Skip to main content

Weak Coin Flipping in a Device-Independent Setting

  • Conference paper
  • First Online:
Book cover Theory of Quantum Computation, Communication, and Cryptography (TQC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6745))

Included in the following conference series:

Abstract

A protocol is said to be device-independent when the level of its performance can be inferred without making any assumptions regarding the inner workings of the apparatus used to implement it. In this paper we introduce a device-independent weak coin flipping protocol based on a single GHZ test. Interestingly, the protocol calls for the exchange of (quantum) systems between participants; a feature which is not trivial to incorporate in a device-independent setting where a system’s behavior may depend on the time, location, and its history. Alice’s and Bob’s maximal cheating probabilities are given by \(\simeq 0.974\) and \(\cos ^2(\frac{\pi }{8}) \simeq 0.854\).

N. Aharon— Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

A. Chailloux— SECRET Project Team, INRIA Paris-Recquencourt, 78153 Le Chesnay Cedex, France.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett, J., et al.: Phys. Rev. Lett. 95, 010503 (2005)

    Google Scholar 

  2. Acín, A., et al.: Phys. Rev. Lett. 98, 230501 (2007)

    Google Scholar 

  3. Pironio, S., et al.: New J. Phys. 11, 045021 (2009)

    Google Scholar 

  4. McKague, M.: New J. Phys. 11, 103037 (2009)

    Google Scholar 

  5. Masanes, Ll., Pironio, S., Acín, A.: Nat. Commun. 2, 238 (2011)

    Google Scholar 

  6. Hanggi, E., Renner, R.: arXiv:1009.1833

  7. Magniez, F., Mayers, D., Mosca, M., Ollivier, H.: Self-testing of quantum circuits. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 72–83. Springer, Heidelberg (2006)

    Google Scholar 

  8. Acín, A., Gisin, N., Masanes, Ll.: Phys. Rev. Lett. 97, 120405 (2006)

    Google Scholar 

  9. Xu, F., et al.: New J. Phys. 12, 113026 (2010) arXiv:1005.2376 [quant-ph]

  10. Lydersen, L., et al.: Nat. Photonics 4, 686 (2010)

    Google Scholar 

  11. Colbeck, R., Kent, A.: J. Phys. A: Math. Theor. 44, 095305 (2011)

    Google Scholar 

  12. Pironio, S., et al.: Nature 464, 1021 (2010)

    Google Scholar 

  13. Mayers, D., Yao, A.: Quantum Inform. Comput. 4, 273 (2004)

    Google Scholar 

  14. McKague, M., Mosca, M.: Generalized self-testing and the security of the 6-state protocol. In: van Dam, W., Kendon, V.M., Severini, S. (eds.) TQC 2010. LNCS, vol. 6519, pp. 113–130. Springer, Heidelberg (2011)

    Google Scholar 

  15. Bancal, J.-D., et al.: Phys. Rev. Lett. 106, 250404 (2011) arXiv:1102.0197 [quant-ph]

  16. Silman, J., et al.: Phys. Rev. Lett. 106, 220501 (2011)

    Google Scholar 

  17. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, p. 74. Kluwer, Dordrecht (1989)

    Google Scholar 

  18. Mermin, N.D.: Phys. Today 43, 9 (1990)

    Google Scholar 

  19. Mochon, C.: arXiv:0711.4114 [quant-ph]

  20. Chailloux, A., Kerenidis, I.: In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, p. 527. CS Press (2009)

    Google Scholar 

  21. Chailloux, A., Kerenidis, I.: In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, p. 354. CS Press (2011) arXiv:1102.1678v1 [quant-ph]

  22. Blum, M.: In: Gersho, A., Santa Barbara, U.C. (eds.) Advances in Cryptology: a report on CRYPTO 81. Department of Electrical and Computer Engineering, ECE Report No. 82–04, 1982, p. 11

    Google Scholar 

  23. Aharonov, D., et al.: In: Proceedings of the 32nd Annual ACM Symposium on the Theory of Computing, p. 705. ACM Press (2000)

    Google Scholar 

  24. Ambainis, A.: In: Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing, p. 134. ACM Press (2001)

    Google Scholar 

  25. Kitaev, A.: Unpublished. Proof reproduced in [29]

    Google Scholar 

  26. Spekkens, R.W., Rudolph, T.: Phys. Rev. A 65, 012310 (2001)

    Google Scholar 

  27. Spekkens, R.W., Rudolph, T.: Phys. Rev. Lett. 89, 227901 (2002)

    Google Scholar 

  28. Mochon, C.: In: Proceedings of the 45th Annual IEEE Symposium on the Foundations of Computer Science, p. 2. CS Press (2004)

    Google Scholar 

  29. Mochon, C.: Phys. Rev. A 72, 022341 (2005)

    Google Scholar 

  30. Ambainis, A., et al.: In: Proceedings of the 19th Annual IEEE Conference on Computational Complexity, p. 250. CS Press (2004)

    Google Scholar 

  31. Barrett, J., Massar, S.: Phys. Rev. A 69, 022322 (2004)

    Google Scholar 

  32. Barrett, J., Massar, S.: Phys. Rev. A 70, 052310 (2004)

    Google Scholar 

  33. Aharon, N., Silman, J.: New J. Phys. 12, 033027 (2010)

    Google Scholar 

  34. Ganz, M.: arXiv:0910.4952 [quant-ph]

  35. Kent, A.: Phys. Rev. Lett. 83, 5382 (1999)

    Google Scholar 

  36. Vaidman, L.: Found. Phys. 29, 615 (1999)

    Google Scholar 

  37. Clauser, J.F., et al.: Phys. Rev. Lett. 23, 880 (1969)

    Google Scholar 

  38. Cirel’son, B.S.: Lett. Math. Phys. 4, 93 (1980)

    Google Scholar 

  39. Tsirelson, B.: Hadronic J. Suppl. 8, 329 (1993)

    Google Scholar 

  40. Masanes, Ll.: Phys. Rev. Lett. 97, 050503 (2006)

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the BSF (grant no. 32/08) (N.A.), the Inter-University Attraction Poles Programme (Belgian Science Policy) under Project IAP-P6/10 (Photonics@be) (S.M., S.P., J.S), a BB2B grant of the Brussels-Capital region (S.P.), the Fonds de la Recherche Scienitifique – FNRS (J.S.), the projects ANR-09-JCJC-0067-01, ANR- 08-EMER-012 (A.C., I.K.), and the project QCS (grant 255961) of the E.U. (A.C., I.K., S.M., S.P., J.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nati Aharon or Jonathan Silman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aharon, N., Chailloux, A., Kerenidis, I., Massar, S., Pironio, S., Silman, J. (2014). Weak Coin Flipping in a Device-Independent Setting. In: Bacon, D., Martin-Delgado, M., Roetteler, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2011. Lecture Notes in Computer Science(), vol 6745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54429-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54429-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54428-6

  • Online ISBN: 978-3-642-54429-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics