Skip to main content

Water Under High Temperature and Pressure Conditions and Its Applications to Develop Green Technologies for Biomass Conversion

  • Chapter
  • First Online:
Book cover Application of Hydrothermal Reactions to Biomass Conversion

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

This chapter introduces the chemical and physical properties of water under high temperature and pressure, such as ion product, density, dielectric constant and hydrogen bonding, and the applications of these properties on biomass conversion. These properties that are adjustable by changing the reaction temperature and pressure or adding additives are central to the reactivity of the biomass feedstock to break the C–C or C–O bonds. For example, glucose will follow different reaction pathways under acidic or alkali environment which is related to the ion product of water. Presently, hundreds of strategies utilizing these properties to transform biomass into target products intentionally or unintentionally are proposed. In this chapter, the hydrothermal processes applied in the conversion of biomass including cellulose, hemicelluloses, lignin and glycerin into commodity chemicals such as organic acids are mainly reviewed. In addition, the production of CO2 as a byproduct from biomass conversion is sometimes inevitable. To achieve 100 % carbon yield, the process of reduction of CO2 is often neglected but required. In the last section, the one pot reaction of glycerin conversion and CO2 reduction is reviewed based on the hydrogen bonding property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant—Properties and synthesis reactions. J Supercrit Fluids 39(3):362–380

    Google Scholar 

  2. Akiya N, Savage PE (2002) Roles of water for chemical reactions in High-Temperature Water. Chem Rev 102(8):2725–2750

    Google Scholar 

  3. Pourali O, Asghari FS, Yoshida H (2009) Sub-critical water treatment of rice bran to produce valuable materials. Food Chem 115(1):1–7

    Google Scholar 

  4. Watanabe M, Sato T, Inomata H, Smith RL, Arai K, Kruse A, Dinjus E (2004) Chemical reactions of C-1 compounds in near-critical and supercritical water. Chem Rev 104(12):5803–5821

    Google Scholar 

  5. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Google Scholar 

  6. Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5(5):6796–6822

    Google Scholar 

  7. Jin FM, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ Sci 4(2):382–397

    Google Scholar 

  8. Kruse A, Bernolle P, Dahmen N, Dinjus E, Maniam P (2010) Hydrothermal gasification of biomass: consecutive reactions to long-living intermediates. Energy Environ Sci 3(1):136–143

    Google Scholar 

  9. Buhler W, Dinjus E, Ederer HJ, Kruse A, Mas C (2002) Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. J Supercrit Fluids 22(1):37–53

    Google Scholar 

  10. Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant—2 degradation reactions. J Supercrit Fluids 41(3):361–379

    Google Scholar 

  11. Kruse A (2008) Supercritical water gasification. Biofuels Biopro Biorefin 2(5):415–437

    Google Scholar 

  12. Sato T, Sekiguchi G, Adschiri T, Arai K (2002) Ortho-selective alkylation of phenol with 2-propanol without catalyst in supercritical water. Ind Eng Chem Res 41(13):3064–3070

    Google Scholar 

  13. Antal MJ, Brittain A, Dealmeida C, Ramayya S, Roy JC (1987) Heterolysis and homolysis in supercritical water. ACS Symp Ser 329:77–86

    Google Scholar 

  14. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie (International Edition) 46(38):7164–7183

    Google Scholar 

  15. Bobleter O (2005) Hydrothermal degradation and fractionation of saccharides and polysaccharides. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 893–937

    Google Scholar 

  16. Huang Y-B, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15(5):1095–1111

    Google Scholar 

  17. Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13(1–3):261–268

    Google Scholar 

  18. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39(8):2883–2890

    Google Scholar 

  19. Brunner G (2009) Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J Supercrit Fluids 47(3):373–381

    Google Scholar 

  20. Takagaki A, Nishimura S, Ebitani K (2012) Catalytic transformations of biomass-derived materials into value-Added chemicals. Catal Surv Asia 16(3):164–182

    Google Scholar 

  21. Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1999) Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38(8):2888–2895

    Google Scholar 

  22. Wang Y, Kovacik R, Meyer B, Kotsis K, Stodt D, Staemmler V, Qiu H, Traeger F, Langenberg D, Muhler M, Woell C (2007) CO2 activation by ZnO through the formation of an unusual tridentate surface carbonate. Angewandte Chemie (International Edition) 46(29):5624–5627

    Google Scholar 

  23. Kabyemela BM, Adschiri T, Malaluan R, Arai K (1997) Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical water. Ind Eng Chem Res 36(6):2025–2030

    Google Scholar 

  24. Antal MJ Jr, Mok WSL, Richards GN (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr Res 199(1):91–109

    Google Scholar 

  25. Amarasekara AS, Williams LD, Ebede CC (2008) Mechanism of the dehydration of d-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 degrees C: an NMR study. Carbohydr Res 343(18):3021–3024

    Google Scholar 

  26. Guan J, Cao Q, Guo X, Mu X (2011) The mechanism of glucose conversion to 5-hydroxymethylfurfural catalyzed by metal chlorides in ionic liquid: a theoretical study. Comput Theor Chem 963(2–3):453–462

    Google Scholar 

  27. Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5(6):7559–7574

    Google Scholar 

  28. Wettstein SG, Alonso DM, Chong YX, Dumesic JA (2012) Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy Environ Sci 5(8):8199–8203

    Google Scholar 

  29. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of gamma-valerolactone to liquid alkenes for transportation fuels. Science 327(5969):1110–1114

    Google Scholar 

  30. Asghari FS, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Ind Eng Chem Res 45(7):2163–2173

    Google Scholar 

  31. Srokol Z, Bouche AG, van Estrik A, Strik RCJ, Maschmeyer T, Peters JA (2004) Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydr Res 339(10):1717–1726

    Google Scholar 

  32. Takeuchi Y, Jin FM, Tohji K, Enomoto H (2008) Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances. J Mater Sci 43(7):2472–2475

    Google Scholar 

  33. Shen J, Wyman CE (2012) Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields. AIChE J 58(1):236–246

    Google Scholar 

  34. Cinlar B, Wang TF, Shanks BH (2013) Kinetics of monosaccharide conversion in the presence of homogeneous Bronsted acids. Appl Catal A:Gen 450:237–242

    Google Scholar 

  35. Weingarten R, Cho J, Xing R, Conner WC, Huber GW (2012) Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions. Chemsuschem 5(7):1280–1290

    Google Scholar 

  36. Pagan-Torres YJ, Wang TF, Gallo JMR, Shanks BH, Dumesic JA (2012) Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Bronsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent. Acs Catal 2(6):930–934

    Google Scholar 

  37. Yang Y, Hu CW, Abu-Omar MM (2012) Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3 center dot 6H2O catalyst in a biphasic solvent system. Green Chem 14(2):509–513

    Google Scholar 

  38. Wang TF, Pagan-Torres YJ, Combs EJ, Dumesic JA, Shanks BH (2012) Water-compatible lewis acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural in a biphasic solvent system. Top Catal 55(7–10):657–662

    Google Scholar 

  39. Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782):1933–1937

    Google Scholar 

  40. Jin FM, Zhou ZY, Enomoto H, Moriya T, Higashijima H (2004) Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water. Chem Lett 33(2):126–127

    Google Scholar 

  41. Kishida H, Jin FM, Yan XY, Moriya T, Enomoto H (2006) Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction. Carbohydr Res 341(15):2619–2623

    Google Scholar 

  42. Sasaki M, Goto K, Tajima K, Adschiri T, Arai K (2002) Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water. Green Chem 4(3):285–287

    Google Scholar 

  43. Yang BY, Montgomery R (1996) Alkaline degradation of glucose: effect of initial concentration of reactants. Carbohydr Res 280(1):27–45

    Google Scholar 

  44. Yan X, Jin F, Tohji K, Kishita A, Enomoto H (2010) Hydrothermal conversion of carbohydrate biomass to lactic acid. AIChE J 56(10):2727–2733

    Google Scholar 

  45. Yan XY, Jin FM, Tohji K, Moriya T, Enomoto H (2007) Production of lactic acid from glucose by alkaline hydrothermal reaction. J Mate Sci 42(24):9995–9999

    Google Scholar 

  46. Sánchez C, Egüés I, García A, Llano-Ponte R, Labidi J (2012) Lactic acid production by alkaline hydrothermal treatment of corn cobs. Chem Eng J 181–182:655–660

    Google Scholar 

  47. Jin FM, Yun J, Li GM, Kishita A, Tohji K, Enomoto H (2008) Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem 10(6):612–615

    Google Scholar 

  48. Wang W, Wang SP, Ma XB, Gong JL (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727

    Google Scholar 

  49. Yu JL, Savage PE (1998) Decomposition of formic acid under hydrothermal conditions. Ind Eng Chem Res 37(1):2–10

    Google Scholar 

  50. Saito K, Kakumoto T, Kuroda H, Torii S, Imamura A (1984) Thermal unimolecular decomposition of formic acid. J Chem Phys 80(10):4989–4997

    Google Scholar 

  51. Akiya N, Savage PE (1998) Role of water in formic acid decomposition. AIChE J 44(2):405–415

    Google Scholar 

  52. Wakai C, Yoshida K, Tsujino Y, Matubayasi N, Nakahara M (2004) Effect of concentration, acid, temperature, and metal on competitive reaction pathways for decarbonylation and decarboxylation of formic acid in hot water. Chem Lett 33(5):572–573

    Google Scholar 

  53. Marshall W, Franck E (1981) Ion product of water substance, 0–1000 °C, 1–10,000 bars new international formulation and its background. J Phys Chem Ref Data 10(2):295–304

    Google Scholar 

  54. Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ Sci 1(1):32–65

    Google Scholar 

  55. Katritzky AR, Nichols DA, Siskin M, Murugan R, Balasubramanian M (2001) Reactions in high-temperature aqueous media. Chem Rev 101(4):837–892

    Google Scholar 

  56. Westacott RE, Johnston KP, Rossky PJ (2001) Stability of ionic and radical molecular dissociation pathways for reaction in supercritical water. J Phys Chem B 105(28):6611–6619

    Google Scholar 

  57. Westacott RE, Johnston KP, Rossky PJ (2001) Simulation of an SN1 reaction in supercritical water. J Am Chem Soc 123(5):1006–1007

    Google Scholar 

  58. Aida TM, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K (2007) Dehydration of d-glucose in high temperature water at pressures up to 80 MPa. J Supercrit Fluids 40(3):381–388

    Google Scholar 

  59. Aida TM, Tajima K, Watanabe M, Saito Y, Kuroda K, Nonaka T, Hattori H, Smith RL, Arai K (2007) Reactions of D-fructose in water at temperatures up to 400 °C and pressures up to 100 MPa. J Supercrit Fluids 42(1):110–119

    Google Scholar 

  60. Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49(3):1113–1122

    Google Scholar 

  61. Kishida H, Jin FM, Zhou ZY, Moriya T, Enomoto H (2005) Conversion of glycerin into lactic acid by alkaline hydrothermal reaction. Chem Lett 34(11):1560–1561

    Google Scholar 

  62. Qadariyah L, Mahfud Sumarno, Machmudah S, Wahyudiono, Sasaki M, Goto M (2011) Degradation of glycerol using hydrothermal process. Bioresour Technol 102(19):9267–9271

    Google Scholar 

  63. Wahyudiono, Kanetake T, Sasaki M, Goto M (2007) Decomposition of a lignin model compound under hydrothermal conditions. Chem Eng Technol 30(8):1113–1122

    Google Scholar 

  64. Wahyudiono, Sasaki M, Goto M (2008) Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chem Eng Process 47(9–10):1609–1619

    Google Scholar 

  65. Wahyudiono, Sasaki M, Goto M (2009) Conversion of biomass model compound under hydrothermal conditions using batch reactor. Fuel 88(9):1656–1664

    Google Scholar 

  66. Sato T, Osada M, Watanabe M, Shirai M, Arai K (2003) Gasification of alkylphenols with supported noble metal catalysts in supercritical water. Ind Eng Chem Res 42(19):4277–4282

    Google Scholar 

  67. Osada M, Sato O, Watanabe M, Arai K, Shirai M (2006) Water density effect on lignin gasification over supported noble metal catalysts in supercritical water. Energy Fuels 20(3):930–935

    Google Scholar 

  68. Osada M, Watanabe M, Sue K, Adschiri T, Arai K (2004) Water density dependence of formaldehyde reaction in supercritical water. J Supercrit Fluids 28(2–3):219–224

    Google Scholar 

  69. Henrikson JT, Grice CR, Savage PE (2006) Effect of water density on methanol oxidation kinetics in supercritical water. J Phys Chem A 110(10):3627–3632

    Google Scholar 

  70. Akizuki M, Fujii T, Hayashi R, Oshima Y Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water. J Biosci Bioeng. (in press)

    Google Scholar 

  71. Floriano WB, Nascimento MAC (2004) Dielectric constant and density of water as a function of pressure at constant temperature. Braz J Phys 34:38–41

    Google Scholar 

  72. Bradley DJ, Pitzer KS (1979) Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hueckel parameters to 350 °C and 1 kbar. J Phys Chem 83(12):1599–1603

    Google Scholar 

  73. CRC Handbook of chemistry and physics (1993) 74 edn. CRC Press

    Google Scholar 

  74. Islam MN, Jo YT, Park JH (2012) Remediation of PAHs contaminated soil by extraction using subcritical water. J Ind Eng Chem 18(5):1689–1693

    Google Scholar 

  75. Hashimoto S, Watanabe K, Nose K, Morita M (2004) Remediation of soil contaminated with dioxins by subcritical water extraction. Chemosphere 54(1):89–96

    Google Scholar 

  76. Lagadec AJM, Miller DJ, Lilke AV, Hawthorne SB (2000) Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon- and pesticide-contaminated soil. Environ Sci Technol 34(8):1542–1548

    Google Scholar 

  77. Yang Y, Bowadt S, Hawthorne SB, Miller DJ (1995) Subcritical water extraction of polychlorinated-biphenyls from soil and sediment. Anal Chem 67(24):4571–4576

    Google Scholar 

  78. Hawthorne SB, Yang Y, Miller DJ (1994) Extraction of organic pollutants from environmental solids with sub- and supercritical water. Anal Chem 66(18):2912–2920

    Google Scholar 

  79. Smith KA, Griffith P, Harris JG, Herzog HJ, Howard JB, Latanision R, Peters WA (1995) Supercritical water oxidation: principles and prospects. Paper presented at the proceedings of the international water conference, Pittsburgh

    Google Scholar 

  80. Savage PE (1999) Organic chemical reactions in supercritical water. Chem Rev 99(2):603–621

    MathSciNet  Google Scholar 

  81. Eckert CA, Knutson BL, Debenedetti PG (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383(6598):313–318

    Google Scholar 

  82. Gomez-Briceno D, Blazquez F, Saez-Maderuelo A (2013) Oxidation of austenitic and ferritic/martensitic alloys in supercritical water. J Supercrit Fluids 78:103–113

    Google Scholar 

  83. Townsend SH, Abraham MA, Huppert GL, Klein MT, Paspek SC (1988) Solvent effects during reactions in supercritical water. Ind Eng Chem Res 27(1):143–149

    Google Scholar 

  84. Marrone PA, Gschwend PM, Swallow KC, Peters WA, Tester JW (1998) Product distribution and reaction pathways for methylene chloride hydrolysis and oxidation under hydrothermal conditions. J Supercrit Fluids 12(3):239–254

    Google Scholar 

  85. Tester JW, Marrone PA, DiPippo MM, Sako K, Reagan MT, Arias T, Peters WA (1998) Chemical reactions and phase equilibria of model halocarbons and salts in sub- and supercritical water (200–300 bar, 100–600 °C). J Supercrit Fluids 13(1–3):225–240

    Google Scholar 

  86. Marrone PA, Arias TA, Peters WA, Tester JW (1998) Solvation effects on kinetics of methylene chloride reactions in sub- and supercritical water: theory, experiment, and ab initio calculations. J Phys Chem A 102(35):7013–7028

    Google Scholar 

  87. Wahyudiono, Sasaki M, Goto M (2011) Thermal decomposition of guaiacol in sub- and supercritical water and its kinetic analysis. J Mater Cycles Waste Manage 13(1):68–79

    Google Scholar 

  88. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Google Scholar 

  89. Jin F, Gao Y, Jin Y, Zhang Y, Cao J, Wei Z, Smith RL Jr (2011) High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles. Energy Environ Sci 4(3):881–884

    Google Scholar 

  90. Jin FM, Zhong H, Cao JL, Cao JX, Kawasaki K, Kishita A, Matsumoto T, Tohji K, Enomoto H (2010) Oxidation of unsaturated carboxylic acids under hydrothermal conditions. Bioresour Technol 101(19):7624–7634

    Google Scholar 

  91. Jin FM, Zhou ZY, Moriya T, Kishida H, Higashijima H, Enomoto H (2005) Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ Sci Technol 39(6):1893–1902

    Google Scholar 

  92. Rataboul F, Essayem N (2010) Cellulose reactivity in supercritical methanol in the presence of solid acid catalysts: direct synthesis of methyl-levulinate. Ind Eng Chem Res 50(2):799–805

    Google Scholar 

  93. Morimoto M, Sato S, Takanohashi T (2012) Effect of water properties on the degradative extraction of asphaltene using supercritical water. J Supercrit Fluids 68:113–116

    Google Scholar 

  94. Kishita A, Takahashi S, Kamimura H, Miki M, Moriya T, Enomoto H (2002) Hydrothermal visbreaking of bitumen in supercritical water with alkali. J Jpn Petrol Inst 45(6):361–367

    Google Scholar 

  95. Cheng Z-M, Ding Y, Zhao L-Q, Yuan P-Q, Yuan W-K (2009)Effects of supercritical water in vacuum residue upgrading. Energy Fuels 23(6):3178–3183

    Google Scholar 

  96. Sato T, Adschiri T, Arai K, Rempel GL, Ng FTT (2003) Upgrading of asphalt with and without partial oxidation in supercritical water. Fuel 82(10):1231–1239

    Google Scholar 

  97. Kokubo S, Nishida K, Hayashi A, Takahashi H, Yokota O, Inage S-i (2008) Effective demetalization and suppression of coke formation using supercritical water technology for heavy oil upgrading. J Jpn Petrol Inst 51(5):309–314

    Google Scholar 

  98. Han L, Zhang R, Bi J (2009) Experimental investigation of high-temperature coal tar upgrading in supercritical water. Fuel Process Technol 90(2):292–300

    Google Scholar 

  99. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17(6):300–312

    Google Scholar 

  100. Mizan TI, Savage PE, Ziff RM (1996) Temperature dependence of hydrogen bonding in supercritical water. J Phys Chem 100(1):403–408

    Google Scholar 

  101. Hoffmann MM, Conradi MS (1997) Are there hydrogen bonds in supercritical water? J Am Chem Soc 119(16):3811–3817

    Google Scholar 

  102. Jedlovszky P, Brodholt JP, Bruni F, Ricci MA, Soper AK, Vallauri R (1998) Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions. J Chem Phys 108(20):8528–8540

    Google Scholar 

  103. Kalinichev AG, Churakov SV (1999) Size and topology of molecular clusters in supercritical water: a molecular dynamics simulation. Chem Phys Lett 302(5–6):411–417

    Google Scholar 

  104. Mountain RD (1999) Voids and clusters in expanded water. J Chem Phys 110(4):2109–2115

    MathSciNet  Google Scholar 

  105. Holgate HR, Meyer JC, Tester JW (1995) Glucose hydrolysis and oxidation in supercritical water. AIChE J 41(3):637–648

    Google Scholar 

  106. Yu DH, Aihara M, Antal MJ (1993) Hydrogen-production by steam reforming glucose in supercritical water. Energy Fuels 7(5):574–577

    Google Scholar 

  107. Antal MJ, Allen SG, Schulman D, Xu XD, Divilio RJ (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39(11):4040–4053

    Google Scholar 

  108. Xu XD, Antal MJ (1998) Gasification of sewage sludge and other biomass for hydrogen production in supercritical water. Environ Prog 17(4):215–220

    Google Scholar 

  109. Maiella PG, Brill TB (1996) Spectroscopy of hydrothermal reactions. 3. The water-gas reaction, “hot spots”, and formation of volatile salts of NCO- from aqueous [NH3(CH2)nNH3]NO3 (n = 2,3) at 720 K and 276 bar by T-jump/FT-IR spectroscopy. Appl Spectrosc 50(7):829–835

    Google Scholar 

  110. Li L, Portela JR, Vallejo D, Gloyna EF (1999) Oxidation and Hydrolysis of Lactic Acid in Near-Critical Water. Ind Eng Chem Res 38(7):2599–2606

    Google Scholar 

  111. Helling RK, Tester JW (1987) Oxidation kinetics of carbon monoxide in supercritical water. Energy Fuels 1(5):417–423

    Google Scholar 

  112. Holgate HR, Tester JW (1994) Oxidation of hydrogen and carbon-monoxide in subcritical and supercritical water-reaction-kinetics, pathways, and water-density effects.1. experimental results. J Phys Chem 98(3):800–809

    Google Scholar 

  113. Holgate HR, Webley PA, Tester JW, Helling RK (1992) Carbon monoxide oxidation in supercritical water the effects of heat-transfer and the water gas shift reaction on observed kinetics. Energy Fuels 6(5):586–597

    Google Scholar 

  114. Adschiri T, Shibata R, Sato T, Watanabe M, Arai K (1998) Catalytic hydrodesulfurization of dibenzothiophene through partial oxidation and a water-gas shift reaction in supercritical water. Ind Eng Chem Res 37(7):2634–2638

    Google Scholar 

  115. Arai K, Adschiri T, Watanabe M (2000) Hydrogenation of hydrocarbons through partial oxidation in supercritical water. Ind Eng Chem Res 39(12):4697–4701

    Google Scholar 

  116. Matsumura Y, Nonaka H, Yokura H, Tsutsumi A, Yoshida K (1999) Co-liquefaction of coal and cellulose in supercritical water. Fuel 78(9):1049–1056

    Google Scholar 

  117. Shen Z, Zhang YL, Jin FM (2011) From NaHCO3 into formate and from isopropanol into acetone: hydrogen-transfer reduction of NaHCO3 with isopropanol in high-temperature water. Green Chem 13(4):820–823

    Google Scholar 

  118. Shen Z, Zhang YL, Jin FM (2012) The alcohol-mediated reduction of CO2 and NaHCO3 into formate: a hydrogen transfer reduction of NaHCO3 with glycerine under alkaline hydrothermal conditions. Rsc Adv 2(3):797–801

    Google Scholar 

  119. Kruse A, Ebert KH (1996) Chemical reactions in supercritical water. 1. Pyrolysis of tert-butylbenzene. Ber Bunsen Phys Chem 100(1):80–83

    Google Scholar 

  120. Zhang YL, Shen Z, Zhou XF, Zhang M, Jin FM (2012) Solvent isotope effect and mechanism for the production of hydrogen and lactic acid from glycerol under hydrothermal alkaline conditions. Green Chem 14(12):3285–3288

    Google Scholar 

  121. Ramayya S, Brittain A, Dealmeida C, Mok W, Antal MJ (1987) Acid-catalyzed dehydration of alcohols in supercritical water. Fuel 66(10):1364–1371

    Google Scholar 

  122. Narayan R, Antal MJ (1989) Kinetic elucidation of the acid-catalyzed mechanism of 1-propanol dehydration in supercritical water. ACS Symp Ser 406:226–241

    Google Scholar 

  123. Xu XD, Dealmeida CP, Antal MJ (1991) Mechanism and kinetics of the acid-catalyzed formation of ethene and diethyl-ether from ethanol in supercritical water. Ind Eng Chem Res 30(7):1478–1485

    Google Scholar 

  124. Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Kinetic studies of the reactions of ketoses and aldoses in water at high-temperature.3. mechanism of formation of 2-furaldehyde from d-xylose. Carbohydr Res 217:71–85

    Google Scholar 

  125. Xu XD, Antal MJ (1994) Kinetics and mechanism of isobutene formation from t-butanol in hot liquid water. AIChE J 40(9):1524–1534

    Google Scholar 

  126. Xu XD, Antal MJ, Anderson DGM (1997) Mechanism and temperature-dependent kinetics of the dehydration of tert-butyl alcohol in hot compressed liquid water. Ind Eng Chem Res 36(1):23–41

    Google Scholar 

  127. Antal MJ, Carlsson M, Xu X, Anderson DGM (1998) Mechanism and kinetics of the acid-catalyzed dehydration of 1- and 2-propanol in hot compressed liquid water. Ind Eng Chem Res 37(10):3820–3829

    Google Scholar 

  128. Arita T, Nakahara K, Nagami K, Kajimoto O (2003) Hydrogen generation from ethanol in supercritical water without catalyst. Tetrahedron Lett 44(5):1083–1086

    Google Scholar 

  129. Shen Z, Jin FM, Zhang YL, Wu B, Cao JL (2009) Hydrogen transfer reduction of ketones using formic acid as a hydrogen donor under hydrothermal conditions. J Zhejiang Univ-Sc A 10(11):1631–1635

    Google Scholar 

  130. Shen Z, Zhang YL, Jin FM, Zhou XF, Kishita A, Tohji K (2010) Hydrogen-transfer reduction of ketones into corresponding alcohols using formic acid as a hydrogen donor without a metal catalyst in high-temperature water. Ind Eng Chem Res 49(13):6255–6259

    Google Scholar 

  131. Wang XG, Gron LU, Klein MT, Brill TB (1995) The influence of high-temperature water on the reaction pathways of nitroanilines. J Supercrit Fluids 8(3):236–249

    Google Scholar 

  132. Belsky AJ, Maiella PG, Brill TB (1999) Spectroscopy of hydrothermal reactions. 13. Kinetics and mechanisms of decarboxylation of acetic acid derivatives at 100–260 degrees C under 275 bar. J Phys Chem A 103(21):4253–4260

    Google Scholar 

  133. Takahashi H, Hisaoka S, Nitta T (2002) Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH + nH2O = CH3CHO + H2 + nH2O (n = 0, 1, 2). Chem Phys Lett 363(1–2):80–86

    Google Scholar 

  134. Liu J, Zeng X, Cheng M, Yun J, Li Q, Jing Z, Jin F (2012) Reduction of formic acid to methanol under hydrothermal conditions in the presence of Cu and Zn. Bioresour Technol 114:658–662

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangming Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jin, F., Wang, Y., Zeng, X., Shen, Z., Yao, G. (2014). Water Under High Temperature and Pressure Conditions and Its Applications to Develop Green Technologies for Biomass Conversion. In: Jin, F. (eds) Application of Hydrothermal Reactions to Biomass Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54458-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54458-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54457-6

  • Online ISBN: 978-3-642-54458-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics