Skip to main content

Synthesis and Exon-Skipping Activity of Chemically Modified RNAs

  • Chapter
  • First Online:
Chemical Biology of Nucleic Acids

Part of the book series: RNA Technologies ((RNATECHN))

  • 2692 Accesses

Abstract

In this chapter, an overview of chemically modified antisense oligonucleotides (AON) for Duchenne muscular dystrophy (DMD) treatment is described. In particular, the promising exon-skipping properties of 2′-O-modified phosphorothioate oligoribonucleotides incorporating 2′-O-[2-(N-methycarbamoyl)ethyl]ribonucleosides that could be readily synthesized by new regioselective oxa-Michael reaction are reviewed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aartsma-Rus A, Kaman WE, Bremmer-Bout M et al (2004) Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells. Gene Ther 11:1391–1398

    Article  CAS  PubMed  Google Scholar 

  • Altmann KH, Dean NM, Fabbro D et al (1996) Second generation of antisense oligonucleotides: From nuclease resistance to biological efficacy in animals. Chimia 50:168–176

    CAS  Google Scholar 

  • Aoki Y, Yokota T, Nagata T et al (2012) Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci USA 109:13763–13768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arechavala-Gomeza V, Graham IR, Popplewell LJ et al (2007) Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum Gene Ther 18:798–810

    Article  CAS  PubMed  Google Scholar 

  • Bordwell FG, Algrim D, Vanier NR (1977) Acidities of anilines and toluenes. J Org Chem 42:1817–1819

    Article  CAS  Google Scholar 

  • Bushby K, Finkel R, Birnkrant DJ et al (2010a) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93

    Article  PubMed  Google Scholar 

  • Bushby K, Finkel R, Birnkrant DJ et al (2010b) Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol 9:177–189

    Article  CAS  PubMed  Google Scholar 

  • Chung HH, Harms G, Seong CM et al (2004) Dendritic oligoguanidines as intracellular translocators. Biopolymers 76:83–96

    Article  CAS  PubMed  Google Scholar 

  • Cirak S, Arechavala-Gomeza V, Guglieri M et al (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crooke ST, Graham MJ, Zuckerman JE et al (1996) Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J Pharmacol Exp Ther 277:923–937

    CAS  PubMed  Google Scholar 

  • Davies KE, Nowak KJ (2006) Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 7:762–773

    Article  CAS  PubMed  Google Scholar 

  • Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 90:8673–8677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freier SM, Altmann KH (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res 25:4429–4443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goemans NM, Tulinius M, van den Akker JT et al (2011) Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 364:1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Goyenvalle A, Babbs A, Avril A et al (2012) T.O.3 Tricyclo-DNA: a promising chemistry for the synthesis of antisense molecules for splice-switching approaches in DMD. Neuromus Disord 22:907

    Article  Google Scholar 

  • Greig MJ, Gaus H, Cummins LL et al (1995) Measurement of macromolecular binding using electrospray mass spectrometry. Determination of dissociation constants for oligonucleotide: serum albumin complexes. J Am Chem Soc 117:10765–10766

    Article  CAS  Google Scholar 

  • Heemskerk HA, de Winter CL, de Kimpe SJ et al (2009) In vivo comparison of 2′-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med 11:257–266

    Article  CAS  PubMed  Google Scholar 

  • Heemskerk H, de Winter C, van Kuik P et al (2010) Preclinical PK and PD studies on 2′-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Mol Ther 18:1210–1217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Hayase Y, Imura A et al (1987) Synthesis and hybridization studies on two complementary nona(2′-O-methyl)ribonucleotides. Nucleic Acids Res 15:6131–6148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanova GD, Arzumanov A, Abes R et al (2008) Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res 36:6418–6428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koenig M, Beggs AH, Moyer M et al (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45:498–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koshkin AA, Singh SK, Nielsen P et al (1998) LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630

    Article  CAS  Google Scholar 

  • Krishna TR, Jayaraman N (2003) Synthesis of poly(propyl ether imine) dendrimers and evaluation of their cytotoxic properties. J Org Chem 68:9694–9704

    Article  CAS  PubMed  Google Scholar 

  • Lyne PD, Karplus M (2000) Determination of the pKa of the 2′-hydroxyl group of a phosphorylated ribose: implications for the mechanism of hammerhead ribozyme catalysis. J Am Chem Soc 122:166–167

    Article  CAS  Google Scholar 

  • Markiewicz WT, Biala E, Kierzek R (1984) Application of the tetraisopropyldisiloxane-1,3-diyl group in the chemical synthesis of oligoribonucleotides. Bull Pol Acad Sci Chem 32:433–451

    CAS  Google Scholar 

  • Martin P (1995) Ein neuer zugang zu 2′-O-alkylribonucleosiden und eigenschaften deren oligonucleotide. Helv Chim Acta 78:486–504

    Article  CAS  Google Scholar 

  • Masaki Y, Miyasaka R, Ohkubo A et al (2010) Linear relationship between deformability and thermal stability of 2′-O-modified RNA hetero duplexes. J Phys Chem B 114:2517–2524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morita K, Hasegawa C, Kaneko M et al (2002) 2′-O,4′-C-ethylene-bridged nucleic acids (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug. Bioorg Med Chem Lett 12:73–76

    Article  CAS  PubMed  Google Scholar 

  • Muntoni F, Wood MJ (2011) Targeting RNA to treat neuromuscular disease. Nat Rev Drug Discov 10:621–637

    Article  CAS  PubMed  Google Scholar 

  • Murray S, Ittig D, Koller E et al (2012) TricycloDNA-modified oligo-2′-deoxyribonucleotides reduce scavenger receptor B1 mRNA in hepatic and extra-hepatic tissues–a comparative study of oligonucleotide length, design and chemistry. Nucleic Acids Res 40:6135–6143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen PE, Egholm M, Berg RH et al (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Obika S, Nanbu D, Hari Y et al (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3′-endo sugar puckering. Tetrahedron Lett 38:8735–8738

    Article  CAS  Google Scholar 

  • Pearson WI, Guo LY, Jewell TM (2002) Preparation of immobilized swainsonine analogs on solid support. Tetrahedron Lett 43:2175–2178

    Article  CAS  Google Scholar 

  • Prakash TP, Manoharan M, Kawasaki AM et al (2002) 2′-O-[2-(methylthio)ethyl]-modified oligonucleotide: an analogue of 2′-O-[2-(methoxy)-ethyl]-modified oligonucleotide with improved protein binding properties and high binding affinity to target RNA. Biochemistry 41:11642–11648

    Article  CAS  PubMed  Google Scholar 

  • Raal FJ, Santos RD, Blom DJ et al (2010) Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375:998–1006

    Article  CAS  PubMed  Google Scholar 

  • Saneyoshi H, Seio K, Sekine M (2005) A general method for the synthesis of 2′-O-cyanoethylated oligoribonucleotides having promising hybridization affinity for DNA and RNA and enhanced nuclease resistance. J Org Chem 70:10453–10460

    Article  CAS  PubMed  Google Scholar 

  • Sanger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  • Simonot B, Rousseau G (1993) Preparation of 3-(N-alkenoxy)propanoic acids. Synth Commun 23:549–560

    Article  CAS  Google Scholar 

  • Summerton JE, Weller DD (1993) Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages US 5185444 A

    Google Scholar 

  • Takeshima Y, Nishio H, Sakamoto H et al (1995) Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. J Clin Invest 95:515–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vacek M, Sazani P, Kole R (2003) Antisense-mediated redirection of mRNA splicing. Cell Mol Life Sci 60:825–833

    CAS  PubMed  Google Scholar 

  • van Roon-Mom WM, Aartsma-Rus A (2012) Overview on applications of antisense-mediated exon skipping. Methods Mol Biol 867:79–96

    Article  PubMed  Google Scholar 

  • Velikyan I, Acharya S, Trifonova A et al (2001) The pKa’s of 2′-hydroxyl group in nucleosides and nucleotides. J Am Chem Soc 123:2893–2894

    Article  CAS  PubMed  Google Scholar 

  • Yagi M, Takeshima Y, Surono A et al (2004) Chimeric RNA and 2′-O,4′-C-ethylene-bridged nucleic acids have stronger activity than phosphorothioate oligodeoxynucleotides in induction of exon 19 skipping in dystrophin mRNA. Oligonucleotides 14:33–40

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Okaniwa N, Saneyoshi H et al (2011) Synthesis of 2′-O-[2-(N-methylcarbamoyl)ethyl]ribonucleosides using oxa-Michael reaction and chemical and biological properties of oligonucleotide derivatives incorporating these modified ribonucleosides. J Org Chem 76:3042–3053

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Niu H, Gao X et al (2013) Effective exon skipping and dystrophin restoration by 2′-O-methoxyethyl antisense oligonucleotide in dystrophin-deficient mice. PLoS ONE 8:e61584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin H, Lu Q, Wood M (2008) Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol Ther 16:38–45

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Sekine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Masaki, Y., Yamada, T., Saneyoshi, H., Ohkubo, A., Seio, K., Sekine, M. (2014). Synthesis and Exon-Skipping Activity of Chemically Modified RNAs. In: Erdmann, V., Markiewicz, W., Barciszewski, J. (eds) Chemical Biology of Nucleic Acids. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54452-1_27

Download citation

Publish with us

Policies and ethics