Skip to main content

Oxidative Damage on RNA Nucleobases

  • Chapter
  • First Online:
Chemical Biology of Nucleic Acids

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Oxidatively damaged RNA has recently gathered more attention and has been closely related to different neurodegenerative diseases. The principles of oxidative stress and its influence on nucleic acids are reported. In contrast to DNA oxidative lesions of RNA have been scarcely described in the literature so far. These known stable RNA base modifications which arise under oxidative stress are reviewed here with regard to their biophysical properties and their potential mutagenicity. Furthermore the possible mechanisms of how cells deal with oxidized RNA are discussed. Posttranscriptional RNA modifications and the oxidation of RNA as an early event in several neurodegenerative diseases are not in the scope of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The melting curves for the matched case 5-HO-rC/G in RNA duplexes and RNA/DNA heteroduplexes show two distinct changes in hyperchromicity: the higher T m is close to the matched case whereas the lower T m is close to the mismatched case. This phenomenon is not yet fully understood and still under investigation.

  2. 2.

    The published findings confirm our earlier observations that the previously used 6O,7N-bis(dimethylcarbamyl) protected phosphoramidite of 8-oxo-rG is not fully deprotectable once incorporated into RNA. The authors here used a 6O,7N-bis(diphenylcarbamyl)-protected while we used an 6O,7N-unprotected phosphoramidite of 8-oxo-rG (unpublished results). Both phosphoramidites were fully deprotectable as confirmed by mass spectrometry. The T m values measured by Koga et al. correspond nicely to our findings (Table 1).

  3. 3.

    AMV-RT: avian myeloblastosis virus reverse transcriptase; MMLV-RT: moloney murine leukemia virus reverse transcriptase; HIV1-RT: human immunodeficiency virus type 1 reverse transcriptase; RAV2-RT: Rous-associated virus-2 reverse transcriptase.

References

  • Aas PA, Otterlei M, Falnes PO et al (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421:859–863

    CAS  PubMed  Google Scholar 

  • Akaike T, Fujii S, Kato A et al (2000) Viral mutation accelerated by nitric oxide production during infection in vivo. FASEB J 14:1447–1454

    CAS  PubMed  Google Scholar 

  • Barciszewski J, Barciszewska M, Siboska G et al (1999) Some unusual nucleic acid bases are products of hydroxyl radical oxidation of DNA and RNA. Mol Biol Rep 26:231–238

    CAS  PubMed  Google Scholar 

  • Basu AK, Wood ML, Niedernhofer LJ et al (1993) Mutagenic and genotoxic effects of three vinyl chloride-induced DNA lesions: 1, N6-ethenoadenine, 3, N4-ethenocytosine, and 4-amino-5-(imidazol-2-yl)imidazole. Biochemistry 32:12793–12801

    CAS  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolisetty S, Jaimes E (2013) Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 14:6306–6344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley-Whitman M, Lovell M (2013) Increased oxidative damage in RNA in Alzheimer’s disease progression. J Anal Bioanal Tech. doi:10.4172/2155-9872.s2-004

    Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brawn K, Fridovich I (1981) DNA strand scission by enzymically generated oxygen radicals. Arch Biochem Biophys 206:414–419

    CAS  PubMed  Google Scholar 

  • Burgdorf LT, Carell T (2002) Synthesis, stability, and conformation of the formamidopyrimidine G DNA lesion. Chemistry 8:293–301

    CAS  PubMed  Google Scholar 

  • Burney S, Niles JC, Dedon PC et al (1999) DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite. Chem Res Toxicol 12:513–520

    CAS  PubMed  Google Scholar 

  • Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    CAS  PubMed  Google Scholar 

  • Cadet J, Douki T, Ravanat J-L (2010) Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 49:9–21

    CAS  PubMed  Google Scholar 

  • Calabretta A, Leumann CJ (2013) Base pairing and miscoding properties of 1, N6-ethenoadenine- and 3, N4-ethenocytosine-containing RNA oligonucleotides. Biochemistry 52:1990–1997

    CAS  PubMed  Google Scholar 

  • Cantara WA, Crain PF, Rozenski J et al (2011) The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 39(suppl 1):D195–D201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang Y, Kong Q, Shan X et al (2008) Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One 3:e2849

    PubMed Central  PubMed  Google Scholar 

  • Cheng KC, Cahill DS, Kasai H et al (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J Biol Chem 267:166–172

    CAS  PubMed  Google Scholar 

  • Cho BP, Evans FE (1991) Structure of oxidatively damaged nucleic acid adducts. 3. Tautomerism, ionization and protonation of 8-hydroxyadenosine studied by 15N NMR spectroscopy. Nucleic Acids Res 19:1041–1046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho BP, Kadlubar FF, Culp SJ et al (1990) 15N nuclear magnetic resonance studies on the tautomerism of 8-hydroxy-2′-deoxyguanosine, 8-hydroxyguanosine, and other C8-substituted guanine nucleosides. Chem Res Toxicol 3:445–452

    CAS  PubMed  Google Scholar 

  • Crich D, Mo X-S (1997) Nucleotide C3′,4′-radical cations and the effect of a 2′-oxygen substituent. The DNA/RNA paradox. J Am Chem Soc 119:249–250

    CAS  Google Scholar 

  • Cui S, Kim Y-H, Jin C-H et al (2009) Synthesis and base pairing properties of DNA-RNA heteroduplex containing 5-hydroxyuridine. BMB Rep 42:373–379

    CAS  PubMed  Google Scholar 

  • Dedon PC (2007) The chemical toxicology of 2-deoxyribose oxidation in DNA. Chem Res Toxicol 21:206–219

    PubMed  Google Scholar 

  • Defoiche J, Zhang Y, Lagneaux L et al (2009) Measurement of ribosomal RNA turnover in vivo by use of deuterium-labeled glucose. Clin Chem 55:1824–1833

    CAS  PubMed  Google Scholar 

  • El Ghissassi F, Barbin A, Nair J et al (1995) Formation of 1, N6-ethenoadenine and 3, N4-ethenocytosine by lipid peroxidation products and nucleic acid bases. Chem Res Toxicol 8:278–283

    PubMed  Google Scholar 

  • Erlacher MD, Polacek N (2008) Ribosomal catalysis: the evolution of mechanistic concepts for peptide bond formation and peptidyl-tRNA hydrolysis. RNA Biol 5:5–12

    CAS  PubMed  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    CAS  PubMed  Google Scholar 

  • Fiala ES, Conaway CC, Mathis JE (1989) Oxidative DNA and RNA damage in the livers of Sprague-Dawley rats treated with the hepatocarcinogen 2-nitropropane. Cancer Res 49:5518–5522

    CAS  PubMed  Google Scholar 

  • Gannett PM, Sura TP (1993) Base pairing of 8-oxoguanosine and 8-oxo-2′-deoxyguanosine with 2′-deoxyadenosine, 2′-deoxycytosine, 2′-deoxyguanosine, and thymidine. Chem Res Toxicol 6:690–700

    CAS  PubMed  Google Scholar 

  • Guschlbauer W, Duplaa A-M, Guy A et al (1991) Structure and in vitro replication of DNA templates containing 7,8-dihydro-8-oxoadenine. Nucleic Acids Res 19:1753–1758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9:e1003569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayakawa H, Sekiguchi M (2006) Human polynucleotide phosphorylase protein in response to oxidative stress. Biochemistry 45:6749–6755

    CAS  PubMed  Google Scholar 

  • Hayakawa H, Hofer A, Thelander L et al (1999) Metabolic fate of oxidized guanine ribonucleotides in mammalian cells. Biochemistry 38:3610–3614

    CAS  PubMed  Google Scholar 

  • Hayakawa H, Kuwano M, Sekiguchi M (2001) Specific binding of 8-oxoguanine-containing RNA to polynucleotide phosphorylase protein. Biochemistry 40:9977–9982

    CAS  PubMed  Google Scholar 

  • Hayakawa H, Uchiumi T, Fukuda T et al (2002) Binding capacity of human YB-1 protein for RNA containing 8-oxoguanine. Biochemistry 41:12739–12744

    PubMed  Google Scholar 

  • Hecht SM (1994) RNA degradation by bleomycin, a naturally occurring bioconjugate. Bioconjug Chem 5:513–526

    CAS  PubMed  Google Scholar 

  • Hofer T, Badouard C, Bajak E et al (2005) Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem 386:333

    CAS  PubMed  Google Scholar 

  • Hofer T, Seo Arnold Y, Prudencio M et al (2006) A method to determine RNA and DNA oxidation simultaneously by HPLC-ECD: greater RNA than DNA oxidation in rat liver after doxorubicin administration. Biol Chem 387:103–111

    CAS  PubMed  Google Scholar 

  • Ide H, Akamatsu K, Kimura Y et al (1993) Synthesis and damage specificity of a novel probe for the detection of abasic sites in DNA. Biochemistry 32:8276–8283

    CAS  PubMed  Google Scholar 

  • Ishibashi T, Hayakawa H, Ito R et al (2005) Mammalian enzymes for preventing transcriptional errors caused by oxidative damage. Nucleic Acids Res 33:3779–3784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito Y, Ozawa A, Sawasaki T et al (2002) OsRALyase1, a putative F-Box protein identified in rice, Oryza sativa, with enzyme activity identical to that of wheat RALyase. Biosci Biotechnol Biochem 66:2727–2731

    CAS  PubMed  Google Scholar 

  • Ito R, Hayakawa H, Sekiguchi M et al (2005) Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools. Biochemistry 44:6670–6674

    CAS  PubMed  Google Scholar 

  • Kajitani K, Yamaguchi H, Dan Y et al (2006) MTH1, an oxidized purine nucleoside triphosphatase, suppresses the accumulation of oxidative damage of nucleic acids in the hippocampal microglia during kainate-induced excitotoxicity. J Neurosci 26:1688–1698

    CAS  PubMed  Google Scholar 

  • Kamiya H, Miura H, Murata-Kamiya N et al (1995) 8-Hydroxyadenine (7, 8-dihydro-8-oxoadenine) induces misincorporation in in vitro DNA synthesis and mutations in NIH 3T3 cells. Nucleic Acids Res 23:2893–2899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karuppanapandian T, Moon J-C, Kim C et al (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Kennedy LJ, Moore K, Caulfield JL et al (1997) Quantitation of 8-oxoguanine and strand breaks produced by four oxidizing agents. Chem Res Toxicol 10:386–392

    CAS  PubMed  Google Scholar 

  • Kim SK, Yokoyama S, Takaku H et al (1998) Oligoribonucleotides containing 8-oxo-7,8-dihydroguanosine and 8-oxo-7,8-dihydro-2′-O-methylguanosine: synthesis and base pairing properties. Bioorg Med Chem Lett 8:939–944

    CAS  PubMed  Google Scholar 

  • Kim SK, Kim JY, Yokoyama S et al (1999) Misreading of RNA templates containing 8-oxo-7,8-dihydroguanosine or 8-oxo-2′-O-methylguanosine in cDNA synthesis by reverse transcriptases. Nucleosides Nucleotides 18:1335–1337

    CAS  Google Scholar 

  • Kim SK, Kim JY, Baek AK et al (2002) Base pairing properties of 8-oxo-7,8-dihydroadenosine in cDNA synthesis by reverse transcriptases. Bioorg Med Chem Lett 12:1977–1980

    CAS  PubMed  Google Scholar 

  • Kim SK, Lee SH, Kwon O-S et al (2004) DNA-RNA heteroduplex containing 8-oxo-7,8-dihydroguanosine: base pairing, structures, and thermodynamic stability. J Biochem Mol Biol 37:657–662

    CAS  PubMed  Google Scholar 

  • Koga Y, Taniguchi Y, Sasaki S (2013) Synthesis of the oligoribonucleotides incorporating 8-oxo-guanosine and evaluation of their base pairing properties. Nucleosides Nucleotides Nucleic Acids 32:124–136

    CAS  PubMed  Google Scholar 

  • Kong Q, Lin C-L (2010) Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci 67:1817–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kouchakdjian M, Bodepudi V, Shibutani S et al (1991) NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-Oxo-7H-dG(syn):dA(anti) alignment at lesion site. Biochemistry 30:1403–1412

    CAS  PubMed  Google Scholar 

  • Kreutzer DA, Essigmann JM (1998) Oxidized, deaminated cytosines are a source of C→T transitions in vivo. Proc Natl Acad Sci U S A 95:3578–3582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Küpfer PA, Leumann CJ (2007) The chemical stability of abasic RNA compared to abasic DNA. Nucleic Acids Res 35:58–68

    PubMed Central  PubMed  Google Scholar 

  • Küpfer PA, Leumann CJ (2011) Synthesis, base pairing properties and trans-lesion synthesis by reverse transcriptases of oligoribonucleotides containing the oxidatively damaged base 5-hydroxycytidine. Nucleic Acids Res 39:9422–9432

    PubMed Central  PubMed  Google Scholar 

  • La Francois CJ, Jang YH, Cagin T et al (2000) Conformation and proton configuration of pyrimidine deoxynucleoside oxidation damage products in water. Chem Res Toxicol 13:462–470

    PubMed  Google Scholar 

  • Lenaz G (2012) Mitochondria and reactive oxygen species. Which role in physiology and pathology? In: Scatena R, Bottoni P, Giardina B (eds) Advances in mitochondrial medicine, vol 942, Advances in experimental medicine and biology. Springer, Dordrecht, pp 93–136

    Google Scholar 

  • Leonard GA, Guy A, Brown T et al (1992) Conformation of guanine:8-oxoadenine base pairs in the crystal structure of d(CGCGAATT(O8A)GCG). Biochemistry 31:8415–8420

    CAS  PubMed  Google Scholar 

  • Lesko SA, Lorentzen RJ, Ts’o POP (1980) Role of superoxide in deoxyribonucleic acid strand scission. Biochemistry 19:3023–3028

    CAS  PubMed  Google Scholar 

  • Levine RL, Yang I-Y, Hossain M et al (2000) Mutagenesis induced by a single 1, N6-ethenodeoxyadenosine adduct in human cells. Cancer Res 60:4098–4104

    CAS  PubMed  Google Scholar 

  • Li Z, Wu J, Deleo CJ (2006) RNA damage and surveillance under oxidative stress. IUBMB Life 58:581–588

    CAS  PubMed  Google Scholar 

  • Liu M, Gong X, Alluri Ravi K, Wu J, Sablo T, Li Z (2012) Characterization of RNA damage under oxidative stress in Escherichia coli. Biol Chem 393:123–132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masuda M, Nishino H, Ohshima H (2002) Formation of 8-nitroguanosine in cellular RNA as a biomarker of exposure to reactive nitrogen species. Chem Biol Interact 139:187–197

    CAS  PubMed  Google Scholar 

  • Moriya M, Ou C, Bodepudi V et al (1991) Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res 254:281–288

    CAS  PubMed  Google Scholar 

  • Moriya M, Zhang W, Johnson F et al (1994) Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc Natl Acad Sci U S A 91:11899–11903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361

    CAS  PubMed  Google Scholar 

  • Nelson PT, Keller JN (2007) RNA in brain disease: no longer just “the messenger in the middle”. J Neuropathol Exp Neurol 66:461–468

    CAS  PubMed  Google Scholar 

  • Neyhart GA, Cheng C-C, Thorp HH (1995) Kinetics and mechanism of the oxidation of sugars and nucleotides by oxoruthenium(IV): model studies for predicting cleavage patterns in polymeric DNA and RNA. J Am Chem Soc 117:1463–1471

    CAS  Google Scholar 

  • Nguyen KV, Burrows CJ (2011) A prebiotic role for 8-oxoguanosine as a flavin mimic in pyrimidine dimer photorepair. J Am Chem Soc 133:14586–14589

    CAS  PubMed  Google Scholar 

  • Nguyen KV, Burrows CJ (2012a) Photorepair of cyclobutane pyrimidine dimers by 8-oxopurine nucleosides. J Phys Org Chem 25:574–577

    CAS  Google Scholar 

  • Nguyen KV, Burrows CJ (2012b) Whence flavins? Redox-active ribonucleotides link metabolism and genome repair to the RNA world. Acc Chem Res 45:2151–2159

    CAS  PubMed  Google Scholar 

  • Niles JC, Wishnok JS, Tannenbaum SR (2006) Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 14:109–121

    CAS  PubMed  Google Scholar 

  • Novo E, Parola M (2008) Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1:5

    PubMed Central  PubMed  Google Scholar 

  • Nunomura A, Hofer T, Moreira PI et al (2009) RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol (Berl) 118:151–166

    CAS  Google Scholar 

  • Ogasawara T, Sawasaki T, Morishita R et al (1999) A new class of enzyme acting on damaged ribosomes: ribosomal RNA apurinic site specific lyase found in wheat germ. EMBO J 18:6522–6531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan B, Mitra SN, Sundaralingam M (1999) Crystal structure of an RNA 16-mer duplex r(GCAGAGUUAAAUCUGC)2 with nonadjacent G(syn):A+(anti) mispairs. Biochemistry 38:2826–2831

    CAS  PubMed  Google Scholar 

  • Pandya GA, Moriya M (1996) 1, N6-ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells. Biochemistry 35:11487–11492

    CAS  PubMed  Google Scholar 

  • Pogozelski WK, Tullius TD (1998) Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem Rev 98:1089–1108

    CAS  PubMed  Google Scholar 

  • Poulsen HE, Specht E, Broedbaek K et al (2012) RNA modifications by oxidation: a novel disease mechanism? Free Radic Biol Med 52:1353–1361

    CAS  PubMed  Google Scholar 

  • Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48:657–667

    CAS  PubMed  Google Scholar 

  • Radi R, Peluffo G, Alvarez MN et al (2001) Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 30:463–488

    CAS  PubMed  Google Scholar 

  • Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 85:6465–6467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salgo MG, Bermudez E, Squadrito GL et al (1995) Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes. Arch Biochem Biophys 322:500–505

    CAS  PubMed  Google Scholar 

  • Schneider JE, Phillips JR, Pye Q et al (1993) Methylene blue and rose bengal photoinactivation of RNA bacteriophages: comparative studies of 8-oxoguanine formation in isolated RNA. Arch Biochem Biophys 301:91–97

    CAS  PubMed  Google Scholar 

  • Sekiguchi T, Ito R, Hayakawa H et al (2013) Elimination and utilization of oxidized guanine nucleotides in the synthesis of RNA and its precursors. J Biol Chem 288:8128–8135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shan X, Chang Y, Lin CL (2007) Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J 21:2753–2764

    CAS  PubMed  Google Scholar 

  • Sharova LV, Sharov AA, Nedorezov T et al (2009) Database for mRNA half-life of 19977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 16:45–58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen Z, Wu W, Hazen SL (2000) Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry 39:5474–5482

    CAS  PubMed  Google Scholar 

  • Shibutani S, Bodepudi V, Johnson F et al (1993) Translesional synthesis on DNA templates containing 8-oxo-7,8-dihydrodeoxyadenosine. Biochemistry 32:4615–4621

    CAS  PubMed  Google Scholar 

  • Srivastava SC, Raza SK, Misra R (1994) 1, N6-etheno deoxy and ribo adenosine and 3, N4-etheno deoxy and ribo cytidine phosphoramidites. Strongly fluorescent structures for selective introduction in defined sequence DNA and RNA molecules. Nucleic Acids Res 22:1296–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steenken S, Jovanovic SV (1997) How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc 119:617–618

    CAS  Google Scholar 

  • Steenken S, Jovanovic SV, Bietti M, Bernhard K (2000) The trap depth (in DNA) of 8-oxo-7,8-dihydro-2′-deoxyguanosine as derived from electron-transfer equilibria in aqueous solution. J Am Chem Soc 122:2373–2374

    CAS  Google Scholar 

  • Suen W, Spiro TG, Sowers LC et al (1999) Identification by UV resonance Raman spectroscopy of an imino tautomer of 5-hydroxy-2′-deoxycytidine, a powerful base analog transition mutagen with a much higher unfavored tautomer frequency than that of the natural residue 2′-deoxycytidine. Proc Natl Acad Sci U S A 96:4500–4505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szabó C, Ohshima H (1997) DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1:373–385

    PubMed  Google Scholar 

  • Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    PubMed  Google Scholar 

  • Taddei F, Hayakawa H, Bouton M-F et al (1997) Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278:128–130

    CAS  PubMed  Google Scholar 

  • Tanaka M, Chock PB, Stadtman ER (2007) Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci U S A 104:66–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka M, Han S, Küpfer PA et al (2011a) An assay for RNA oxidation induced abasic sites using the aldehyde reactive probe. Free Radic Res 45:237–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka M, Han S, Küpfer PA et al (2011b) Quantification of oxidized levels of specific RNA species using an aldehyde reactive probe. Anal Biochem 417:142–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thorp HH (2000) The importance of being r: greater oxidative stability of RNA compared with DNA. Chem Biol 7:R33–R36

    CAS  PubMed  Google Scholar 

  • Tullius T, Dombroski B (1985) Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science 230:679–681

    CAS  PubMed  Google Scholar 

  • Tullius TD, Greenbaum JA (2005) Mapping nucleic acid structure by hydroxyl radical cleavage. Curr Opin Chem Biol 9:127–134

    CAS  PubMed  Google Scholar 

  • Uesugi S, Ikehara M (1977) Carbon-13 magnetic resonance spectra of 8-substituted purine nucleosides. Characteristic shifts for the syn conformation. J Am Chem Soc 99:3250–3253

    CAS  PubMed  Google Scholar 

  • Wang D, Kreutzer DA, Essigmann JM (1998) Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat Res 400:99–115

    CAS  PubMed  Google Scholar 

  • Wood ML, Dizdaroglu M, Gajewski E et al (1990) Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29:7024–7032

    CAS  PubMed  Google Scholar 

  • Wu J, Li Z (2008) Human polynucleotide phosphorylase reduces oxidative RNA damage and protects HeLa cell against oxidative stress. Biochem Biophys Res Commun 372:288–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, Jiang Z, Liu M et al (2009) Polynucleotide phosphorylase protects Escherichia coli against oxidative stress. Biochemistry 48:2012–2020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yanagawa H, Ogawa Y, Ueno M et al (1990) A novel minimum ribozyme with oxidoreduction activity. Biochemistry 29:10585–10589

    CAS  PubMed  Google Scholar 

  • Yanagawa H, Ogawa Y, Ueno M (1992) Redox ribonucleosides. Isolation and characterization of 5-hydroxyuridine, 8-hydroxyguanosine, and 8-hydroxyadenosine from Torula yeast RNA. J Biol Chem 267:13320–13326

    CAS  PubMed  Google Scholar 

  • Yang E, van Nimwegen E, Zavolan M et al (2003) Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res 13:1863–1872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yermilov V, Rubio J, Ohshima H (1995) Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett 376:207–210

    CAS  PubMed  Google Scholar 

  • Yermilov V, Yoshie Y, Rubio J et al (1996) Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett 399:67–70

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Alessandro Calabretta for the contribution of T m data for Table 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian J. Leumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Küpfer, P.A., Leumann, C.J. (2014). Oxidative Damage on RNA Nucleobases. In: Erdmann, V., Markiewicz, W., Barciszewski, J. (eds) Chemical Biology of Nucleic Acids. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54452-1_5

Download citation

Publish with us

Policies and ethics