Skip to main content

Peptides Targeting G-Quadruplex Structures

  • Chapter
  • First Online:

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Research in recent decades has revealed that some DNA and RNA secondary structures modulate a variety of cellular events. One secondary structure, the Guanine(G)-quadruplex, also regulates various cellular events that are mostly related to serious diseases. Systems capable of controlling DNA and RNA G-quadruplex structures would therefore be useful for the modulation of various cellular events to produce biological effects. Because of their biological importance, many G-quadruplex-targeting compounds have been described. However, the next generation of targeting molecules should exhibit increased G-quadruplex sequence specificity, a higher structure-inducing or -collapsing ability, and a greater degree of functionality, including on–off switches of binding ability and cellular penetration. Peptides might be good candidates for these next-generation G-quadruplex-targeting molecules due to the following advantages: (1) their easy design and synthesis, (2) their ability to mimic protein–G-quadruplex interactions, (3) the possibility of employing artificial amino acids in addition to naturally occurring amino acids, and (4) the ability to combine G-quadruplex-binding sequences with other functional sequences. Accordingly, several peptide-based compounds, such as furan-based cyclic peptides, PNA-conjugated peptides, and small molecule-peptide conjugates, have been developed. In this chapter, we introduce all these peptide ligands and describe most of the approaches for targeting G-quadruplex structures. We then conclude that peptides are among the most promising functional ligands for G-quadruplexes to control various biological events in next-generation approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal T, Roy S, Chakraborty TK et al (2010a) Furan based cyclic homo-oligopeptides bind G-quadruplex selectively and repress c-MYC transcription. Bioorg Med Chem Lett 20:4346–4349

    Article  CAS  PubMed  Google Scholar 

  • Agarwal T, Roy S, Chakraborty TK et al (2010b) Selective targeting of G-quadruplex using furan-based cyclic homooligopeptides: effect on c-MYC expression. Biochemistry 49:8388–8397

    Article  CAS  PubMed  Google Scholar 

  • Amato J, Gabelica V, Borbone N et al (2008) A short C-rich PNA fragment capable to form novel G-quadruplex-PNA complexes. Nucleic Acids Symp Ser 52:167–168

    Article  CAS  Google Scholar 

  • Amato J, Oliviero G, De Pauw E et al (2009) Hybridization of short complementary PNAs to G-quadruplex forming oligonucleotides: an electrospray mass spectrometry study. Biopolymers 91:244–255

    Article  CAS  PubMed  Google Scholar 

  • Amato J, Pagano B, Borbone N et al (2011) Targeting G-quadruplex structure in the human c-Kit promoter with short PNA sequences. Bioconjug Chem 22:654–663

    Article  CAS  PubMed  Google Scholar 

  • Arola A, Vilar R (2008) Stabilisation of G-quadruplex DNA by small molecules. Curr Top Med Chem 8:1405–1415

    Article  CAS  PubMed  Google Scholar 

  • Avino A, Fabrega C, Tintore M et al (2012) Thrombin binding aptamer, more than a simple aptamer: chemically modified derivatives and biomedical applications. Curr Pharm Des 18:2036–2047

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty TK, Tapadar S, Kumar SK (2002) Cyclic trimer of 5-(aminomethyl)-2-furancarboxylic acid as a novel synthetic receptor for carboxylate recognition. Tetrahedron Lett 43:1317–1320

    Article  CAS  Google Scholar 

  • Chakraborty TK, Tapadar S, Raju TV et al (2004) Cyclic trimers of chiral furan amino acids. Synlett 14:2484–2488

    Article  Google Scholar 

  • Chakraborty TK, Arora A, Roy S et al (2007) Furan based cyclic oligopeptides selectively target G-quadruplex. J Med Chem 50:5539–5542

    Article  CAS  PubMed  Google Scholar 

  • Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, New York, NY

    Google Scholar 

  • Chen Q, Kuntz ID, Shafer RH (1996) Spectroscopic recognition of guanine dimeric hairpin quadruplexes by a carbocyanine dye. Proc Natl Acad Sci U S A 93:2635–2639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cocco MJ, Hanakahi LA, Huber MD et al (2003) Specific interactions of distamycin with G-quadruplex DNA. Nucleic Acids Res 31:2944–2951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Connor AC, Frederick KA, Morgan EJ et al (2006) Insulin capture by an insulin-linked polymorphic region G-quadruplex DNA oligonucleotide. J Am Chem Soc 128:4986–4991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cosconati S, Marinelli L, Trotta R et al (2010) Structural and conformational requisites in DNA quadruplex groove binding: another piece to the puzzle. J Am Chem Soc 132:6425–6433

    Article  CAS  PubMed  Google Scholar 

  • Darnell JC, Jensen KB, Jin P et al (2001) Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107:489–499

    Article  CAS  PubMed  Google Scholar 

  • Darnell JC, Fraser CE, Mostovetsky O et al (2009) Discrimination of common and unique RNA binding activities among Fragile X mental retardation protein paralogs. Hum Mol Genet 18:3164–3177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datta B, Armitage BA (2001) Hybridization of PNA to structured DNA targets: quadruplex invasion and the overhang effect. J Am Chem Soc 123:9612–9619

    Article  CAS  PubMed  Google Scholar 

  • Datta B, Schmitt C, Armitage BA (2003) Formation of a PNA2-DNA2 hybrid quadruplex. J Am Chem Soc 125:4111–4118

    Article  CAS  PubMed  Google Scholar 

  • Datta B, Bier ME, Roy S et al (2005) Quadruplex formation by a guanine-rich PNA oligomer. J Am Chem Soc 127:4199–4207

    Article  CAS  PubMed  Google Scholar 

  • David WM, Brodbelt J, Kerwin SM et al (2002) Investigation of quadruplex oligonucleotide-drug interactions by electrospray ionization mass spectrometry. Anal Chem 74:2029–2033

    Article  CAS  PubMed  Google Scholar 

  • De Cian A, Lacroix L, Douarre C et al (2008) Targeting telomeres and telomerase. Biochimie 90:131–155

    Article  PubMed  Google Scholar 

  • Demidov VV, Frank-Kamenetskii MD (2002) PNA openers and their applications. Methods Mol Biol 208:119–130

    CAS  PubMed  Google Scholar 

  • Demidov VV, Potaman VN, Frank-Kamenetskii MD et al (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313

    Article  CAS  PubMed  Google Scholar 

  • Egholm M, Christensen L, Dueholm KL et al (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23:217–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esposito V, Galeone A, Mayol L, Messere A et al (2003) PNA-DNA chimeras forming quadruplex structures. Nucleosides Nucleotides Nucleic Acids 22:1681–1684

    Article  CAS  PubMed  Google Scholar 

  • Gomez D, Lemarteleur T, Lacroix L et al (2004) Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. Nucleic Acids Res 32:371–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green JJ, Ladame S, Ying L et al (2006) Investigating a quadruplex-ligand interaction by unfolding kinetics. J Am Chem Soc 128:9809–9812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison RJ, Gowan SM, Kelland LR et al (1999) Human telomerase inhibition by substituted acridine derivatives. Bioorg Med Chem Lett 9:2463–2468

    Article  CAS  PubMed  Google Scholar 

  • Henderson E, Hardin CC, Walk SK et al (1987) Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine–guanine basepairs. Cell 51:899–908

    Article  CAS  PubMed  Google Scholar 

  • Huang HS, Chen IB, Huang KF et al (2007) Synthesis and human telomerase inhibition of a series of regioisomeric disubstituted amidoanthraquinones. Chem Pharm Bull (Tokyo) 55:284–292

    Article  CAS  Google Scholar 

  • Hudson JS, Brooks SC, Graves DE (2009) Interactions of actinomycin D with human telomeric G-quadruplex DNA. Biochemistry 48:4440–4447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908–2916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200

    Article  CAS  PubMed  Google Scholar 

  • Jantos K, Rodriguez R, Ladame S et al (2006) Oxazole-based peptide macrocycles: a new class of G-quadruplex binding ligands. J Am Chem Soc 128:13662–13663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang HJ, Park HJ (2009) Novel molecular mechanism for actinomycin D activity as an oncogenic promoter G-quadruplex binder. Biochemistry 48:7392–7398

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Matsui N, Usui K (2011) Use of a designed peptide library to screen for binders to a particular DNA g-quadruplex sequence. J Nucleic Acids 572873. doi:10.4061/2011/572873

  • Kopka ML, Yoon C, Goodsell D et al (1985) The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc Natl Acad Sci U S A 82:1376–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar N, Maiti S (2007) Role of locked nucleic acid modified complementary strand in quadruplex/Watson-Crick duplex equilibrium. J Phys Chem B 111:12328–12337

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Bugaut A, Huppert JL et al (2007) An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3:218–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ladame S, Harrison RJ, Neidle S et al (2002) Solid-phase synthesis of symmetrical 3,6-bispeptide-acridone conjugates. Org Lett 4:2509–2512

    Article  CAS  PubMed  Google Scholar 

  • Ladame S, Schouten JA, Stuart J et al (2004) Tetrapeptides induce selective recognition for G-quadruplexes when conjugated to a DNA-binding platform. Org Biomol Chem 2:2925–2931

    Article  CAS  PubMed  Google Scholar 

  • Luedtke NW (2009) Targeting G-quadruplex DNA with small molecules. CHIMIA Int J Chem 63:134–139

    Article  CAS  Google Scholar 

  • Lusvarghi S, Murphy CT, Roy S et al (2009) Loop and backbone modifications of peptide nucleic acid improve g-quadruplex binding selectivity. J Am Chem Soc 131:18415–18424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madani F, Lindberg S, Langel U et al (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 414729. doi: 10.1155/2011/414729

  • Majumdar A, Patel DJ (2002) Identifying hydrogen bond alignments in multistranded DNA architectures by NMR. Acc Chem Res 35:1–11

    Article  CAS  PubMed  Google Scholar 

  • Marin VL, Armitage BA (2005) RNA guanine quadruplex invasion by complementary and homologous PNA probes. J Am Chem Soc 127:8032–8033

    Article  CAS  PubMed  Google Scholar 

  • Marin VL, Armitage BA (2006) Hybridization of complementary and homologous peptide nucleic acid oligomers to a guanine quadruplex-forming RNA. Biochemistry 45:1745–1754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martino L, Virno A, Pagano B et al (2007) Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4. J Am Chem Soc 129:16048–16056

    Article  CAS  PubMed  Google Scholar 

  • Moore MJ, Cuenca F, Searcey M et al (2006) Synthesis of distamycin A polyamides targeting G-quadruplex DNA. Org Biomol Chem 4:3479–3488

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Nakanishi T, Okamoto H et al (2005) IR study on stacking manner of peptide nanorings in peptide nanotubes. Jpn J Appl Phys 44:7654–7661

    Article  CAS  Google Scholar 

  • Nagatoishi S, Sugimoto N (2012) Interaction of water with the G-quadruplex loop contributes to the binding energy of G-quadruplex to protein. Mol Biosyst 8:2766–2770

    Article  CAS  PubMed  Google Scholar 

  • Nagatoishi S, Isono N, Tsumoto K et al (2011) Hydration is required in DNA G-quadruplex-protein binding. Chembiochem 12:1822–1826

    Article  CAS  PubMed  Google Scholar 

  • Neidle S, Balasubramanian S (2006) Quadruplex nucleic acids. Royal Society of Chemistry, Cambridge, UK

    Book  Google Scholar 

  • Nielsen PE, Egholm M (1999) An introduction to peptide nucleic acid. Curr Issues Mol Biol 1:89–104

    CAS  PubMed  Google Scholar 

  • Nielsen PE, Egholm M, Berg RH et al (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PE, Egholm M, Berg RH et al (1993) Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res 21:197–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okamoto H, Yamada T, Miyazaki H et al (2005) Difference in self-assembling morphology of peptide nanorings. Jpn J Appl Phys 44:8240–8248

    Article  CAS  Google Scholar 

  • Onyshchenko MI, Gaynutdinov TI, Englund EA et al (2009) Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs. Nucleic Acids Res 37:7570–7580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onyshchenko MI, Gaynutdinov TI, Englund EA et al (2011) Quadruplex formation is necessary for stable PNA invasion into duplex DNA of BCL2 promoter region. Nucleic Acids Res 39:7114–7123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pagano B, Mattia CA, Virno A et al (2007) Thermodynamic analysis of quadruplex DNA-drug interaction. Nucleosides Nucleotides Nucleic Acids 26:761–765

    Article  CAS  PubMed  Google Scholar 

  • Pagano B, Virno A, Mattia CA et al (2008) Targeting DNA quadruplexes with distamycin A and its derivatives: an ITC and NMR study. Biochimie 90:1224–1232

    Article  CAS  PubMed  Google Scholar 

  • Panyutin IG, Panyutin IV, Demidov VV (2007) Targeting linear duplex DNA with mixed-base peptide nucleic acid oligomers facilitated by bisPNA openers. Anal Biochem 362:145–147

    Article  CAS  PubMed  Google Scholar 

  • Paul A, Sengupta P, Krishnan Y et al (2008) Combining G-quadruplex targeting motifs on a single peptide nucleic acid scaffold: a hybrid (3 + 1) PNA-DNA bimolecular quadruplex. Chem Eur J 14:8682–8689

    Article  CAS  PubMed  Google Scholar 

  • Phan AT, Kuryavyi V, Darnell JC et al (2011) Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat Struct Mol Biol 18:796–804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Randazzo A, Galeone A, Mayol L (2001) 1H-NMR study of the interaction of distamycin A and netropsin with the parallel stranded tetraplex [d(TGGGGT)]4. Chem Commun 11:1030–1031

    Article  Google Scholar 

  • Rankin S, Reszka AP, Huppert J et al (2005) Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc 127:10584–10589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Read M, Harrison RJ, Romagnoli B et al (2001) Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc Natl Acad Sci U S A 98:4844–4849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Redman JE, Ladame S, Reszka AP et al (2006) Discovery of G-quadruplex stabilizing ligands through direct ELISA of a one-bead-one-compound library. Org Biomol Chem 4:4364–4369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Redman JE, Granadino-Roldán JM, Schouten JA et al (2009) Recognition and discrimination of DNA quadruplexes by acridine-peptide conjugates. Org Biomol Chem 7:76–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roy S, Tanious FA, Wilson WD et al (2007) High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element. Biochemistry 46:10433–10443

    Article  CAS  PubMed  Google Scholar 

  • Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Devel Ther 7:585–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaeffer C, Bardoni B, Mandel JL et al (2001) The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J 20:4803–4813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schonhoft JD, Das A, Achamyeleh F et al (2010) ILPR repeats adopt diverse G-quadruplex conformations that determine insulin binding. Biopolymers 93:21–31

    Article  CAS  PubMed  Google Scholar 

  • Schouten JA, Ladame S, Mason SJ et al (2003) G-quadruplex-specific peptide-hemicyanine ligands by partial combinatorial selection. J Am Chem Soc 125:5594–5595

    Article  CAS  PubMed  Google Scholar 

  • Seenisamy J, Rezler EM, Powell TJ et al (2004) The dynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP4. J Am Chem Soc 126:8702–8709

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui-Jain A, Grand CL, Bearss DJ et al (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99:11593–11598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sissi C, Gatto B, Palumbo M (2011) The evolving world of protein-G-quadruplex recognition: a medicinal chemist’s perspective. Biochimie 93:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Sühnel J (2001) Beyond nucleic acid base pairs: from triads to heptads. Biopolymers 61:32–51

    Article  PubMed  Google Scholar 

  • Todd AK, Johnston M, Neidle S (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 33:2901–2907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomizaki KY, Usui K, Mihara H (2005) Protein-detecting microarrays: current accomplishments and requirements. Chembiochem 6:782–799

    Article  CAS  PubMed  Google Scholar 

  • Tucker WO, Shum KT, Tanner JA (2012) G-quadruplex DNA aptamers and their ligands: structure, function and application. Curr Pharm Des 18:2014–2026

    Article  CAS  PubMed  Google Scholar 

  • Usui K, Tomizaki K, Mihara H (2007) Screening of alpha-helical peptide ligands controlling a calcineurin-phosphatase activity. Bioorg Med Chem Lett 17:167–171

    Article  CAS  PubMed  Google Scholar 

  • Usui K, Tomizaki K, Mihara H (2009) A designed peptide chip: protein fingerprinting technology with a dry peptide array and statistical data mining. Methods Mol Biol 570:273–284

    Article  CAS  PubMed  Google Scholar 

  • Vo TU, McGown LB (2004) Selectivity of quadruplex DNA stationary phases toward amino acids in homodipeptides and alanyl dipeptides. Electrophoresis 25:1230–1236

    Article  CAS  PubMed  Google Scholar 

  • Wadkins RM, Jares-Erijman EA, Klement R et al (1996) Actinomycin D binding to single-stranded DNA: sequence specificity and hemi-intercalation model from fluorescence and 1H NMR spectroscopy. J Mol Biol 262:53–68

    Article  CAS  PubMed  Google Scholar 

  • Whitney AM, Ladame S, Balasubramanian S (2004) Templated ligand assembly by using G-quadruplex DNA and dynamic covalent chemistry. Angew Chem Int Ed Engl 43:1143–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao J, Carter JA, Frederick KA et al (2009) A genome-inspired DNA ligand for the affinity capture of insulin and insulin-like growth factor-2. J Sep Sci 32:1654–1664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yaku H, Murashima T, Miyoshi D et al (2010) Anionic phthalocyanines targeting G-quadruplexes and inhibiting telomerase activity in the presence of excessive DNA duplexes. Chem Commun 46:5740–5742

    Article  CAS  Google Scholar 

  • Yaku H, Fujimoto T, Murashima T et al (2012) Phthalocyanines: a new class of G-quadruplex-ligands with many potential applications. Chem Commun 48:6203–6216

    Article  CAS  Google Scholar 

  • Yu HQ, Miyoshi D, Sugimoto N (2006) Characterization of structure and stability of long telomeric DNA G-quadruplexes. J Am Chem Soc 128:15461–15468

    Article  CAS  PubMed  Google Scholar 

  • Zagotto G, Sissi C, Lucatello L et al (2008) Aminoacyl-anthraquinone conjugates as telomerase inhibitors: synthesis, biophysical and biological evaluation. J Med Chem 51:5566–5574

    Article  CAS  PubMed  Google Scholar 

  • Zagotto G, Ricci A, Vasquez E et al (2011) Tuning G-quadruplex vs double-stranded DNA recognition in regioisomeric lysyl-peptidyl-anthraquinone conjugates. Bioconjug Chem 22:2126–2135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to those authors whose work was not cited directly owing to space limitations. We thank Ms. E. Takekawa (Konan University, Japan) for generous supports. K. U. is also grateful to the Grants-in-Aid for Scientific Research and the “Core research” project (2009–2014) from MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Usui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Usui, K., Okada, A. (2014). Peptides Targeting G-Quadruplex Structures. In: Erdmann, V., Markiewicz, W., Barciszewski, J. (eds) Chemical Biology of Nucleic Acids. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54452-1_25

Download citation

Publish with us

Policies and ethics