising ash of biomass and waste. Fuel Process Technol 88(11–12):1071–1081. doi: 10.1016/j.fuproc.2007.06.011 Google Scholar
  104. 104.
    Jenkins BM, Baxter LL, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54(1–3):17–46. doi: 10.1016/s0378-3820(97)00059-3 Google Scholar
  105. 105.
    Fahmi R, Bridgwater AV, Darvell LI, Jones JM, Yates N, Thain S, Donnison IS (2007) The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel 86(10–11):1560–1569. doi: 10.1016/j.fuel.2006.11.030 Google Scholar
  106. 106.
    Jung BJ, Schobert HH (1992) Improved prediction of coal ash slag viscosity by thermodynamic modeling of liquid-phase composition. Energy Fuels 6(4):387–398. doi: 10.1021/ef00034a007 Google Scholar
  107. 107.
    Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94Google Scholar
  108. 108.
    Funke A, Ziegler F (2011) Heat of reaction measurements for hydrothermal carbonization of biomass. Bioresour Technol 102(16):7595–7598. doi: 10.1016/j.biortech.2011.05.016 Google Scholar
  109. 109.
    Gil MV, Oulego P, Casal MD, Pevida C, Pis JJ, Rubiera F (2010) Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour Technol 101(22):8859–8867. doi: 10.1016/j.biortech.2010.06.062 Google Scholar
  110. 110.
    Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol 101(3):1082–1090. doi: 10.1016/j.biortech.2009.08.064 Google Scholar
  111. 111.
    Reza MT, Uddin MH, Lynam JG, Coronella CJ (2014) Engineered pellets from dry torrefied and HTC biochar blends. Biomass Bioenergy (in press). doi: 10.1016/j.biombioe.2014.01.038
  112. 112.
    Gilbert P, Ryu C, Sharifi V, Swithenbank J (2009) Effect of process parameters on pelletisation of herbaceous crops. Fuel 88(8):1491–1497. doi: 10.1016/j.fuel.2009.03.015 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Charles J. Coronella
    • 1
    Email author
  • Joan G. Lynam
    • 1
  • M. Toufiq Reza
    • 1
  • M. Helal Uddin
    • 1
  1. 1.Chemical and Materials Engineering DepartmentUniversity of NevadaRenoUSA

Personalised recommendations