Skip to main content
  • 59k Accesses

Zusammenfassung

Pflanzen reagieren nicht nur auf physikalische oder chemische Reize aus ihrer unbelebten (abiotischen) Umgebung (s. Kap. 18), sie treten auch in vielfältige Wechselwirkungen mit anderen Lebewesen. Als ein Beispiel wurden die phytochromgesteuerten Reaktionen auf Laubschatten bzw. auf von benachbarten Pflanzen reflektiertes Licht bereits erwähnt (s. Abschn. 18.2.1). Die Erforschung der molekularen Abläufe bei der Interaktion von Pflanzen mit anderen Organismen stellt heute ein eigenständiges Gebiet der Physiologie dar, das hier unter dem Begriff Allelophysiologie (griech. allélos, wechselseitig, gegenseitig) zusammenfassend dargestellt werden soll.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Agerer R (1999) Mycorrhiza: ectotrophic and ectendotrophic mycorrhizae. Progr Bot 60: 471–501

    Article  CAS  Google Scholar 

  • Agrawal AA (2000) Mechanisms ecological consequences and agricultural implications of tri-trophic interactions. Curr Opin Plant Biol 3: 329–335

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (2005) Plant Pathology, 5th ed. Academic Press, San Diego

    Google Scholar 

  • Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant-insect interactions. Curr Opin Plant Biol 4: 351–358

    Article  CAS  PubMed  Google Scholar 

  • Bird DM, Koltai H (2000) Plant parasitic nematodes: habitats, hormones, and horizontally-acquired genes. J Plant Growth Regul 19: 183–194

    Article  CAS  PubMed  Google Scholar 

  • Cairney JWG (2000) Evolution of mycorrhiza systems. Naturwissenschaften 87: 467–475

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2006) The plant immune system. Nature. 444, 323–329

    Article  PubMed  Google Scholar 

  • De Wit PJGM (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64: 2726–2732

    Article  PubMed  Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411: 854–856

    Article  CAS  PubMed  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6: 201–211

    Article  CAS  PubMed  Google Scholar 

  • Hahn M, Mendgen K (2001) Signal and nutrient exchange at biotrophic plant-fungris interfaces. Curr Opin Plant Biol 4: 322–327

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol. 48: 573–606

    Article  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50: 361–390

    Article  CAS  PubMed  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3: 315–319

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251–76

    Article  CAS  PubMed  Google Scholar 

  • Meeks JC (1998) Symbiosis between nitrogen-fixing cyanobacteria and plants. BioScience 48: 266–276

    Article  Google Scholar 

  • Paiva NL (2000) An introduction to the biosynthesis of chemicals used in plant-microbe communication. J Plant Growth Regul 19: 131–143

    Article  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (2000) Plant volatiles as a defense against insect herbivores. Plant Physiol 121: 325–331

    Article  Google Scholar 

  • Parniske M (2000) Intracellular accomodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3: 320–328

    Article  CAS  PubMed  Google Scholar 

  • Paul ND, Hatcher PE, Taylor JE (2000) Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci 5: 220–225

    Article  CAS  PubMed  Google Scholar 

  • Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411: 857–864

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1: 109–113

    Article  Google Scholar 

  • Takken FLW, Joosten HAJ (2000) Plant resistance genes: their structure, function and evolution. Eur J Plant Pathol 106: 699–713

    Article  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2005) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17: 147–154

    Article  Google Scholar 

  • Williamson VM (1999) Nematode resistance genes. Curr Opin Plant Biol 2: 327–331

    Article  CAS  PubMed  Google Scholar 

  • Yoder JI (2001) Host-plant recognition by parasitic Scrophulariaceae. Curr Opin Plant Biol 4: 359–365

    Article  CAS  PubMed  Google Scholar 

  • Young ND (2000) The genetic architecture of resistance. Curr Opin Plant Biol 3: 285–290

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Sonnewald .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sonnewald, U. (2014). Allelophysiologie. In: Strasburger − Lehrbuch der Pflanzenwissenschaften. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54435-4_21

Download citation

Publish with us

Policies and ethics